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NEW DEFINITION OF A SINGULAR INTEGRAL OPERATOR

ALEXANDER G. RAMM

ABSTRACT. Let D be a connected bounded domain in R2, S be its boundary which
is closed, connected and smooth or S = (−∞,∞). Let Φ(z) = 1

2πi

∫
S

f(s)ds
s−z

, f ∈
L1(S), z = x+iy. The singular integral operator Af := 1

iπ

∫
S

f(s)ds
s−t

, t ∈ S, is defined
in a new way. This definition simplifies the proof of the existence of Φ(t). Necessary and
sufficient conditions are given for f ∈ L1(S) to be boundary value of an analytic in D

function. The Sokhotsky-Plemelj formulas are derived for f ∈ L1(S). Our new definition
allows one to treat singular boundary values of analytic functions.

1. INTRODUCTION

Let D be a connected bounded domain on the complex plane, S be its boundary, which
is closed and C1,a-smooth, 0 < a ≤ 1 or S = (−∞,∞). The standard definition of the
singular integral operator Af = 1

iπ

∫
S

f(s)ds
s−t is:

Af = lim
ϵ→0

1

iπ

∫
|s−t|>ϵ

f(s)

s− t
ds. (1.1)

We assume that t ∈ S and f ∈ L1(S). The latter is the basic new assumption: in the
literature it was assumed that f ∈ Hµ(S), whereHµ(S) is the space of Hölder-continuous
functions, or f ∈ Lp(S), p > 1, see [2], [4]. In [1] there is a result for f ∈ L1(S), the
existence of the limit (1.1) is proved, but the proof is not simple. Our goal is to give a
new definition of the operator A. This definition makes the proof of the existence of Af
for f ∈ L1(S) very simple. It is also of great interest to have a proof of the Sokhotsky
formulas for f ∈ L1(S), see [6].

Definition 1.1.
(Af, ϕ) := −(f,Aϕ) ∀ϕ ∈ Hµ(S), 0 < µ < 1. (1.2)

Here

(Af, ϕ) =
1

iπ

∫
S

dtϕ(t)

∫
S

f(s)ds

s− t
, (f,Aϕ) = −

∫
S

dsf(s)
1

iπ

∫
S

dt
ϕ(t)dt

t− s
.
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By D+ we denote D, by D− = D′ we denote R2 \ D̄, the D̄ is the closure of D.

By D+ we denote D, by D− = D′

Lemma 1. Formula (1.2) defines f ∈ L1(S) uniquely.

Proof. Suppose that f1, f2 ∈ L1(S) satisfy (1.2). Then q := f1 − f2 satisfies the relation
(q, Aϕ) = 0 for all ϕ ∈ Hµ(S). It is known [2] that the set Aϕ|∀ϕ∈Hµ(S) = Hµ(S) if
0 < µ < 1. Therefore, q ∈ L1(S) is orthogonal to the set Hµ(S), which is dense in
L1(S). Consequently, q = 0 and f1 = f2. Lemma 1 is proved. 2

Let us check that the right side of formula (1.2) makes sense. This side can be written
as 1

iπ

∫
S

∫
S
dsdtf(s)ϕ(t) 1

s−t . The integrand here is absolutely integrable over S × S.
Therefore, the order of integration can be changed and formula (1.2) makes sense.

There are other advantages of Definition 1. For example, it is easy to prove that the
operator A is closed.

Lemma 2. The operator A in L1(S) is closed.

Proof. One has to prove that the graph {f,Af} is a closed set in L1(S) × L1(S). Let
fn → f and Afn → h, convergence is in L1(S). Then, by Definition 1,

(fn, Aϕ) → (f,Aϕ) = (Af, ϕ)

and
(Afn, ϕ) → (h, ϕ).

Therefore, (Af − h, ϕ) = 0 ∀ϕ ∈ Hµ(S). Since Hµ(S) is dense in L1(S), it follows that
Af = h. Thus, A is closed. 2

However, A is not continuous in L1(S).

Example 1.2. Let us show that there is an f ∈ L1(S) such that Af /∈ L1(S). Let
S = (−∞,∞), F(f) := f̃ , f̃ :=

∫
S
eiξsf(s)ds, F(Af) = F(f)F(s−1) = f̃ iπsgn(ξ).

We have used the known formula, see [3]: F(s−1) = iπsgn(ξ), where sgn(ξ) = 1 if
ξ > 0, sgn(ξ) = −1 if ξ < 0. The Fourier transform of f ∈ L1(S) is a continuous
uniformly bounded function. Therefore, f̃ sgn(ξ) is not, in general, a continuous function
at ξ = 0. Thus, if f̃ |ξ=0 ̸= 0, then the function Af /∈ L1(S).

In the next Section we prove the Sokhotsky-Plemelj formulas for f ∈ L1(S), see The-
orem 1 there.

2. OTHER RESULTS

a) Consider the equation

(⋆) Af = h, h ∈ L1(S).

If equation (⋆) is solvable, then its solution is unique. Indeed, if f1 and f2 are solutions,
then q = f1 − f2 solves the equation Aq = 0. Taking its Fourier transform leads to the
relation q̃sgn(ξ) = 0. Therefore, q̃ = 0 for ξ ̸= 0. Since q ∈ L1(S), it follows that q̃ = 0
so q = 0 and f1 = f2. 2

b) Let us prove the generalization of the Sokhotsky-Plemelj formulas to the case when
f ∈ L1(S).

Let Φ(z) = 1
2πi

∫
S

f(s)ds
s−z and c := 1

2πi . Then

Φ(z) = f(t)ν(z)+Ψ(z), Ψ(z) := c

∫
S

f(s)− f(t)

s− z
ds, t ∈ S, ν(z) := c

∫
S

ds

s− z
,

(2.1)
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and

ν(z) =


1, z ∈ D,
1
2 , z ∈ S,

0, z ∈ D′.

(2.2)

One has
Φ+(t) = lim

z→t,z∈D
Φ(z) = f(t) + Ψ+(t), (2.3)

where Ψ+(t) = limz→t,z∈D Ψ(z) and

Φ−(t) = lim
z→t,z∈D′

Φ(z) = Ψ−(t). (2.4)

If t ∈ S, then one gets (see equation (2.2), the line z ∈ S) :

Φ(t) =
f(t)

2
+ Ψ(t) :=

f(t)

2
+ c

∫
S

f(s)− f(t)

s− t
ds. (2.5)

The Ψ(t) is the value of Ψ(z) at z = t.
The Ψ(t) and Φ(t) are understood as in Definition 1.
If some equation holds almost everywhere with respect to the Lebesgue measure on S,

then we write that this equation holds a.e.
From formulas (2.1)–(2.4) one derives:

Φ+(t)−Φ−(t) = f(t)+Ψ+(t)−Ψ−(t) a.e., Φ+(t)+Φ−(t) = f(t)+Ψ+(t)+Ψ−(t) a.e.
(2.6)

In Lemma 3 we prove that

Ψ+(t) = Ψ−(t) = Ψ(t) a.e.

Therefore, formula (2.6) can be rewritten as:

Φ+(t)− Φ−(t) = f(t) a.e., Φ+(t) + Φ−(t) = f(t) + 2Ψ(t) a.e. (2.7)

From equation (2.7), (2.3) and (2.5) it follows that

Φ+(t) = Φ(t) +
f(t)

2
, Φ−(t) = Φ(t)− f(t)

2
, a.e. (2.8)

where Φ(t) = Ψ(t).
Formulas (2.8) are the Sokhotsky-Plemelj formulas for f ∈ L1(S).

Theorem 1. For f ∈ L1(S) formulas (2.8) hold.

To finish the proof of Theorem 1 it is sufficient to prove Lemma 3.

Lemma 3. If f ∈ L1(S) and S is C1,a−smooth, 0 < a ≤ 1, then

Ψ+(t) = Ψ−(t) = Ψ(t) a.e. (2.9)

Before proving Lemma 3 we prove Lemma 4.

Lemma 4. One has
(2.10)

Proof. Formula (2.10) is understood according to Definition 1. Let f ∈ L1(S), ϕ ∈
Hµ(S), Nt be a unit normal to S directed inside D. Then

lim
ϵ→+0

∫
S

dtϕ(t)

∫
S

f(s)ds

s− t− iNtϵ
:=

∫
S

dtϕ(t)

∫
S

f(s)ds

s− t− i0
.
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Furthermore,∫
S

dtϕ(t)

∫
S

f(s)ds

s− t− i0
=

∫
S

dtϕ(t)

∫
S

f(s)ds

s− t
+ iπ

∫
S

ϕ(t)f(t)dt, ∀ϕ ∈ Hµ(S),

(2.11)
and ∫

S

dtϕ(t)

∫
S

f(s)ds

s− t
=

∫
S

dsf(s)

∫
S

ϕ(t)dt

s− t
, ∀ϕ ∈ Hµ(S). (2.12)

We have proved formula (2.10) according to Definition 1 with the minus sign. Similarly
one proves this formula with the plus sign. Lemma 4 is proved. 2

In [3], p. 83, there is a formula 1
x−i0 = 1

x + iπδ(x) understood in the sense of distri-
butions. The formula in Lemma 4 is of the similar type. The Sokhotsky-Plemelj formulas
(2.8) were derived in [2] and [5] under the assumption that f ∈ Hµ(S). Under such an
assumption, these formulas hold everywhere, not almost everywhere.
Proof of Lemma 3. By Definition 1 one has (neglecting 1

2πi and denoting by
∫

integration
over S × S):

lim
ϵ→0

∫
[f(s)− f(t)]ϕ(t)

s− t± iNtϵ
dsdt =

∫
[f(s)− f(t)]ϕ(t)

s− t
dsdt∓ iπJ = (ψ, ϕ), (2.13)

where

J :=

∫
[f(s)−f(t)]ϕ(t)δ(s−t)dsdt =

∫
S

∫
S

[f(s)−f(t)]ϕ(t)δ(s−t)dsdt = 0. (2.14)

For f ∈ Hµ(S) formula (2.14) is trivial by the standard definition of the delta-function.
For f ∈ L1(S) we consider δ(s− t) as the kernel of the identity operator, so∫

S

f(s)δ(s− t)ds = f(t) a.e. f ∈ L1(S).

Lemma 3 is proved. 2

c) Let z ∈ D. The following question is of interest:
When is the boundary value Φ+(t) of Φ(z) on S equal to f a.e.?
Equation (2.8) yields a necessary and sufficient condition for an answer to the above

question:
Φ+(t) = f(t) iff Φ(z) = 0, z ∈ D−, and f(t) = 1

iπ

∫
S

f(s)
s−t ds a.e.

Indeed, Φ(z) = 0, z ∈ D−, is equivalent to Φ(t) = f(t)
2 a.e., so Φ+(t) = f(t) a.e.

If one wants to formulate a necessary and sufficient condition for f(s) ∈ L1(S) to be a
boundary value of an analytic inD− function Φ(z), Φ(∞) = 0, then an argument, similar
to the above yields the following conditions:

f(t) = − 1

iπ

∫
S

f(s)

s− t
ds a.e. (2.15)

If equation (2.15) holds, then Φ+(t) = 0 and, consequently, Φ(z) = 0 if z ∈ D+ = D.

Remark 1. If Φ+(t) = f(t) a.e., f ∈ L1(S), thenAf ∈ L1(S), whereAf := 1
iπ

∫
S

f(s)
s−t ds a.e.

If −Φ−(t) = f(t) a.e., f ∈ L1(S) and Φ(∞) = 0, then Af ∈ L1(S). Since for some
f ∈ L1(S) one does not have Φ(z) = 0, z ∈ D−, it follows that not every f ∈ L1(S) is
a boundary value of an analytic function in D.

3. CONCLUSION

A new definition of singular integral operator in L1(S) is given. Sokhotsky-Plemelj
formulas are derived for f ∈ L1(S). Other results are obtained.
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