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ABSTRACT. In this paper, the applicability of soft set theory to subalgebras of CI-algebras
is investigated. CI-algebras are utilized in algebraic logic and computer science. Soft set
theory is a framework for dealing with ambiguous or imprecise information. We employ
soft sets to investigate the intersection and union of subalgebras, among other properties
of subalgebras of CI-algebras. We demonstrate that soft set theory is a valuable tool for
analyzing subalgebras of CI-algebras and developing new results in this domain. This pa-
per contributes to the comprehension of soft set theory and its applications in CI-algebras
with the findings presented herein.

1. INTRODUCTION

Soft set theory, introduced by Molodtsov in 1999 [17], is a mathematical framework
that provides a flexible and intuitive way to handle uncertain or imprecise information. It
has gained significant attention in various fields, including decision-making, data mining,
pattern recognition, and artificial intelligence. Soft set theory allows for the representation
and analysis of vague or incomplete information through the concept of a soft set, which
is a generalization of classical set theory.

In recent years, there has been a growing interest in combining different mathematical
theories to gain new insights and solve complex problems. The combination of soft set the-
ory and BCI-algebras has the potential to provide a deeper understanding of the properties
and behaviour of BCI-algebras in the presence of uncertain information.

Kim and Kim introduced the concept of a BE-algebra to generalize a BCK-algebra
and studied its numerous properties [12]. In an attempt to further develop the concept of
BE-algebras, Meng introduced CI-algebras as a generalization [16]. Subsequently, Kim
examined the ideal theory and attributes of CI-algebras [11].

This research builds upon previous work in the fields of soft sets and BCI-algebras.
Aktas and Cagman [1] introduced the concept of soft sets and their applications in various
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mathematical structures. Huang [5] provided a comprehensive study of BCI-algebras and
their properties. Jun [6] extended the concept of soft sets to BCK/BCI-algebras. Jun and
Park [9] explored the applications of soft sets in the ideal theory of BCK/BCI-algebras.

Fuzzy soft sets were introduced by Maji et al. [14, 15], who also explored their ap-
plication in decision-making problems. Since then, research on the theory of soft sets
has progressed rapidly. For instance, Jun et al. [7] studied intersection-soft filters in R0-
algebras, while Roh and Jun [26] investigated positive implicative ideals in BCK-algebras
using intersectional soft sets. Also, Akram [2] introduced the notion of fuzzy soft Lie al-
gebras. Similarly, Roy et al. [27] applied fuzzy soft sets to decision-making problems, and
Aygünoǧlu et al. [4] proposed and studied the concept of a fuzzy soft group. Moreover, Jun
et al. [8] introduced the notion of fuzzy soft BCK/BCI-algebras (also known as FSB-
algebras) by applying the theory of fuzzy soft sets to BCK/BCI-algebras. Additionally,
numerous studies have been conducted by Muhiuddin et al. that explore the application of
soft set theory to various algebraic structures [3, 10, 18, 19, 20, 21, 22, 23, 24, 25].

In this paper, we build upon the existing literature by focusing specifically on the rela-
tionship between soft sets and subalgebra in CI-algebras. We aim to provide a compre-
hensive analysis of this relationship and establish important results that contribute to the
understanding of soft set theory in the context of CI-algebras. The applicability of soft
set theory to CI-algebraic subalgebras is examined in this study. Specifically, by utilising
the idea of soft sets, we investigate several subalgebraic qualities like their intersection and
union. Additionally, we define a soft ideal as a soft set of a CI-algebra. It is our intention
to demonstrate how soft set theory can be a useful tool for studying and comprehending
subalgebras of CI-algebras.

Following is how the current paper is structured: The terms and characteristics relevant
to soft sets and CI-algebras are covered in Section 2 in detail. Soft set operations are used
in Section 3 to examine the intersection, union and other results based on soft CI-algebras.
Our conclusions and possible future study directions are summarised in Section 4 for the
conclusion.

2. PRELIMINARIES

A type (2, θ) algebra (L0; ∗, 1) is referred to as a wwwCI-algebra (briefly, CI-A) if it
fulfills the following criteria:

(CI1) m1 ∗m1 = 1,
(CI2) 1 ∗m1 = m1,
(CI3) m1 ∗ (m2 ∗m3) = m2 ∗ (m1 ∗m3),

for all m1,m2,m3 ∈ L0. A CI-A (L0; ∗, 1) is said to be transitive if it satisfies:

(∀m1,m2,m3 ∈ L0) ((m2 ∗m3) ∗ ((m1 ∗m2) ∗ (m1 ∗m3)) = 1) . (2.1)

A CI-A (L0; ∗, 1) is said to be self-distributive if it satisfies:

(∀m1,m2,m3 ∈ L0) (m1 ∗ (m2 ∗m3) = (m1 ∗m2) ∗ (m1 ∗m3)) . (2.2)

Note that every self-distributive CI-A is a transitive CI-A (see [11]).
A non-empty subset Î of a CI-A (L0; ∗, 1) is called an ideal of L0 (see [11]) if it satisfies:

(I1) (∀m1,m2 ∈ L0)
(
m2 ∈ Î ⇒ m1 ∗m2 ∈ Î

)
,

(I2) (∀m1, r0, s0 ∈ L0)
(
r0, s0 ∈ Î ⇒ (r0 ∗ (s0 ∗m1)) ∗m1 ∈ Î

)
.



APPLICATIONS OF SOFT SET THEORY TO THE SUBALGEBRAS OF CI-ALGEBRAS 135

Molodtsov [17] presented the following definition of a soft set. Consider an initial
universe set Û and a set of parameters E, with Y (Û) denoting the power set of Û . Let
Ĵ1 ⊂ E.

Definition 2.1. A pair (ρ̃, Ĵ1) is defined as a soft set over Û , where ρ̃ is a mapping given
by ρ̃ : Ĵ1 → Y (Û).

Consider two soft sets over a common universe Û , namely (ρ̃, Ĵ1) and (σ̃, Ĵ2). The
intersection of these two soft sets is defined as the soft set (h̃, Ŵ ), which satisfies the
following conditions:

Definition 2.2. [13] The intersection of (ρ̃, Ĵ1) and (σ̃, Ĵ2) is given by the soft set (h̃, Ŵ ),
where:

(i) Ŵ = Ĵ1 ∩ Ĵ2, and
(ii) For every e ∈ Ŵ , we have (h̃(e) = ρ̃(e) or σ̃(e)), since both are the same set.

This intersection is denoted as (ρ̃, Ĵ1) ∩̃ (σ̃, Ĵ2) = (h̃, Ŵ ).

Definition 2.3. [13] The union of (ρ̃, Ĵ1) and (σ̃, Ĵ2) is given by the soft set (h̃, Ŵ ), where:

(i) Ŵ = Ĵ1 ∪ Ĵ2,

(ii) For all e ∈ Ŵ ,

h̃(e) =


ρ̃(e) if e ∈ Ĵ1 \ Ĵ2,
σ̃(e) if e ∈ Ĵ2 \ Ĵ1,
ρ̃(e) ∪ σ̃(e) if e ∈ Ĵ1 ∩ Ĵ2.

This union is denoted as (ρ̃, Ĵ1) ∪̃ (σ̃, Ĵ2) = (h̃, Ŵ ).

Definition 2.4. If (ρ̃, Ĵ1) and (σ̃, Ĵ2) are two soft sets over a common universe Û , then the
operation ”AND” between them, denoted by (ρ̃, Ĵ1)∧̃(σ̃, Ĵ2), is defined as (ρ̃, Ĵ1)∧̃(σ̃, Ĵ2) =
(h̃, Ĵ1 × Ĵ2), where h̃(β, β) = ρ̃(β) ∩ σ̃(β) for all (β, β) ∈ Ĵ1 × Ĵ2.

Definition 2.5. [13] If (ρ̃, Ĵ1) and (σ̃, Ĵ2) are two soft sets over a common universe Û , then
the operation ”OR” between them, denoted as (ρ̃, Ĵ1)∨̃(σ̃, Ĵ2), is defined as (h̃, Ĵ1 × Ĵ2),
where h̃(β, β) = ρ̃(β) ∪ σ̃(β) for all (β, β) ∈ Ĵ1 × Ĵ2.

Definition 2.6. [13] Two soft sets (ρ̃, Ĵ1) and (σ̃, Ĵ2) over a common universe Û are said
to have a soft subset relationship, denoted by (ρ̃, Ĵ1)⊂̃(σ̃, Ĵ2), if they satisfy the following
conditions:

(i) Ĵ1 ⊂ Ĵ2,
(ii) For every ε ∈ Ĵ1, ρ̃(ε) and σ̃(ε) are identical approximations.

For a soft set (ρ̃, L0) over Û and a subset γ of Û , the γ-inclusive set of (ρ̃, L0), denoted
by (ρ̃; γ)⊇, is defined to be the set

(ρ̃; γ)⊇ := {m1 ∈ L0 | γ ⊆ ρ̃(m1)} .

3. SOFT CI-ALGEBRAS

In the subsequent discussion, we consider a CI-A denoted as L0 and a nonempty set
denoted as Ĵ1. We use the symbol R to represent an arbitrary binary relation between an
element of Ĵ1 and an element of L0. Specifically, R is a subset of the Cartesian product
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Ĵ1 × L0, unless stated otherwise. A set-valued function ρ̃ : Ĵ1 → Y (L0) can be formally
defined as ρ̃(m1) = {m2 ∈ L0 | m1Rm2} for all m1 ∈ Ĵ1. The pair (ρ̃, Ĵ1) can be
considered as a soft set over L0. The order of an element m1 in a CI-A L0 is defined as
o(m1) and is given by o(m1) = min{n ∈ N | 0 ∗mn

1 = 0}.
bot

Definition 3.1. (ρ̃, Ĵ1) is an soft CI-A over L0 if ρ̃(m1) is a subalgebra of L0 for every
m1 ∈ Ĵ1.

Let’s illustrate this definition with the examples below.

Example 3.2. Let X = {θ, r0, s0, t0, p0} be a BCK-algebra with the following Cayley
table:

∗ θ r0 s0 t0 p0
θ θ θ θ θ θ
r0 r0 θ r0 r0 r0
s0 s0 s0 θ s0 s0
t0 t0 t0 t0 θ t0
p0 p0 p0 p0 p0 θ

Let (ρ̃, Ĵ1) be a soft set over L0, where Ĵ1 = L0 and ρ̃ : Ĵ1 → Y (L0) is a set-valued
function defined by

ρ̃(m1) = {m2 ∈ L0 | m1Rm2 ⇔ m2 ∈ m−1
1 I}

for all m1 ∈ Ĵ1 where Î = {θ, r0} and m−1
1 Î = {m2 ∈ L0 | m1 ∧m2 ∈ Î}. Then ρ̃(θ) =

ρ̃(r0) = L0, ρ̃(s0) = {θ, r0, t0, p0}, ρ̃(t0) = {θ, r0, s0, p0}, and ρ̃(p0) = {θ, r0, s0, t0}
are subalgebras of L0. Therefore (ρ̃, Ĵ1) is a soft CI-A over L0.

Let Ĵ1 be a fuzzy CI-SubA of L0 with membership function µ
Ĵ1
. Let us consider the

family of β-level sets for the function µ
Ĵ1

given by

ρ̃(β) = {m1 ∈ L0 | µ
Ĵ1(x)

≥ β}, β ∈ [0, 1].

Then ρ̃(β) is a CI-SubA of L0. If we know the family ρ̃, we can find the functions µ
Ĵ1(x)

by means of the following formula:

µ
Ĵ1(m1)

= sup{β ∈ [0, 1] | m1 ∈ ρ̃(β)}.

Thus, every fuzzy CI-SubA Ĵ1 may be considered as the soft CI-A (ρ̃, [0, 1]).

Theorem 3.1. Let (ρ̃, Ĵ1) be a soft CI-A over L0. If Ĵ2 is a subset of Ĵ1, then (ρ̃|
Ĵ2
, Ĵ2) is

a soft CI-A over L0.

Proof. Straightforward. □

The following example shows that there exists a soft set (ρ̃, Ĵ1) over L0 such that

(i) (ρ̃, Ĵ1) is not a soft CI-A over L0.

(ii) there exists a subset Ĵ2 of Ĵ1 such that (ρ̃|
Ĵ2
, Ĵ2) is a soft CI-A over L0.

Theorem 3.2. If (ρ̃, Ĵ1) and (σ̃, Ĵ2) are two soft CI-As over L0 with a non-empty inter-
section Ĵ1 ∩ Ĵ2, then their intersection (ρ̃, Ĵ1) ∩̃ (σ̃, Ĵ2) is also a soft CI-A over L0.

Proof. Let (h̃, Ŵ ) be the intersection of (ρ̃, Ĵ1) and (σ̃, Ĵ2), where Ŵ = Ĵ1 ∩ Ĵ2 and
h̃(m1) = ρ̃(m1) or σ̃(m1) for all m1 ∈ Ŵ . Since h̃ : Ŵ → Y (L0) is a mapping,
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(h̃, Ŵ ) is a soft set over L0. As (ρ̃, Ĵ1) and (σ̃, Ĵ2) are soft CI-As over L0, we have
h̃(m1) = ρ̃(m1) or h̃(m1) = σ̃(m1) is a CI-SubA of L0 for all m1 ∈ Ŵ . Therefore,
(h̃, Ŵ ) = (ρ̃, Ĵ1) ∩̃ (σ̃, Ĵ2) is a soft CI-A over L0. □

Corollary 3.3. Let (ρ̃, Ĵ1) and (σ̃, Ĵ1) be two soft CI-As over L0. Then their intersection
(ρ̃, Ĵ1) ∩̃ (σ̃, Ĵ1) is a soft CI-A over L0.

Proof. Straightforward. □

Theorem 3.4. If (ρ̃, Ĵ1) and (σ̃, Ĵ1) are two soft CI-As over L0 with disjoint sets Ĵ1 and
Ĵ2, then their union (ρ̃, Ĵ1) ∪̃ (σ̃, Ĵ1) is a soft CI-A over L0.

Proof. Let (h̃, Ŵ ) be the union of (ρ̃, Ĵ1) and (σ̃, Ĵ2), where Ŵ = Ĵ1 ∪ Ĵ2 and for every
e ∈ Ŵ ,

h̃(e) =


ρ̃(e) if e ∈ Ĵ1 \ Ĵ2,
σ̃(e) if e ∈ Ĵ2 \ Ĵ1,
ρ̃(e) ∪ σ̃(e) if e ∈ Ĵ1 ∩ Ĵ2.

Since Ĵ1 and Ĵ2 are disjoint sets, for every x ∈ Ŵ we have that either m1 ∈ Ĵ1 \ Ĵ2 or
m1 ∈ Ĵ2 \ Ĵ1. If m1 ∈ Ĵ1 \ Ĵ2, then h̃(m1) = ρ̃(m1) is a CI-SubA of L0 since (ρ̃, Ĵ1) is
a soft CI-A over L0. Similarly, if m1 ∈ Ĵ2 \ Ĵ1, then h̃(m1) = σ̃(m1) is a CI-SubA of L0

since (σ̃, Ĵ2) is a soft CI-A over L0. Hence, (h̃, Ŵ ) = (ρ̃, Ĵ1) ∪̃ (σ̃, Ĵ1) is a soft CI-A over
L0. □

Theorem 3.5. If (ρ̃, Ĵ1) and (σ̃, Ĵ2) are both soft CI-As over L0, then (ρ̃, Ĵ1)∧̃(σ̃, Ĵ2) is
also soft.

Proof. By means of Definition 2.4, we know that

(ρ̃, Ĵ1)∧̃(σ̃, Ĵ2) = (h̃, Ĵ1 × Ĵ2),

where h̃(m1,m2) = ρ̃(m1) ∩ σ̃(m2) for all (m1,m2) ∈ Ĵ1 × Ĵ2. Since ρ̃(m1) and
σ̃(m2) are CI-SubAs of L0, the intersection ρ̃(m1)∩σ̃(m2) is also a CI-SubA of L0. Hence
h̃(m1,m2) is a CI-SubA of L0 for all (m1,m2) ∈ Ĵ1×Ĵ2, and therefore (ρ̃, Ĵ1)∧̃(σ̃, Ĵ2) =
(h̃, Ĵ1 × Ĵ2) is a soft CI-A over L0. □

Definition 3.3. In the context of soft CI-As over L0, a soft CI-A (ρ̃, Ĵ1) is considered trivial
if ρ̃(m1) = 0 for all m1 ∈ Ĵ1, and it is considered whole if ρ̃(m1) = L0 for all m1 ∈ Ĵ1.

Example 3.4. Consider the BCI-algebra L0 = {θ, r0, s0, t0} introduced in Example 3.2.
For Ĵ1 = L0, we define ρ̃ : Ĵ1 → Y (L0) as follows:

ρ̃(m1) = {θ} ∪ {m2 ∈ L0 | m1Rm2,⇔, o(m1) = o(m2)}
for every m1 ∈ Ĵ1. It can be observed that ρ̃(x) = L0 for all m1 ∈ Ĵ1, indicating that

(ρ̃, Ĵ1) forms a whole soft BCI-algebra over L0.

Consider a mapping, denoted as η̄ : L0 → Q0, which maps CI-As. Now, suppose we
have a soft set (ρ̃, Ĵ1) over L0. In this case, (η̄(ρ̃), Ĵ1) represents a soft set over Q0, where
η̄(ρ̃) : Ĵ1 → Y (Q0) is defined as η̄(ρ̃)(m1) = η̄(ρ̃(m1)) for any m1 belonging to Ĵ1.

Lemma 3.6. Let η̄ : L0 → Q0 be a homomorphism of CI-As. If (ρ̃, Ĵ1) is a soft CI-A over
L0, then (η̄(ρ̃), Ĵ1) is a soft CI-A over Q0.
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Proof. For every m1 ∈ Ĵ1, we have η̄(ρ̃)(m1) = η̄(ρ̃(m1)) is a CI-SubA of Q0 since
ρ̃(m1) is a CI-SubA of L0 and its homomorphic image is also a CI-SubA of Q0. Hence
(η̄(ρ̃), Ĵ1) is a soft CI-A over Q0. □

Theorem 3.7. Let η̄ : L0 → Q0 be a homomorphism of CI-As and let (ρ̃, Ĵ1) be a soft
CI-A over L0.

(i) If ρ̃(m1) = ker(η̄) for all m1 ∈ Ĵ1, then (η̄(ρ̃), Ĵ1) is the trivial soft CI-A over
Q0.

(ii) If η̄ is onto and (ρ̃, Ĵ1) is whole, then (η̄(ρ̃), Ĵ1) is the whole soft CI-A over Q0.

Proof. (i) Assume that ρ̃(m1) = ker(η̄) for all m1 ∈ Ĵ1. Then η̄(ρ̃)(m1) = η̄(ρ̃(m1)) =

{0Q0} for all m1 ∈ Ĵ1. Hence (η̄(ρ̃), Ĵ1) is the trivial soft CI-A over Q0 by Lemma 3.6
and Definition 3.3.

(ii) Suppose that η̄ is onto and (ρ̃, Ĵ1) is whole. Then ρ̃(m1) = L0 for all m1 ∈ Ĵ1, and
so η̄(ρ̃)(m1) = η̄(ρ̃(m1)) = η̄(L0) = Q0 for all m1 ∈ Ĵ1. It follows from Lemma 3.6 and
Definition 3.3 that (η̄(ρ̃), Ĵ1) is the whole soft CI-A over Q0. □

Definition 3.5. Let (ρ̃, Ĵ1) and (σ̃, Ĵ2) be two soft CI-As over L0. Then (ρ̃, Ĵ1) is called a
soft subalgebra (briefly, S-SubA) of (σ̃, Ĵ2), denoted by (ρ̃, Ĵ1)<̃(σ̃, Ĵ2), if it satisfies:

(i) Ĵ1 ⊂ Ĵ2,

(ii) ρ̃(m1) is a CI-SubA of σ̃(m1) for all m1 ∈ Ĵ1.

Example 3.6. Let (ρ̃, Ĵ1) be a soft BCK-algebra over L0 which is given in Example 3.4.
Let Ĵ2 = {r0, t0, p0} be a subset of Ĵ1 and let G : Ĵ2 → Y (L0) be a set-valued function
defined by

σ̃(m1) = {m2 ∈ L0 | m1Rm2 ⇔ m2 ∈ m−1
1 Î}

for all m1 ∈ Ĵ2, where Î = {θ, r0} and m−1
1 Î = {m2 ∈ L0 | m1 ∧ m2 ∈ Î}. Then

σ̃(r0) = L0, σ̃(t0) = {θ, r0, s0, p0} and σ̃(p0) = {θ, r0, s0, t0} are BCK-subalgebras of
ρ̃(r0), ρ̃(t0) and ρ̃(p0), respectively. Hence (σ̃, Ĵ2) is a S-SubA of (ρ̃, Ĵ1).

Theorem 3.8. Let (ρ̃, Ĵ1) and (σ̃, Ĵ1) be two soft CI-As over L0.

(i) If ρ̃(m1) ⊂ σ̃(m1) for all m1 ∈ Ĵ1, then (ρ̃, Ĵ1)<̃(σ̃, Ĵ1).

(ii) If Ĵ2 = {θ} and (h̃, Ĵ2), (ρ̃, L0) are soft CI-As over L0, then (h̃, Ĵ2)<̃(ρ̃, L0).

Proof. Straightforward. □

Theorem 3.9. Let (ρ̃, Ĵ1) be a soft CI-A over L0 and let (σ̃1, Ĵ21) and (σ̃2, Ĵ22) be S-
SubAs of (ρ̃, Ĵ1). Then

(i) (σ̃1, Ĵ21) ∩̃ (σ̃2, Ĵ22)<̃(ρ̃, Ĵ1).

(ii) Ĵ21 ∩ Ĵ22 = ∅ ⇒ (σ̃1, Ĵ21) ∪̃ (σ̃2, Ĵ22)<̃(ρ̃, Ĵ1).

Proof. (i) Using Definition 2.2, we can write

(σ̃1, Ĵ21) ∩̃ (σ̃2, Ĵ22) = (σ̃, Ĵ2),

where Ĵ2 = Ĵ21 ∩ Ĵ22 and σ̃(m1) = σ̃1(m1) or σ̃2(m1) for all m1 ∈ Ĵ2. Obviously,
Ĵ2 ⊂ Ĵ1. Let m1 ∈ Ĵ2. Then m1 ∈ Ĵ21 and m1 ∈ Ĵ22. If x ∈ Ĵ21, then σ̃(m1) = σ̃1(m1)

is a CI-SubA of ρ̃(x) since (σ̃1, Ĵ21)<̃(ρ̃, Ĵ1). If m1 ∈ Ĵ22, then σ̃(m1) = σ̃2(m1) is a CI-
SubA of ρ̃(m1) since (σ̃2, Ĵ22)<̃(ρ̃, Ĵ1). Hence (σ̃1, Ĵ21) ∩̃ (σ̃2, Ĵ22) = (σ̃, Ĵ2)<̃(ρ̃, Ĵ1).
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(ii) Assume that Ĵ21 ∩ Ĵ22 = ∅. We can write (σ̃1, B1) ∪̃ (σ̃2, B2) = (σ̃, Ĵ2) where
Ĵ2 = B1 ∪ Ĵ22 and

σ̃(m1) =


σ̃1(m1) if m1 ∈ Ĵ21 \ Ĵ22,
σ̃2(m1) if m1 ∈ Ĵ22 \ Ĵ21,
σ̃1(m1) ∪ σ̃2(m1) if m1 ∈ Ĵ21 ∩ Ĵ22

for all m1 ∈ Ĵ2. Since (σ̃i, Ĵ2i))<̃(ρ̃, Ĵ1) for i = 1, 2, Ĵ2 = Ĵ21∪ Ĵ22 ⊂ Ĵ1 and σ̃i(m1) is
a CI-SubA of ρ̃(m1) for all m1 ∈ Ĵ2i, i = 1, 2. Since Ĵ21 ∩ Ĵ22 = ∅, σ̃(m1) is a CI-SubA
of ρ̃(m1) for all m1 ∈ B. Therefore (σ̃1, Ĵ21) ∪̃ (σ̃2, Ĵ22) = (σ̃, Ĵ2)<̃(ρ̃, Ĵ1). □

Theorem 3.10. Let η̄ : L0 → Q0 be a homomorphism of CI-As and let (ρ̃, Ĵ1) and (σ̃, Ĵ2)
be soft CI-As over L0. Then

(ρ̃, Ĵ1)<̃(σ̃, Ĵ2) ⇒ (η̄(ρ̃), Ĵ1)<̃(η̄(σ̃), Ĵ2).

Proof. Assume that (ρ̃, Ĵ1)<̃(σ̃, Ĵ2). Let m1 ∈ Ĵ1. Then Ĵ1 ⊂ Ĵ2 and ρ̃(m1) is a CI-
SubA of σ̃(m1). Since η̄ is a homomorphism, η̄(ρ̃)(m1) = η̄(ρ̃(m1)) is a CI-SubA of
η̄(σ̃(m1)) = η̄(σ̃)(m1), and therefore (η̄(ρ̃), Ĵ1)<̃(η̄(σ̃), Ĵ2). □

4. CONCLUSION

This investigation successfully applies soft set theory to CI-algebraic subalgebras and
offers new insights into their properties. We can investigate the intersection and union of
subalgebras and the notion of a soft ideal formed by a soft set of a CI-algebra, with the help
of soft set operations. Our findings create the framework for further research in this area
and demonstrate the value of using soft set theory to analyse CI-algebraic subalgebras.
The results of this work may have an impact on the development of new algorithms and
techniques for handling ambiguous data in CI-algebras. Overall, this work extends our
knowledge of soft set theory and its applications in CI-algebras and paves the way for
future research in the field.
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