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APPROXIMATION BY SEQUENCES OF q-SZÁSZ-OPERATORS
GENERATED BY DUNKL EXPONENTIAL FUNCTION

MD. NASIRUZZAMAN∗ AND M. MURSALEEN

ABSTRACT. The main purpose of this article is to introduce a modification of q-Dunkl
generalization of Szász-operators. We obtain approximation results via well known Ko-
rovkin’s type theorem. Moreover, we obtain the order of approximation, rate of conver-
gence, functions belonging to the Lipschitz class and some direct theorems.

1. INTRODUCTION AND PRELIMINARIES

In 1950, for x ≥ 0, Szász [24] introduced the operators

Sn(f ;x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
, f ∈ C[0,∞). (1.1)

In the field of approximation theory, the application of q-calculus emerged as a new
area in the field of approximation theory. The first q-analogue of the well-known Bernstein
polynomials was introduced by Lupaş by applying the idea of q-integers [5]. In 1997,
Phillips [22] considered another q-analogue of the classical Bernstein polynomials. Later
on, many authors introduced q-generalizations of various operators and investigated several
approximation properties [7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26].

We now present some basic definitions and notations of the q-calculus which are used
in this paper.

Definition 1.1. For |q| < 1, the q-number [λ]q is defined by

[λ]q =


1− qλ

1− q
(λ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N).

(1.2)

Definition 1.2. For |q| < 1, the q-factorial [n]q! is defined by

2010 Mathematics Subject Classification. 41A25, 41A36, 33C45.
Key words and phrases. q-integers; Dunkl analogue; Szász operator; q- Szász-Mirakjan-Kantrovich; Modu-

lus of continuity; Peetre’s K-functional.
Received: September 29, 2023. Accepted: November 30, 2023. Published: December 31, 2023.
*Corresponding author.

238



APPROXIMATION BY SEQUENCES OF q-SZÁSZ-OPERATORS 239

[n]q! =


1 (n = 0)

n∏
k=1

[k]q (n ∈ N).
(1.3)

Sucu [23] defined a Dunkl analogue of Szász operators via a generalization of the ex-
ponential function as follows:

S∗
n(f ;x) :=

1

eµ(nx)

∞∑
k=0

(nx)k

γµ(k)
f

(
k + 2µθk

n

)
, (1.4)

where x ≥ 0, f ∈ C[0,∞), µ ≥ 0, n ∈ N.
Cheikh et al., [2] stated the q-Dunkl classical q-Hermite type polynomials and gave defi-
nitions of q-Dunkl analogues of exponential functions and recursion relations for µ > − 1

2
and 0 < q < 1.

eµ,q(x) =

∞∑
n=0

xn

γµ,q(n)
, x ∈ [0,∞) (1.5)

Eµ,q(x) =

∞∑
n=0

q
n(n−1)

2 xn

γµ,q(n)
, x ∈ [0,∞) (1.6)

where

γµ,q(n) =
(q2µ+1, q2)[n+1

2 ](q
2, q2)[n2 ]

(1− q)n
γµ,q(n), n ∈ N, (1.7)

In [4], Içöz gave the Dunkl generalization of Szász operators via q-calculus as:

Dn,q(f ;x) =
1

eµ,q([n]qx)

∞∑
k=0

([n]qx)
k

γµ,q(k)
f

(
1− q2µθk+k

1− qn

)
, (1.8)

for µ > 1
2 , x ≥ 0, 0 < q < 1 and f ∈ C[0,∞).

Previous studies demonstrate that providing a better error estimation for positive linear
operators plays an important role in approximation theory, which allows us to approximate
much faster to the function being approximated.

Motivated essentially by Içöz [4] the recent investigation of Dunkl generalization of
Szász-Mirakjan operators via q-calculus we show that our modified operators have better
error estimation than [4]. We also prove several approximation results and successfully
extend the results of [4]. Several other related results have also been discussed.

2. CONSTRUCTION OF OPERATORS AND MOMENTS ESTIMATION

Let {an} and {bn}; are increasing and unbounded sequences of positive numbers such
that

lim
n→∞

1

bn
→ 0, and

an
bn

= 1 +O

(
1

bn

)
. (2.1)

For any 1
2n ≤ x < 1

1−qn , 0 < q < 1, µ > 1
2n and n ∈ N we define

Dan,bn
n,q (f ;x) =

1

eµ,q([n]qxan)

∞∑
k=0

(an[n]qx)
k

γµ,q(k)
f

(
1− q2µθk+k

bn(1− qn)

)
, (2.2)
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where eµ,q(x), γµ,q are defined in (1.5), (1.7) by [23] and f ∈ Cζ [0,∞) with ζ ≥ 0 and

Cζ [0,∞) = {f ∈ C[0,∞) :| f(t) |≤M(1 + t)ζ , for some M > 0, ζ > 0}. (2.3)

Note that the parameters an and bn have an important effect for a better approach of the
operator Dan,bn

n,q .

Lemma 2.1. Let Dan,bn
n,q (. ; .) be the operators given by (2.2). Then for each 1

2n ≤ x <
1

bn(1−qn) , n ∈ N, we have the following identities/ estimates:

(1) Dan,bn
n,q (1;x) = 1,

(2) Dan,bn
n,q (t;x) =

(
an

bn

)
x,

(3)
(

an

bn

)2
x2+

(
an

bn

)
q2µ[1−2µ]q

eµ,q(
an
bn

q[n]qx)

eµ,q([n]qx)
x

an
bn

[n]q
≤ Dan,bn

n,q (t2;x) ≤
(

an

bn

)2
x2+(

an

bn

)
[1 + 2µ]q

x
[n]q

..

Proof. As Dan,bn
n,q (1;x) = 1

eµ,q(an[n]qx)

∑∞
k=0

(an[n]qx)
k

γµ(k)
= 1, and

□

Dan,bn
n,q (t;x) =

1

eµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
k

γµ(k)

(
1− q2µθk+k

bn(1− qn)

)

=
1

bn[n]qeµ,q(an[n]qx)

∞∑
k=1

(an[n]qx)
k

γµ(k − 1)

=

(
an
bn

)
x

then (1) and (2) hold. Similarly

Dan,bn
n,q (t2;x) =

1

eµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
k

γµ(k)

(
1− q2µθk+k

bn(1− qn)

)2

=
1

b2n[n]
2
qeµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
k

γµ(k − 1)

(
1− q2µθk+k

1− q

)

=
1

b2n[n]
2
qeµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
k+1

γµ(k)

(
1− q2µθk+1+k+1

1− q

)
.

From [4] we know that

[2µθk+1 + k + 1]q = [2µθk + k]q + q2µθk+k[2µ(−1)k + 1]q, (2.4)

Now by separating to the even and odd terms and using (2.4), we get

Dan,bn
n,q (t2;x) =

1

b2n[n]
2
qeµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
k+1

γµ(k)

(
1− q2µθk+1+k+1

1− q

)

+
[1 + 2µ]q

b2n[n]
2
qeµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
2k+1

γµ(2k)
q2µθ2k+2k

+
[1− 2µ]q

b2n[n]
2
qeµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
2k+2

γµ(2k)
q2µθ2k+1+2k+1.
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Since
[1− 2µ]q ≤ [1 + 2µ]q, (2.5)

we have

Dan,bn
n,q (t2;x) ≥ (x

an
bn

)2 +
xan[1− 2µ]q

bn[n]qeµ,q(an[n]qx)

∞∑
k=0

(qan[n]qx)
2k

γµ(2k)

+
q2µxan[1− 2µ]q

bn[n]qeµ,q(an[n]qx)

∞∑
k=0

(qan[n]qx)
2k+1

γµ(2k + 1)

≥ (x
an
bn

)2 + q2µ[1− 2µ]q
eµ,q(q

an

bn
[n]qx)

eµ,q(
an

bn
[n]qx)

xan
bn[n]q

.

On the other hand we have

Dan,bn
n,q (t2;x) ≤ (x

an
bn

)2 + [1 + 2µ]q
xan
bn[n]q

.

This completes the proof.

Lemma 2.2. Let the operatorsDan,bn
n,q (. ; .) be given by (2.2). Then for each x ≥ 1

2n , n ∈
N, we have

(1) Dan,bn
n,q (t− x;x) =

(
an

bn
− 1
)
x,

(2) Dan,bn
n,q ((t− x)2;x) ≤

(
an

bn
− 1
)2
x2 +

(
an

bn

)
[1 + 2µ]q

x
[n]q

.

Proof. For proof of this lemma we use

Dan,bn
n,q (t− x;x) = Dan,bn

n,q (t;x)−Dan,bn
n,q (1;x),

And

Dan,bn
n,q ((t− x)2;x) = Dan,bn

n,q (t2;x)− 2xDan,bn
n,q (t;x) + x2Dan,bn

n,q (1;x)

This ends the proof of (2). □

3. MAIN RESULTS

We obtain the Korovkin’s type approximation properties for our operators (see [1], [6]).
LetCB(R+) be the set of all bounded and continuous functions on R+ = [0,∞), which

is linear normed space with
∥ f ∥CB

= sup
x≥0

| f(x) | .

Let

H := {f : x ∈ [0,∞),
f(x)

1 + x2
is convergent as x→ ∞}.

Theorem 3.1. Let Dan,bn
n,q (. ; .) be the operators defined by (2.2). Then for any function

f ∈ Cζ [0,∞) ∩H, ζ ≥ 2,

lim
n→∞

Dan,bn
n,q (f ;x) = f(x)

is uniformly on each compact subset of [0,∞), where x[0,∞).

Proof. The proof is based on Lemma 2.1 and well known Korovkin’s theorem regarding
the convergence of a sequence of linear positive operators, so it is enough to prove the
conditions

lim
n→∞

Dan,bn
n,q ((tj ;x) = xj , j = 0, 1, 2, {as n→ ∞}
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uniformly on [0, 1].
Clearly 1

[n]q
→ 0 (n→ ∞) we have

lim
n→∞

Dan,bn
n,q (t;x) = x, lim

n→∞
Dan,bn

n,q (t2;x) = x2.

This complete the proof. □

We recall the weighted spaces of the functions on R+, which are defined as follows:

Pρ(R+) = {f :| f(x) |≤Mfρ(x)} ,
Qρ(R+) =

{
f : f ∈ Pρ(R+) ∩ C[0,∞)

}
,

Qk
ρ(R+) =

{
f : f ∈ Qρ(R+) and lim

x→∞

f(x)

ρ(x)
= k(k is a constant)

}
,

where ρ(x) = 1+x2 is a weight function and Mf is a constant depending only on f . Note
that Qρ(R+) is a normed space with the norm ∥ f ∥ρ= supx≥0

|f(x)|
ρ(x) .

4. RATE OF CONVERGENCE

Let f ∈ CB [0,∞], the space of all bounded and continuous functions on [0,∞) and
x ≥ 1

2n , n ∈ N. Then for δ > 0, the modulus of continuity of f denoted by ω(f, δ) gives
the maximum oscillation of f in any interval of length not exceeding δ > 0 and it is given
by

ω(f, δ) = sup
|t−x|≤δ

| f(t)− f(x) |, t ∈ [0,∞). (4.1)

It is known that limδ→0+ ω(f, δ) = 0 for f ∈ CB [0,∞) and for any δ > 0 we have

| f(t)− f(x) |≤
(
| t− x |

δ
+ 1

)
ω(f, δ). (4.2)

Now we calculate the rate of convergence of operators (2.2) by means of modulus of con-
tinuity and Lipschitz type maximal functions.

Theorem 4.1. LetDan,bn
n,q (. ; .) be the operators defined by (2.2). Then for f ∈ CB [0,∞), x ≥

1
2n and n ∈ N we have

| Dan,bn
n,q (f ;x)− f(x) |≤ 2ω (f ; δn,x) ,

where

δn,x =

√(
an
bn

− 1

)2

x2 +

(
an
bn

)
[1 + 2µ]q

x

[n]q
. (4.3)

Proof. We prove it by using (4.1), (4.2) and Cauchy-Schwarz inequality. We can easily get

| Dan,bn
n,q (f ;x)− f(x) |≤

{
1 +

1

δ

(
Dan,bn

n,q (t− x)2;x
) 1

2

}
ω(f ; δ)

if we choose δ = δn,x and by applying the result (2) of Lemma 2.2, we get the result. □

Remark. For every f ∈ CB [0,∞), x ≥ 0 and n ∈ N, suppose {an}, {bn} be the se-
quence satisfies (2.1) then the operators D∗

n,q(. ; .) defined by ?? reduced to Dan,bn
n,q (. ; .).

Now we give the rate of convergence of the operators Dan,bn
n,q (f ;x) defined in (2.2) in

terms of the elements of the usual Lipschitz class LipM (ν).
Let f ∈ CB [0,∞), M > 0 and 0 < ν ≤ 1. The class LipM (ν) is defined as

LipM (ν) = {f :| f(ζ1)− f(ζ2) |≤M | ζ1 − ζ2 |ν (ζ1, ζ2 ∈ [0,∞))} (4.4)
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Theorem 4.2. Let Dan,bn
n,q (. ; .) be the operators defined in (2.2).Then for each f ∈

LipM (ν), (M > 0, 0 < ν ≤ 1) satisfying (4.4) we have

| Dan,bn
n,q (f ;x)− f(x) |≤M (δn,x)

ν
2

where δn,x is given in Theorem 4.1.

Proof. We prove it by using (4.4) and Hölder inequality. We have

| Dan,bn
n,q (f ;x)− f(x) | ≤ | Dan,bn

n,q (f(t)− f(x);x) |
≤ Dan,bn

n,q (| f(t)− f(x) |;x)
≤ MDan,bn

n,q (| t− x |ν ;x) .
Therefore

| Dan,bn
n,q (f ;x)− f(x) |

≤ M
[n]q

eµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
k

γµ,q(k)

∣∣∣∣1− q2µθk+k

bn(1− qn)
− x

∣∣∣∣ν

≤ M
[n]q

eµ,q(an[n]qx)

∞∑
k=0

(
(an[n]qx)

k

γµ,q(k)

) 2−ν
2

×
(
(an[n]qx)

k

γµ,q(k)

) ν
2
∣∣∣∣1− q2µθk+k

bn(1− qn)
− x

∣∣∣∣ν

≤ M

(
n

eµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
k

γµ,q(k)

) 2−ν
2

×

(
[n]q

eµ,q(an[n]qx)

∞∑
k=0

(an[n]qx)
k

γµ,q(k)

∣∣∣∣1− q2µθk+k

bn(1− qn)
− x

∣∣∣∣2
) ν

2

= M
(
Dan,bn

n,q (t− x)2;x
) ν

2 .

This completes the proof. □

Let
C2

B(R+) = {g ∈ CB(R+) : g′, g′′ ∈ CB(R+)}, (4.5)
with the norm

∥ g ∥C2
B(R+)=∥ g ∥CB(R+) + ∥ g′ ∥CB(R+) + ∥ g′′ ∥CB(R+), (4.6)

also
∥ g ∥CB(R+)= sup

x∈R+

| g(x) | . (4.7)

Theorem 4.3. Let Dan,bn
n,q (. ; .) be the operators defined in (2.2). Then for any g ∈

C2
B(R+) we have

| Dan,bn
n,q (f ;x)− f(x) |≤

{((
an
bn

− 1

)
x

)
+
δn,x
2

}
∥ g ∥C2

B(R+),

where δn,x is given in Theorem 4.1.
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Proof. Let g ∈ C2
B(R+). Then by using the generalized mean value theorem in the Taylor

series expansion we have

g(t) = g(x) + g′(x)(t− x) + g′′(ψ)
(t− x)2

2
, ψ ∈ (x, t).

By applying linearity property on Dan,bn
n,q , we have

Dan,bn
n,q (g, x)− g(x) = g′(x)Dan,bn

n,q ((t− x);x) +
g′′(ψ)

2
Dan,bn

n,q

(
(t− x)2;x

)
,

which implies that

| Dan,bn
n,q (g;x)−g(x) |≤

((
an

bn
− 1
)
x
)
∥ g′ ∥CB(R+) +

((
an

bn
− 1
)2
x2 +

(
an

bn

)
[1 + 2µ]q

x
[n]q

)
∥g′′∥CB(R+)

2 .

From (4.6) we have ∥ g′ ∥CB [0,∞)≤∥ g ∥C2
B [0,∞).

| Dan,bn
n,q (g;x)−g(x) |≤

((
an

bn
− 1
)
x
)
∥ g ∥C2

B(R+) +

((
an

bn
− 1
)2
x2 +

(
an

bn

)
[1 + 2µ]q

x
[n]q

)
∥g∥

C2
B

(R+)

2 .

The proof follows from (2) of Lemma 2.2. □

The Peetre’s K-functional is defined by

K2(f, δ) = inf
C2

B(R+)

{(
∥ f − g ∥CB(R+) +δ ∥ g′′ ∥C2

B(R+)

)
: g ∈ W2

}
, (4.8)

where
W2 =

{
g ∈ CB(R+) : g′, g′′ ∈ CB(R+)

}
. (4.9)

There exits a positive constant C > 0 such that K2(f, δ) ≤ Cω2(f, δ
1
2 ), δ > 0, where the

second order modulus of continuity is given by

ω2(f, δ
1
2 ) = sup

0<h<δ
1
2

sup
x∈R+

| f(x+ 2h)− 2f(x+ h) + f(x) | . (4.10)

Theorem 4.4. For x ≥ 1
2n , n ∈ N and f ∈ CB(R+) we have

| Dan,bn
n,q (f ;x)− f(x) |

≤ 2M

{
ω2

(
f ;

√
(2( an

bn
−1)x)+δn,x

4

)
+min

(
1,

(2( an
bn

−1)x)+δn,x

4

)
∥ f ∥CB(R+)

}
,

where M is a positive constant, δn,x is given in Theorem 4.3 and ω2(f ; δ) is the second
order modulus of continuity of the function f defined in (4.10).

Proof. We prove this by using the Theorem 4.3

| Dan,bn
n,q (f ;x)− f(x) | ≤ | Dan,bn

n,q (f − g;x) | + | Dan,bn
n,q (g;x)− g(x) | + | f(x)− g(x) |

≤ 2 ∥ f − g ∥CB(R+) +
δn,x
2

∥ g ∥C2
B(R+) +

((
an
bn

− 1

)
x

)
∥ g ∥CB(R+)

From (4.6) clearly we have ∥ g ∥CB [0,∞)≤∥ g ∥C2
B [0,∞).

Therefore,

| Dan,bn
n,q (f ;x)−f(x) |≤ 2

∥ f − g ∥CB(R+) +

(
2
(

an

bn
− 1
)
x
)
+ δn,x

4
∥ g ∥C2

B(R+)

 ,

where δn,x is given in Theorem 4.1.
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By taking infimum over all g ∈ C2
B(R+) and by using (4.8), we get

| Dan,bn
n,q (f ;x)− f(x) |≤ 2K2

f ;
(
2
(

an

bn
− 1
)
x
)
+ δn,x

4
.


Now for an absolute constant Q > 0 in [3] we use the relation

K2(f ; δ) ≤ Q{ω2(f ;
√
δ) + min(1, δ) ∥ f ∥}.

This complete the proof. □

Conclusion
Purpose of this paper is to provide a better error estimation of convergence of the q-Dunkl
generalization of Szász-operators by initiating the increasing and unbounded sequences
{an}, {bn} of positive numbers such that limn→∞

1
bn

→ 0, and an

bn
= 1 +O

(
1
bn

)
. Here

we have defined a Dunkl generalization of these modified operators. This type of modifica-
tions enables better error estimation on the interval [0,∞) rather than the classical Dunkl
Szász operators [4]. We obtained some approximation results via well known Korovkin’s
type theorem.We have also calculated the rate of convergence of operators by means of
modulus of continuity and Lipschitz type maximal functions.
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