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A FAREY WAVELET-BASED MATHEMATICAL MODEL FOR BIOLOGICAL
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ABSTRACT. This work lies in the whole biomathematics framework which has as general
goal the solving of biological problems with mathematical tools. The main objective of the
present paper is to predict the transmembrane helices of proteins using wavelet denoising
techniques. As a case of matter, we particularly highlight the interest in solving the prob-
lem of localizing these helices. Indeed, these helices play a vital role in the human body,
notably in photosynthesis, respiration, neuronal signaling, immune response, absorption
of nutrition, and have an important link with drugs as receptors coupled to many proteins.
However, due to technical constraints, the crystallization of these helices remains very
complex, which limits the exploration of their structure [27]. To overcome these difficul-
ties, different prediction tools have been developed, initially based on hydrophobicity.

In this paper, we serve the Farey wavelet as a last alternative mother wavelet con-
structed in [4] to develop a mathematical model suitable for protein series description. We
precisely apply a new type of wavelets constructed recently in [4] to localize the and/or
predict the position of the transmembrane proteins alpha-helices in a coronavirus strain.
The results are compared to existing works for performance, accuracy, and efficiency.

1. INTRODUCTION

The major aim of this article is to show the efficiency of some types of wavelets to
model transmembrane (TM) proteins. Such a goal has been the object of many studies due
to the importance of TM proteins in the functioning of organisms. Briefly, a TM protein is
known to span the entire biological membrane. Such type of proteins also precipitates and
aggregates in water. In our case, we are interested in the so-called alpha-helical proteins,
which constitute the major category of TM proteins. These alpha-helices are the main parts
of communication between cells. This makes them important stations in the body and also
makes them major victims of attacks from the exterior. [6, 7, 9, 10, 11, 13, 16, 19, 20, 26,
29, 30]).

To localize the alpha-helices segments, a first step is needed subject to a conversion of
the protein series into numerical time series to be able to apply mathematical tools. The
main objective of the present study is to use Wavelets to predict the position of TM helices
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(TMHs) in protein sequences using hydrophobicity scales, by adapting wavelet-denoised
hydropathy signals. (See also [8, 9, 13, 14, 18, 19, 25, 20, 22, 24]).

In our approach, the protein sequence is first converted into a hydropathy signal using
Kyte and Doolittle (The hydropathy index of an amino acid is a number representing the
hydrophobic or hydrophilic properties of its side-chain. The numerical sequence is then
subjected to mathematical filtering, followed by biochemical filtering.

In mathematical filtering, the wavelet transform is applied using a mother wavelet.
Then, in the filtering step, the wavelet coefficients corresponding to high frequencies are
turned to zero, and finally, the signal is reconstructed and around zero by subtraction of its
mean value, producing a zero mean filtered hydropathy signal whose maximum is used in
the subsequent treatment.

In the biochemical filtering step, a tentative list of TMHs is created first, by the selec-
tion of all amino acids having a positive filtered hydropathy, and for each transmembrane
segment, the number of amino acids is computed.

Wavelets are mathematical tools developed since the last two decades of the last century
and proved to be powerful in many domains from theoretical fields to applied ([1, 2, 3, 5,
11, 12, 15, 17, 21, 23, 28]).

Wavelets analyze signals by computing their wavelet transforms via convolution prod-
ucts of the signals with copies of the mother/father wavelet. This indicates the importance
of designating a function as an analyzing wavelet (father or mother). Wavelets have in
addition the ability to localize analyzed signals in both time and frequency, which allows
their adaptability to nonstationarity, non-seasonality, and irregularity.

The main common and essential point between all these frameworks is that any wavelet
analysis starts with a source function called the mother wavelet, which gives rise next to the
wavelet basis, and the wavelet transform. In our present work, we serve the Farey wavelet
constructed already in [4] to conduct a wavelet model for TM proteins.

The rest of the paper will be structured as follows. Section 2 is devoted to a brief
review of the Farey wavelet analysis. Section 3 is devoted to our main results on the Farey
wavelet analysis and modeling of a special type of proteins issued from a coronavirus
strain. Section 4 is the conclusion.

2. FAREY WAVELET REVISITED

In the pure mathematical framework, a wavelet may be defined as a functionψ ∈ L2(R)
for which there holds the following essential properties.

• An admissibility assumption stating that,

Aψ =

∫
R+

|ψ̂(ω)|2 dω
|ω|

<∞. (2.1)

• A zero mean assumption,

ψ̂(0) =

∫ +∞

−∞
ψ(u)du = 0. (2.2)

• Localization (in time and frequency),

∥ψ∥22 =

∫ +∞

−∞
|ψ(u)|2du = 1. (2.3)

• Many vanishing moments or oscillations,

p = 0, ...,m− 1,

∫
R
ψ(t)tpdt = 0. (2.4)
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Analyzing a function f ∈ L2(R) passes through its The continuous wavelet transform
at a position u ∈ R and a scale s > 0 defined by

du,s(f) =

∫ ∞

−∞
f(t)ψu,s(t)dt, ∀u, s, (2.5)

where
ψs,u(x) =

1√
s
ψ(
x− u

s
). (2.6)

The original analyzed function f may be re-obtained from its CWT as

f(x) =
1

Aψ

∫ ∫
R
du,s(f)ψ

(
x− u

s

)
dsdu

s2
. (2.7)

The discrete wavelet transform (DWT) is obtained simply by setting s = 2−j and u =
k2−j , j, k ∈ Z, we get here the dyadic version. The DWT of f is

dj,k =

∫ ∞

−∞
f(t)ψj,k(t)dt, (2.8)

where ψj,k(.) = 2−j/2ψ(2j . − k). The DWT dj,k is sometimes called the wavelet coeffi-
cient or the detail coefficient of f . As previously, the function f may be reconstructed via
its wavelet series decomposition as

f =
∑
j,k

dj,kψj,k (2.9)

It holds, indeed, that the set (ψj,k)j,k∈Z constitutes an orthonormal basis of L2(R) and
called wavelet basis.

One of the strongest tasks is that the mother wavelet ψ may give rise to a second father
wavelet (called also scaling function) φ satisfying the so-called 2-scale relation

φ =
∑
k

hkφ1,k (2.10)

where the coefficients hk are

hk =

∫
R
φ(x)φ1,k(x)dx.

In this case, there holds for ψ that

ψ =
∑
k

gkφ1,k, with |; gk = (−1)kh1−k.

Using these facts, the decomposition of the function f into a series of wavelets may be
detailed more by involving the function φ. Let

f =
∑
k

aJ0,kφJ0,k︸ ︷︷ ︸
AJ0

+

+∞∑
j=J0

∑
k

dj,kψj,k,︸ ︷︷ ︸
Dj

(2.11)

where J0 ∈ N is an arbitrary parameter fixed at advance and called the minimal decompo-
sition level. The first sum in the decomposition AJ0 is called the approximation of f at the
level J0 and it describes its global shape or global behavior of it. The coefficients

aJ0,k =

∫
R
f(t)φJ0,k(t)dt
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are called approximation coefficients. The sum Dj is called the detail of f at the level j
and it describes its hidden or fluctuated behavior. Backgrounds may be found in [1, 2, 3,
5, 11, 12, 15, 17, 23, 28].

The (father,mother) farey wavelets are introduced in [4] starting from the Faray map
(slightly modified) as

φ(ξ) =


K0

1 + ξ

1− ξ
, −1 ≤ ξ ≤ 0,

K0
1− ξ

1 + ξ
, 0 ≤ ξ ≤ 1,

(2.12)

where K0 =
1

(4 log 2− 2)
, and

ψ(ξ) = K1



1

3

1 + 2ξ

1− 2ξ
; −1

2
≤ ξ ≤ 0,

1

3

1− 2ξ

1 + 2ξ
− ξ

1− ξ
; 0 ≤ ξ ≤ 1

2
,

ξ − 1

ξ
− 1

3

1− 2ξ

3− 2ξ
;

1

2
≤ ξ ≤ 1,

−1

3

3− 2ξ

1− 2ξ
; 1 ≤ ξ ≤ 3

2
.

Here, K1 =
1√

3− 4 log 2
is the normalization constant.

These functions satisfy indeed many useful properties always needed in wavelet analy-
sis, which are resumed in the following proposition.

Proposition 2.1. The following assertions hold.

(1) φ̂(0) = 1

(2) φ =
∑
k∈Z

hkφ1,k, where h1 = h−1 =
1

3
√
2

, h0 =
1√
2

and 0 else.

(3) ψ =
K1

K0

∑
k∈Z

gkφ1,k, with gk = (−1)k−1h1−k.

(4) The function ψ̃(x) = ψ(x) − cχ]−1/2,3/2[(x) with c =
2 log 2− 1

6
, is admissible

with one vanishing moment.
(5) The function Γφ(ω) =

∑
k∈Z

|φ̂(ω + 2kπ)|2 is bounded on R (called the overlap

function associated to the function φ).

(6) Let Φ ∈ L2(R) be defined by its Fourier transform Φ̂ =
φ̂√
Γφ

. Then, the system

(Φk = Φ(.− k))k∈Z is orthonormal in L2(R).

3. MAIN RESULTS: A CORONAVIRUS PROCESSING

To conduct our Farey wavelet analysis of the biological series in hand, we recall firstly
that in wavelet analysis, it is natural to seek from (2.11) a finite series decomposition at
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some level J > J0 and consider the so-called J-level decomposition

fJ(t) = AJ0(t) +DJ0(t) +DJ0+1(t) + · · ·+DJ(t). (3.1)

We propose to localize the α-helices in a TM protein. using the length of the TM helix
counting 19 residues at least, which in turn are always hydrophobic. Kyte and Doolit-
tle [22] developed a hydrophobicity algorithm based on the amino acid-free energy scale
transfer between water and a specific organic solvent. The following table (Table 1) re-
sumes the results of such an algorithm and yields for each amino acid a corresponding
numerical value, which allows the conversion of protein series into numerical ones.

TABLE 1. Kyte-Doolittle Hydrophobicity scale for protein series conversion.

Amino Acid Symbol Kyte-Doolittle Scale Category
Isoleucine Ile(I) +4.5 Hydrophobic
Valine Val(V) +4.2 Hydrophobic
Leucine Leu(L) +3.8 Hydrophobic
Phenylalanine Phe(F) +2.8 Hydrophobic
Cysteine CySH(C) +2.5 Hydrophobic
Methionine Met(M) +1.9 Hydrophobic
Alanine Ala(A) +1.8 Hydrophobic
Glycine Gly(G) -0.4 Neutral
Threonine Thr(T) -0.7 Neutral
Serine Ser(S) -0.8 Neutral
Tryptophan Try(W) -0.9 Neutral
Tyrosine Tyr(Y) -1.3 Neutral
Proline Pro(P) -1.6 Neutral
Histidine His(H) -3.2 Hydrophilic
Glutamine Gln(Q) -3.5 Hydrophilic
Asparagine Asn(N) -3.5 Hydrophilic
Glutamic Acid Glu(E) -3.5 Hydrophilic
Aspartic Acid Asp(D) -3.5 Hydrophilic
Lysine Lys(K) -3.9 Hydrophilic
Arginine Arg(R) -4.0 Hydrophilic

The next step consists of the mathematical processing (filtering) based on the DWT
of the numerical/statistical series obtained. On the Farey wavelet approximation of the
numerical hydrophobicity scale series, we proceed by the following operations.

• We count the number of amino acids with positive hydrophobicity index for any
TM segment S, let Ns be the corresponding number.

• If Ns < 11, the segment S is omitted.
• If 38 ≤ Ns ≤ 72, we split the segment S into 2 equal parts, and 3 central acids

are removed from the transmembrane portion (the first, the middle, and the last
residues).

• If Ns > 72, the segment S is split into 3 sub-segments with at least 24 residues,
and 3 plant acids are omitted.

• We next compute the mean hydropathy H of the whole protein.
• If H < 0.1, we act a second selection of TM segments.
• If H < −0.2, segments with a maximum hydropathy m ≥ 0.7 are kept as correct.
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• If −0.2 ≤ H ≤ 0.1, segments with a maximum hydropathy m ≥ 0.5 are kept as
correct.

The following figure (Figure 1) illustrates the flowchart of the algorithm above.

Protein sequence

Hydropathy signal Hydropathy scale

Farey Wavelet decomposition

Farey wavelet filtering

Signal reconstruction

Farey wavelet processing

First selection

H < 0.1 (Reject) Second selection
Biochemical filtering

Transmembrane helices

FIGURE 1. General flowchart of the Farey wavelet processing.

In the present paper, we consider as in [20], the strain of coronavirus recorded since
2002-2003 and due to a SARS case in Hanoi, Vietnam, See [26]. This strain is provided in
Figure 2. We precisely purpose to conduct a Farey wavelet analysis of such a strain.
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FIGURE 2. The Coronavirus proteins’ series strain.

In the first step, we provide the wavelet decomposition of the numerical time series
associated with the strain of proteins due to the Kyte-Dolittle process. This is illustrated
by Figure 3.

FIGURE 3. The Farey wavelet decomposition of the coronavirus strain
at the level J = 6.

The next step is to localize the transmembrane segments in the strain above by using the
Farey wavelet. To do this we plotted in Figure 4 the Kyte-Doolittle hydropathy signal for
the strain. We indicate that the optima with scores greater than 1.8 are due to the possible
transmembrane parts. We get here 8 helices (local maxima).
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FIGURE 4. Kyte-Doolittle hydropathy signal for the coronavirus series.

Our aim is to show that effectively the Farey wavelet analysis or filtering permits the
detection of the same segments due to the transmembrane helices parts. The result is shown
in Figure 5.

FIGURE 5. The TMHs Segments due to the Farey wavelet filtering of
the coronavirus strain.

To illustrate the efficiency of our work, a comparison with the only reference [20] that
investigated the similar strain, is provided in Table 2 in terms of the TMHs predicted.



A FAREY WAVELET-BASED MATHEMATICAL MODEL FOR BIOLOGICAL SERIES 173

TABLE 2. The TMHs Segments for HSch filtering of the coronavirus signal.

TMHs Model [20] Current model
1 120–134 121-145
2 233–253 239-273
3 359–373 356-396
4 505–523 510-529
5 678–699 675-725
6 824–842 824-849
7 1056–1069 950-979
8 1199–1212 1210-1230

To check more statistically, the performance, accuracy, and efficiency of the proposed
method, a comparison to the results in [20] is developed via three statistical tests.

• The so-called percentage index

Qp =
N1√
N2N3

× 100%,

where N1 returns the number of the TMHs obtained via the Farey wavelet recon-
struction, N2 is the number of the TMHs obtained in [20] as a basis of comparison
(like the observed case in experimental studies), and N3 is the total number of
predicted TMHs in the original hydropathy signal.

• An absolute deviation is evaluated as the difference between the first residue in
[20] and the current first predicted residue. More precisely, we call Mean Absolute
Error (MAE) the quantity

MAE1 =

K∑
i=1

|x1i − x2i |,

and

MAE2 =

K∑
i=1

|y1i − y2i |,

where [x1i , y
1
i ] are the TMHs segments due to [20], and recalled here in Table 2,

column 2. [x2i , y
2
i ] are the current TMHs segments obtained via the Farey wavelet

reconstruction, and subject of column 2 in Table 2. K is the total number of the
TMHs segments. The MAE has to be as small as possible.

• The last measures is the so-called Jack-Knife test ([10, 20, 24]). Let Nj be the
number of predicted segments due to the Farey wavelet componentAj , 1 ≤ j ≤ 6.
In the acting Jack-knife test, a single observation is recursively deleted from the
sample, and an estimation is computed until we get Nj estimates for Nj , 1 ≤ j ≤
6. Once, the 6 estimates N̂1, N̂2, ..., N̂6, are obtained, we compute a standard
error

SEJK =

√√√√5

6

6∑
i=1

(
N̂i − N̂

)2

,

where N̂ is the arithmetic mean of the vector (N̂i)1≤i≤J .
The readers may refer to [6, 7, 9, 19, 31] for more details on these measures. In the

present work, the results obtained are resumed in the following Table 3.
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TABLE 3. Statistical measures of performance.

Measures Values
Qp 100%

MAE1 69
MAE2 131
SEJK 97.16%

Notice from Table 3 that the index Qp = 100% is compatible effectively with the fact
that 8 helices exist in the strain. Besides, the Jack-Knife test is also performant. However,
we notice a somehow acceptable MAE1, which reflects that the first extremities of the
TMHs segments are somehow close to each other, and a quite large MAE2 value, which
indicates an important translation of the second extremities of the TMHs segments. This
last limitation may be reduced if the real observed segments are provided by the biologists.

4. CONCLUSION

In the present article, a strain of proteins issued from coronavirus is investigated by
using a special type of wavelet known as the Farey wavelet. The wavelet processing per-
mitted extraction and/or localize the TMHs segments in the protein strain. The results are
compared to existing works and showed the ability of the present wavelet in the extraction
of the correct TMHs segments. The performance, accuracy, and efficiency of the method
are evaluated by means of some statistical measures such as the Jack-Knife test, the mean
absolute error, and the percentage index.

As future work(s) and perspective(s) for the present work, they constitute parts of the
continuity of the present work in the fields of biometrics and bioinformatics, it will be
interesting to apply other types of wavelets to get more accurate predictions on a set of
proteins. Besides, our work as well as a major part of existing works may be improved in
a future direction to overcome an essential drawback or limitation related to the aspects of
redundancy, self-similarity, fractality, multifractality and may be stochasticity or random-
ness in the hydropathy signal. We thus think about other mathematical theories of analysis
of random signals issued from protein sequences, such as those studying aspects of redun-
dancy and self-similarity in the hydropathy signal. We think that fractal theory, stochastic
calculus, and also non-uniform wavelets can offer an alternative to the same extension in
this context.
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