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QUOTIENT QUASI-ORDERED RESIDUATED SYSTEMS

INDUCED BY QUASI-VALUATION MAPS

DANIEL A. ROMANO∗

ABSTRACT. The concept of quasi-ordered residuated systems was introduced in 2018 by
Bonzio and Chajda as a generalization both of commutative residuated lattices and hoop-
algebras. Then this author investigated the substructures of ideals and filters in these alge-
braic structures. As a continuation of these research, in this article we design the concept of
quotient quasi-ordered residuated systems induced by a quasi-valuation on it. Additionally,
we prove some important properties of the thus constructed quotient structure.

1. INTRODUCTION

Song, Roh and Jun, in [15], introduced the notion of quasi-valuation maps based on
a subalgebra and an ideal in BCK/BCI-algebras, and then they investigated several their
properties. They provided relations between a quasi-valuation map based on a subalgebra
and a quasi-valuation map based on an ideal. Using the notion of a quasi-valuation map
based on an ideal, they constructed appropriate (pseudo) metric spaces. In [1], Aaly Kolo-
gani et al. introduced the notion of quasi-valuation maps on hoops based on subalgebras
and filters and related properties of them are investigated. The idea of designing (quasi-
or pseudo-) valuation maps was also applied to some other algebraic structures (for ex-
ample: [9, 10, 15]). Song, Bordbar and Jun in [16], have described the quotient structure
on BCK/BCI - algebras generated by a pseudo-valuation on them. Designing the quotient
structure on some other algebraic structures is also shown in the papers [4, 5, 12].

Quasi-ordered residuated systems are quasi-ordered commutative residuated integral
monoids ([2]). In the last few years, the theory of quasi-ordered residuated systems and
related structures was enriched with more results both about the interior of these structures
and about some of their substructures such as ideals and filters ([11, 13]). This class of
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algebraic structures is a generalization of both the class of commutative residuated lattices
([6, 7, 8]) and the class of hoop-algebras ([3]).

In this paper we design (Theorem 3.4) a congruence Rv on A/ ≡≼ based on a quasi-
valuation map v : A/ ≡≼−→ R on a quasi-ordered residuated system A, where Fv =
[1]Rv

holds (Theorem 3.7) with the property that the quotient A/Rv is a quasi-ordered
system again (Theorem 3.5). In addition, it was shown (Theorem 3.9) that if for quasi-
valuation maps v and w on a quasi-ordered residual system A the following holds [1]Rv

=
[1]Rw , then Rv and Rw coincide.

2. PRELIMINARIES

In this section, the necessary notions and notations and some of their interrelationships
are listed in order to enable a reader to comfortably follow the presentation in this report.
It should be pointed out here that the notations for logical conjunction, logical implication
and other logical functions have a literal meaning. For example, if a formula is not closed
by some quantifier, it is understood that it is under universal quantification.

2.1. Concept of quasi-ordered residuated systems. In article [2], S. Bonzio and I. Cha-
jda introduced and analyzed the concept of residual relational systems.

Definition 2.1 ([2], Definition 2.1). A residuated relational system is a structure A =
⟨A, ·,→, 1, R⟩, where ⟨A, ·,→, 1⟩ is an algebra of type ⟨2, 2, 0⟩ and R is a binary relation
on A and satisfying the following properties:

(1) (A, ·, 1) is a commutative monoid;
(2) (∀x ∈ A)((x, 1) ∈ R);
(3) (∀x, y, z ∈ A)((x · y, z) ∈ R ⇐⇒ (x, y → z) ∈ R).

We will refer to the operation · as multiplication, to → as its residuum and to condition (3)
as residuation.

Recall that a quasi-order relation ′ ≼ ′ on a set A is a binary relation which is reflexive
and transitive.

Definition 2.2 ([2]). A quasi-ordered residuated system is a residuated relational system
A = ⟨A, ·,→, 1,≼⟩, where ≼ is a quasi-order relation in the monoid (A, ·)

The following proposition shows the basic properties of quasi-ordered residuated sys-
tems.

Proposition 2.1 ([2], Proposition 3.1). Let A be a quasi-ordered residuated system. Then
(4) The operation ’·’ preserves the pre-order in both positions;

(∀x, y, z ∈ A)(x ≼ y =⇒ (x · z ≼ y · z ∧ z · x ≼ z · y));
(5) (∀x, y, z ∈ A)(x ≼ y =⇒ (y → z ≼ x → z ∧ z → x ≼ z → y));
(6) (∀y, z ∈ A)(x · (y → z) ≼ y → x · z);
(7) (∀x, y, z ∈ A)(x · y → z ≼ x → (y → z));
(8) (∀x, y, z ∈ A)(x → (y → z) ≼ x · y → z);
(9) (∀x, y, z ∈ A)(x → (y → z) ≼ y → (x → z));
(10) (∀x, yz ∈ A)((x → y) · (y → z) ≼ x → z);
(11) (∀x, y ∈ A)((x · y ≼ x) ∧ (x · y ≼ y));
(12) (∀x, y, z ∈ A)(x → y ≼ (y → z) → (x → z));
(13) (∀x, y, z ∈ A)(y → z ≼ (x → y) → (x → z)).
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It is generally known that a quasi-order relation ≼ on a set A generates a equivalence
relation ≡≼:=≼ ∩ ≼−1 on A. Due to properties (4) and (5), this equality relation is
compatible with the operations in A. Thus, ≡≼ is a congruence on A.

In the light of the previous note, it is easy to see that the following applies:
(7) and (8) give:
(H3) (∀x, y, z ∈ A)(x · y → z ≡≼ x → (y → z)).
Due to the universality of formula (9), we have:

(∀x, y, z ∈ A)(x → (y → z) ≡≼ y → (x → z)).

Example 2.3. By a hoop ([3]) we mean an algebra (H, ·,→, 1) in which (H, ·, 1) is a
commutative semigroup with the identity and the following assertions are valid:

(H1) (∀x ∈ H)(x → x = 1),
(H2) (∀x, y ∈ H)(x · (x → y) = y · (y → x)) and
(H3) (∀x, y, z ∈ A)(x · y → z = x → (y → z)).

In this algebra, order is determined as follows:

(∀x, y ∈ A)(x ⩽ y ⇐⇒ x → y = 1).

It is easy to see that (H,⩽) is a poset. It is easy to see that every hoop is a (quasi-)ordered
residuated system and vice versa does not have to be.

Since, in the general case, the formula

(∀x, y ∈ A)(x · (x → y) ≡≼ y · (y → x))

does not have to be valid in a quasi-ordered residuated system, we conclude that this last
mentioned system is a generalization of the hoop-algebra.

Example 2.4. For a commutative monoid A, let P(A) denote the powerset of A ordered
by set inclusion and ’·’ the usual multiplication of subsets of A. Then ⟨P(A), ·,→, A,⊆⟩
is a quasi-ordered residuated system in which the residuum are given by

(∀X,Y ∈ P(A))(Y → X := {z ∈ A : Y z ⊆ X}).

Example 2.5. Let A = {1, 2, 3, 4} and operations ’·’ and ’→’ defined on A as follows:

· 1 a b c d
1 1 a b c d
a a a a a a
b b a b b b
c c a b c b
d d a b b d

and

→ 1 a b c d
1 1 a b c d
a 1 1 1 1 1
b 1 a 1 1 1
c 1 a d 1 d
d 1 a c c 1

Then A = ⟨A, ·,→, 1⟩ is a quasi-ordered residuated systems where the relation ’≼’ is
defined as follows ≼:= {(1, 1), (a, 1), (a, b), (a, c), (a, d), (b, b), (b.c), (b, d), (b, 1), (c, c),
(c, 1), (d, d), (d, 1)}.

2.2. Concept of filters.

Definition 2.6 ([11], Definition 3.1). For a subset F of a quasi-ordered residuated system
A we say that it is a filter of A if it satisfies conditions

(F2) (∀u, v ∈ A)((u ∈ F ∧ u ≼ v) =⇒ v ∈ F ), and
(F3) (∀u, v ∈ A)((u ∈ F ∧ u → v ∈ F ) =⇒ v ∈ F ).

Let it note that the empty subset of A satisfies the conditions (F2) and (F3). Therefore,
∅ is a filter in A. It is shown ([11], Proposition 3.4 and Proposition 3.2), that if a non-empty
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subset F of a quasi-ordered system A satisfies the condition (F2), then it also satisfies the
following conditions

(F0) 1 ∈ F and
(F1) (∀u, v ∈ A)((u · v ∈ F =⇒ (u ∈ F ∧ v ∈ F )).

Also, it can be seen without difficulty that (F3) =⇒ (F2) is valid. Indeed, if (F3) holds,
then the formula u ∈ F ∧ u ≼ v, can be transformed into the formula u ∈ F ∧ u →
v ≡≼ 1 ∈ F by (F0) so from here, according to (F3) it can be demonstrate the validity of
implications (F2). However, the reverse does not have to be valid.

If F(A) is the family of all filters in a QRS A, then F(A) is a complete lattice ([11],
Theorem 3.1).

Example 2.7. Let A be a quasu-ordered residuated system as in Example 2.5. Then F1 :=
{1}, F2 := {c, 1}, F3 := {1, d} and F4 := {1, c, d} and F5 := {1, b, c, d} are filters of A.

2.3. Concept of ideals. In the article [13], the concepts of pre-ideal and ideal in quasi-
ordered residuated systems were analyzed. Before that, the conditions were analyzed

(J1) (∀y, v ∈ A)((u ∈ J ∨ v ∈ J) =⇒ u · v ∈ J),
(J2) (∀u, v ∈ A)((u ≼ v ∧ v ∈ J) =⇒ u ∈ J), and
(J3) (∀u, v ∈ A)((u → v /∈ J ∧ v ∈ J) =⇒ u ∈ J).

Furthermore, in that paper it was proved that (J2) =⇒ (J1) holds and that (J3) =⇒ (J2) also
holds for the proper subset J . With respect to the above, we have:

Definition 2.8. Let A be a quasi-ordered residuated system. For a subset J of the set A
we say that it is an pre-ideal in A if the condition (J2) is valid. For a subset J of the set A
we say that it is an ideal in A if J = A or the condition (J3) is valid.

It can easily be seen that if J is a proper (pre-)ideal of A, then it holds
(J0) 1 /∈ J .

2.4. Quasi-valuation on QRS. The following definition gives the concept of quasi-valuation
maps on a quasi-ordered residuated system.

Definition 2.9. ([14], Definition 3.1) Let A =: ⟨A, ·,→, 1⟩ a quasi-ordered residuated
system. A real valued function v : A/ ≡≼ −→ R is called quasi-valuation on A if holds

(V0) v(1) = 0 and
(V1) (∀x, y ∈ A)(v(y) ⩾ v(x) + v(x → y)).
If a quasi-valuation map v : A/ ≡≼ −→ R satisfies:
(V2) (∀x ∈ A)(¬(x ≡≼ 1) =⇒ v(x) ̸= 0),

then we say that v is a valuation map on A.

In the following proposition, some of the fundamental properties of the mapping v :
A/ ≡≼ −→ R designed in this way are given .

Proposition 2.2 ([14], Proposition 3.2). For any quasi-valuation map v on a quasi-ordered
residuated system A, we have the following assertions:

(14) (∀x, y ∈ A)(x ≼ y =⇒ v(x) ⩽ v(y)).
(15) (∀x ∈ A)(v(x) ⩽ 0).
(16) (∀x, y ∈ A)(2v(x · y) ⩽ v(x) + v(y)).
(17) (∀x, y ∈ A)(v(x → y) ⩽ v(y)− v(x)).

On the other hand, we have
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Proposition 2.3 ([14], Proposition 3.3). For any quasi-valuation map v on a quasi-ordered
residuated system A, we have the following assertions:

(20) (∀x, y ∈ A)(v(x → y) ⩾ v(x) + v(y)).
(21) (∀x, y ∈ A)(v(x · y) ⩾ v(x) + v(y)).

The following two theorems connect a quasi-valuation v : A/ ≡≼−→ R on a quasi-
ordered residuated system A and the concept of filters in A.

Theorem 2.4 ([14], Theorem 3.5). If v : A/ ≡≼ −→ R is a quasi-valuation map on a
quasi-ordered redisuated system A, then the set

Fv := {x ∈ A : v(x) = 0}
is a filter of A.

Theorem 2.5 ([14], Theorem 3.6). Let G be a non-empty filter in a quasi-ordered resid-
uated system A = ⟨A, ·, 1,→⟩. For any negative real number k, let vG be a real valued
function on A/ ≡≼ defined by vG(x) := 0 if x ∈ G and vG(x) := k if x ∈ A \ G. Then
vG is a quasi-valuation on A and FvG = G holds.

Example 2.10. Let A be a quasi-ordered residuated system as in Example 2.5. Then the
set F := {1, b} is a filter of A. If v : A/ ≡≼ −→ R is defined by v(1) = v(b) = 0 and
v(a) = v(c) = v(d) = −7, then v is a quasi-valuation on A according to the Theorem 2.5.

Theorem 2.6 ([14], Theorem 3.8). If v : A/ ≡≼ −→ R is a quasi-valuation map on a
quasi-ordered redisuated system A, then the set

Jv := {x ∈ A : v(x) < 0}
is an ideal of A.

Example 2.11. Let A = H as in article [1], Example 3.3 and let v : A/ ≡≼−→ R is
determined as in Example 3.9 in the same paper. Then v is a quasi-valuation map on A.
Then Jv = {0, a, b} is an ideal and Fv = {1} is a filter in A because v(1) = 0.

In what follows, we will design a pseudo-metric space on a quasi-ordered residuated
system generated by a pseudo-valuation on it. By a pseudo-metric on a quasi-ordered
residuated system A, we mean a real-valued function d : A/ ≡≼ ×A/ ≡≼ −→ R
satisfying the following properties: d(x, y) ⩾ 0, d(x, x) = 0, d(x, y) = d(y, x) and
d(x, z) ⩽ d(x, y) + d(y, z) for every x, y, z ∈ A. A pseudo-metric dv on A is said to be a
metric on A and a pseudo metric space (A, dv) is said to be a metric space if additionally
the following holds (∀x, y ∈ A)(dv(x, y) = 0 =⇒ x ≡v y).

Theorem 2.7 ([14], Theorem 3.11 ). Let v : A/ ≡≼ −→ R be a quasi-valuation on a
quasi-ordered residuated system A. Then

dv : A/ ≡≼ ×A/ ≡≼∋ (x, y) 7−→ dv(x, y) := −(v(x → y) + v(y → x)) ∈ R
is a pseudo-metric on A and so (A, dv) is a pseudo-metric space.

3. THE MAIN RESULTS

This section is the main part of this paper. In the first subsection, several important
properties of the induced pseudo-metric dv by quasi-valuation map v in a quasi-ordered
residuated system A are shown. In the second subsection, we proceed by designing the
congruence relation induced by the pseudo-metric dv .
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3.1. Some additional properties of induced pseudo-metric. We begin this subsection
with an important result:

Proposition 3.1. If v : A/ ≡≼ −→ R is a valuation map on a quasi-ordered residu-
ated system A, then the pseudo-metric space (A, dv) induced by v satisfies the following
assertion:

(22) (∀x, y ∈ A)(dv(x, y) = 0 =⇒ x ≡≼ y).

Proof. Let v be a valuation map of a quasi-ordered residuated system A. Then v is a quasi-
valuation map on A. Thus, by Theorem 2.4, dv is a pseudo-metric. Let x, y ∈ A be such
that dv(x, y) = 0. Then v(x → y) + v(y → x) = 0. Since v is a quasi-valuation map
on A, for any u ∈ A holds v(x) ⩽ 0 by (15). So, v(x → y) ⩽ 0, v(y → x) ⩽ 0
and v(x → y) = −v(y → x). Thus 0 ⩾ v(x → y) = −v(y → x) ⩾ 0. Hence
v(x → y) = 0 = v(y → x). From here it follows x → y ≡≼ 1 and y → x ≡≼ 1
according to the contraposition of (V2). Therefore x ≡≼ y. □

The following proposition considers the condition when a quasi-valuation map on a
quasi-ordered residuated system A will be a valuation map on A.

Proposition 3.2. Let the pseudo-metric space (A, dv) induced by a quasi-valuation map
v : A/ ≡≼ −→ R in a quasi-ordered residuated system A satisfies the condition (22).
Then v is a valuation map in A.

Proof. Let the quasi-metric space (A, dv) induced by a quasi-valuation map v : A/ ≡≼

−→ R in a quasi-ordered residuated system A satisfies the condition (22). Let us prove that
v satisfies the condition (V2). Let x ∈ A be such that v(x) = 0. Then, from v(1)+v(x) ⩽
v(1 → x) ⩽ v(1)− v(x) and v(1) + v(x) ⩽ v(x → 1) ⩽ v(x)− v(1) it follows

0 = −2(v(1) + v(x)) ⩾ −(v(1 → x) + v(x → 1) = dv(1, x) ⩾ 0.

So, dv(1, x) = 0. As (A, dv) satisfies the condition (22), we get x ≡≼ 1. As (A, dv)
satisfies the condition (22), we get x ≡≼ 1. Thus, we have obtained a contradiction of the
formula (V2). This proves that v is a valuation in A. □

The following proposition gives some properties of induced pseudo-metric dv by a
quasi-valuation v on a quasi-ordered residuated system A.

Proposition 3.3. Let v : A/ ≡≼ −→ R is a quasi-valuation map on a quasi-ordered
residuated system A. Then the pseudo-metric space (A, dv) induced by a quasi-valuation
map v satisfies the following assertions:

(23) (∀x, y, z ∈ A)(dv(x, y) ⩾ dv(z → x, z → y)),
(24) (∀x, y, z ∈ A)(dv(x, y) ⩾ dv(x → z, y → z)),
(25) (∀x, y, z ∈ A)(dv(x, y) ⩾ dv(z · x, z · y)).

Proof. Let v : A/ ≡≼ −→ R is a quasi-valuation map on a quasi-ordered residuated
system A.

For arbitrary elements x, y, z ∈ A,

x → y ≼ (z → x) → (z → y) and y → x ≼ (z → y) → (z → z)

are valid according to (13). Then

v(x → y) ⩽ v((z → x) → (z → y)) and v(y → x) ⩽ v((z → y) → (z → z))
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also holds by (14). Hence
dv(x, y) = −(v(x → y) + v(y → x))

⩾ −(v((z → x) → (z → y)) + v((z → y) → (z → z))

⩾ dv(z → x, z → y).
This proves the validity of formula (23).

Similarly, we can prove the condition (24) starting from the formula (12).
For arbitrary elements x, y, z ∈ A, the following x → y ≼ x → y is valid due to the

reflexivity of the relation ≼. Then (x → y) · x ≼ y by (3). Thus (x → y) · x · z ≼ y · z by
(4). From here we get x → y ≼ x · z → y · z according to (3). Replacing the variables x
and y in the previous inequality, we get y → x ≼ y · z → x · z. Now, according to (14),
we have v(x → y) ⩽ v(x · z → y · z) and v(y → x) ⩽ v(y · z → x · z). Hence

dv(x, y) = −(v(x → y) + v(y → x))

⩾ −(v(x · z → y · z) + v(y · z → x · z))
= dv(z · x, z · y).

This proves the inequality (25). □

3.2. A construction of a congruence induced by a quasi-valuation. In [13], the notion
of congruence on a quasi-ordered residuated system was introduced as follows:

Definition 3.1. An equivalence relation θ on a quasi-ordered residuated system A =
⟨A, ·,→,≼, 1⟩ is a congruence on A if the the following holds

(∀x, y, z ∈ A)((x, y) ∈ θ =⇒ (x · z, y · z) ∈ θ) and
(∀x, y, z ∈ A)((x, y) ∈ θ =⇒ ((x → z, y → z) ∈ θ ∧ (z → x, z → y) ∈ θ)).

The following theorem designs an equivalence relation on a quasi-ordered residuated
system A using a quasi-valuation map in A.

Theorem 3.4. Let v : A/ ≡≼ −→ R be a quasi-valuation map on a quasi-ordered resid-
uated system A. Then the relation Rv on A, defined by

(∀x, y ∈ A)((x, y) ∈ Rv ⇐⇒ dv(x, y) = 0),

is an equivalence relation on A compatible with the operations in A.

Proof. It is clear that Rv is reflexive and symmetric relation on A. Suppose (x, y) ∈ Rv

and (y, z) ∈ Rv . Then dv(x, y) = 0 and dv(y, z) = 0. On the other hand, for arbitrary
variables x, y, z ∈ A (x → y) · (y → z) ≼ x → z holds according to (12). Hence, due
to the validity of the implication (14), v((x → y) · (y → z)) ≼ v(x → z) follows. From
here, due to (21), we get

v(x → y) + v(y → z) ≼ v((x → y) · (y → z)) ≼ v(x → z).

By replacing the variables x and z in the previous formula, we also get

v(z → y) + v(y → x) ≼ v(z → x).

Hence
0 = −dv(x, y)− dv(y, z)

= v(x → y) + v(y → x) + v(y → z) + v(z → y)

= (v(x → y) + v(y → z)) + (v(z → y) + v(y → x))

⩽ v(x → z) + v(z → x) = −dv(x, z) ⩽ 0.
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Then dv(x, z) = 0 and so, (x, z) ∈ Rv . Therefore, Rv is a transitive relation on A. This
shows that Rv is an equivalence relation on A.

Let us prove that Rv is compatible with the operation →. For arbitrary elements x, t, z ∈
A such that dv(x, y) = 0, we have

x → y ≼ (y → z) → (x → z) and y → x ≼ (x → z) → (y → z),

according to (12). From here, in accordance with (14), we get

v(x → y) ≼ v((y → z) → (x → z)) and v(y → x) ≼ v((x → z) → (y → z)).

Hence
0 = −dv(x, y) = v(x → y) + v(y → x)

⩽ v((y → z) → (x → z)) + v((x → z) → (y → z)) = −dv(x → z, y → z)

⩽ v(x → z)− v(y → z) + v(y → z)− v(x → z) according to (17)
= 0.

The second required result d(z → x, z → y) = 0 can be obtained in an analogous way
starting with formula (13).

It remains to show that the relation Rv is compatible with the multiplication operation
in A. Let x, y, z ∈ A be arbitrary elements such that dv(x, y) = 0. If we start from the
valid formula y · z ≼ y · z, we get y ≼ z → y · z according to (3). From here, according
to (13), we get x → y ≼ x → (z → y · z) and from here, according to (8), we have
x → y ≼ x · z → y · z. Now, according to (14), we have v(x → y) ⩽ v(x · z → y · z).
Therefore, we can now calculate

0 = −dv(x, y) = v(x → y) + v(y → x) ⩽ v(x · z → y · z) + v(y · z → x · z)
= −dv(x · z, y · z) ⩽ 0.

Therefore, dv(x · z, y · z) = 0, which means that (x · z, y · z) ∈ Rv holds. This proves the
compatibility of the relation Rv with the multiplication operation in A. □

The importance of a congruence relation Rv on a quasi-ordered residuated system A
is justified by the fact that the quotient A/Rv turns naturally into an ordered set. It is
commonly known that if (A,≼) is a quasi-ordered set and Rv is an equivalence relation on
A, then the relation ≦, defined by

(∀x, y ∈ A)([x]Rv ≦ [y]Rv ⇐⇒ x ≼ y)

is an order relation on A/Rv . Let us define operations ‘⊙ and ‘⇒’ as

(∀x, y ∈ A)([x]Rv ⊙ [y]Rv = [x · y]Rv ) and

(∀x, y ∈)([x]Rv
⇒ [y]Rv

= [x → y]Rv
).

Theorem 3.5. Let A be a quasi-ordered relational system and let v : A/ ≡≼ −→ R be a
quasi-valuation map on A. Then

⟨A/Rv,⊙,⇒, [1]Rv ,≦⟩
is a (quasi-)ordered residuated system.

Proof. This is a special case of Theorem 5.3 in the article [13]. □

In what follows, we need the following lemma:

Lemma 3.6. Let v : A/ ≡≼ −→ R be a quasi-valuation map on a quasi-ordered residu-
ated system A. Then holds



QUOTIENT QRS INDUCED BY QUASI-VALUATION MAPS 207

(∀x ∈ A)(v(x → 1) = 0) and (∀x ∈ A)(v(x) = v(1 → x)).

Proof. Let x ∈ A be an arbitrary element. Then x ≼ 1 implies 1 ≼ x → 1 ≼ 1. Thus
v(1) ⩽ v(x → 1) ⩽ v(1) by (14). On the other hand, from x ≼ 1 → x it follows
v(x) ⩽ v(1 → x) ⩽ v(x)− v(1) = v(x) according to (14) and (17). □

Theorem 3.7. Let v : A/ ≡≼ −→ R be a quasi-valuation map on a quasi-ordered resid-
uated system A. Then Fv = [1]Rv

and Jv =
⋃

dv(x,1)>0[x]Rv
.

Proof. Fv = {x ∈ A : v(x) = 0} = {x ∈ A : v(1 → x) + v(x → 1) = 0}
= {A : dv(1, x) = 0} = {x ∈ A : (x, 1) ∈ Rv} = [1]Rv

.
Also, we have
Jv = {x ∈ A : v(x) < 0} = {x ∈ A : v(1 → x) + v(x → 1) < 0}

= {x ∈ A : −dv(1, x) < 0} = {x ∈ A : dv(1, x) > 0}
=

⋃
dv(x,1)>0[x]Rv

. □

Let C(Fv) be a relation on A defined by

(∀x, y ∈ A)((x, y) ∈ C(Fv) ⇐⇒ (x → y ∈ Fv ∧ y → x ∈ Fv)).

On the other hand, we have:

Theorem 3.8. Let v : A/ ≡≼ −→ R be a quasi-valuation map on a quasi-ordered resid-
uated system A. Then C(Fv) = Rv .

Proof. Let x, y ∈ A. Then
(x, y) ∈ C(Fv) ⇐⇒ (x → y ∈ Fv ∧ y → x ∈ Fv)

⇐⇒ v(x → y) = v(y → x) = 0

⇐⇒ v(x → y) + v(y → x) = 0

⇐⇒ dv(x, y) = 0

⇐⇒ (x, y) ∈ Rv . □

Theorem 3.9. Let v and w be quasi-valuation maps on a quasi-ordered residuated system
A with v ̸= w. If [1]Rv

= [1]Rw
, then Rv and Rw coincide and so A/Rv = A/Rw.

Proof. Let x, y ∈ A such that (x, y) ∈ Rv . Then dv(x, y) = 0 and v(x → y) + v(y →
x)− 0. Thus v(x → y) = −v(y → x) ⩾ 0 by (15). This is possible only if v(x → y) = 0
and, therefore, v(y → x) = 0. This means that x → y ∈ [1]Rv

and y → x ∈ [1]Rv
.

On the other hand, since [1]Rv
= [1]Rw

by assumption, we have x → y ∈ [1]Rw
and

y → x ∈ [1]Rw . So,(x, y) ∈ Rw. The reverse implication Rw ⊆ Rv it can be proved
analogously to the previous one. Thus Rv = Rw. □

4. CONCLUSIONS

This report is a continuation of papers on our research of quasi-ordered residuated sys-
tems. More precisely, this paper is a continuation in the literal sense of the paper [14]. In
articles [11, 13] the concepts of filters and ideals in such algebraic structures are analyzed.
Article [14] is dedicated to designing the concept of quasi-valuation map in a quasi-ordered
residuated system A and analyzing its properties. In this paper, a congruence on a quasi-
ordered residuated system A, generated by a quasi-valuation in A, is designed. In addition,
it was shown (Theorem 3.9) that if for quasi-valuation maps v and w on a quasi-ordered
residual system A the following holds [1]Rv

= [1]Rw
, then Rv and Rw coincide.
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The author is convinced that the results announced in this report raise academic knowl-
edge about quasi-ordered residuated systems and that they can be one of the bases for
further research into these algebraic structures.
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