ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 4, Number 2 (2021), 164-171 ISSN: 2582-0818 (© http://www.technoskypub.com

m-IDEALS AND ITS GENERATORS OF TERNARY SEMIGROUPS

M. PALANIKUMAR* AND K. ARULMOZHI

ABSTRACT. The purpose of this paper is to introduce some new classes of *m*-bi ideals and *m*-quasi ideals in ternary semigroups and give some characterizations in terms of bi ideals and quasi ideals. Let U_1 be the *m*-bi ideal of \mathbb{T} and U_2 be the *m*-bi ideal of U_1 such that $U_2^3 = U_2$, shown that U_2 is a *m*-bi ideal of \mathbb{T} . Let U_1, U_2 and U_3 be the three ternary subsemigroups of \mathbb{T} , it has been shown that $U_1U_2U_3$ is a *t*-bi ideal if at least one of U_1, U_2, U_3 is *l*-RI or *m*-LATI or *n*-LI of \mathbb{T} . Also we discuss *m*-bi ideal generated by \mathscr{B} is $\langle \mathscr{B} \rangle_m = \mathscr{B} \cup \sum_{\substack{finite}} \mathscr{B}\mathbb{T}^m \mathscr{B}$. Examples are needed strengthen our results.

1. INTRODUCTION

The notion of ternary semigroup is a natural generalization of ternary group. The notion of ideal play very important role to study the algebraic structures. Lehmer initiated the concept of ternary algebraic systems called triplexes in 1932 [7]. A ternary semigroup is a nonempty set together with a ternary multiplication which is associative. The notion of ternary semigroups was known to banach who is credited with an example of a ternary semigroup which does not reduce to a semigroup. Ternary multiplication compatible with a vector space structure has been studied using both algebraic and functional analytical methods. In [8], Los studied some properties of ternary semigroup and proved that every ternary semigroup can be embedded in a semigroup. In [16], Sioson studied ideal theory in ternary semigroups. The notion of quasi-ideal in semigroup and in ring has been introduced by Steinfeld. In ternary semigroups, quasi-ideals are generalization of right ideals, lateral ideals and left ideals whereas bi-ideals are generalization of right ideals, lateral ideals and left ideals of semigroup theory can be obtained for ternary semigroups using various ideal concepts. If A, B and C are three subsets of ternary semigroups are specified as the semigroup theory can be obtained for ternary semigroups. $ABC = \left\{\sum_{finite} a_i b_i c_i : a_i \in A, b_i \in B, c_i \in C \right\}$. Our aim in this paper is

threefold.

- (1) To study the relationship between bi ideal and m-bi ideal.
- (2) To study the relationship between m-quasi ideal and m-bi ideal.
- (3) To characterize generators of bi ideal, left ideal and right ideal.

²⁰¹⁰ Mathematics Subject Classification. 20M12, 20N10.

Key words and phrases. m-ideals; m-bi ideals and m-quasi ideals.

Received: April 30, 2021. Accepted: July 30, 2021. Published: September 30, 2021.

^{*}Corresponding author.

2. PRELIMINARIES

From now onward, unless stated otherwise, \mathbb{T} will denote a ternary semigroups.

Definition 2.1. [15] A ternary semigroup is a nonempty set \mathbb{T} together with a ternary operation $(a, b, c) \rightarrow [abc]$ satisfying the associative law ,[[abc]uv] = [a[bcu]v] = [ab[cuv]], $\forall a, b, c, u, v \in \mathbb{T}$.

Definition 2.2. [15] A non empty subset A of \mathbb{T} is said to be

- (i) ternary subsemigroup (shortly TSS) if $A^3 = AAA \subseteq A$.
- (ii) left ideal (shortly LI) if $\mathbb{TT}A \subseteq A$.
- (iii) right ideal (shortly RI) if $A\mathbb{TT} \subseteq A$.
- (iv) lateral ideal (shortly LAT) if $\mathbb{T}A\mathbb{T} \subseteq A$.
- (v) an ideal if it is a left, right and lateral ideal.

Definition 2.3. [15] For any non empty subset A of \mathbb{T}

- (i) $A_l = A \cup \mathbb{T}\mathbb{T}A$ is the left ideal generated by A.
- (ii) $A_r = A \cup A\mathbb{T}\mathbb{T}$ is the right ideal generated by A.
- (iii) $A_{lat} = A \cup \mathbb{T}A\mathbb{T} \cup \mathbb{T}TA\mathbb{T}\mathbb{T}$ is the lateral ideal generated by A.
- (iv) $(A) = A \cup \mathbb{TT}A \cup A\mathbb{TT} \cup \mathbb{TAT} \cup \mathbb{TT}A\mathbb{TT}$ is the ideal generated by A.

Definition 2.4. (i) A *TSS B* of \mathbb{T} is called a bi-ideal if $B\mathbb{T}B\mathbb{T}B \subseteq B$. (ii) A *TSS Q* of \mathbb{T} is called a quasi-ideal if $Q\mathbb{T}\mathbb{T} \cap (\mathbb{T}Q\mathbb{T} \cup \mathbb{T}TQ\mathbb{T}\mathbb{T}) \cap \mathbb{T}TQ \subseteq Q$.

Definition 2.5. (i) A subsemigroup L of semigroup S is called an *l*-left ideal if $S^l L \subseteq L$.

(ii) A subsemigroup N of semigroup S is called an n-right ideal if $NS^n \subseteq N$, where l, n are positive integers.

Remark. For a semigroup S and l, m are positive integers, $S^m = S \cdot S \cdot S \cdot ... \cdot S(m - times)$. Now $S^2 = S \cdot S \subseteq S$ and $S^3 = S \cdot S \subseteq S^2 \subseteq S$. We conclude that $S^l \subseteq S^m$ such that $l \ge m$. Consequently $S^m \subseteq S$.

3. VARIOUS *m*-IDEALS

Here *m*-bi ideals (shortly $m\mathscr{B}$) and *m*-quasi ideals (shortly mQ) are introduced.

Definition 3.1. The $m\mathscr{B}$ of \mathbb{T} is a TSS of \mathbb{T} such that $\mathscr{B}\mathbb{T}^m\mathscr{B}\mathbb{T}^m\mathscr{B} \subseteq \mathscr{B}$, where $m \in \mathbb{Z}^+$.

Remark. If m = 1, then 1-bi ideal is simply bi ideal of \mathbb{T} .

Theorem 3.1. For $m \ge 1$, Every bi ideal is a $m\mathscr{B}$ of \mathbb{T} .

Proof. Let \mathscr{B} be the bi ideal of \mathbb{T} , then $\mathscr{B}\mathbb{T}\mathscr{B}\mathbb{T}\mathscr{B} \subseteq \mathscr{B}$. Now, $\mathscr{B}\mathbb{T}^1\mathscr{B}\mathbb{T}^1\mathscr{B} = \mathscr{B}\mathbb{T}\mathscr{B}\mathbb{T}\mathscr{B} \subseteq \mathscr{B}$. Also, $\mathscr{B}\mathbb{T}^2\mathscr{B}\mathbb{T}^2\mathscr{B} \subseteq \mathscr{B}\mathbb{T}^1\mathscr{B}\mathbb{T}^1\mathscr{B} \subseteq \mathscr{B}$. Continuing like these, $\mathscr{B}\mathbb{T}^m\mathscr{B}\mathbb{T}^m\mathscr{B} \subseteq \mathscr{B}\mathbb{T}^{m-1}\mathscr{B}\mathbb{T}^{m-1}\mathscr{B} \subseteq \mathscr{B}$. Therefore \mathscr{B} is a $m\mathscr{B}$ of \mathbb{T} .

Converse of the Theorem 3.1 is not true which can be illustrated as follows.

Example 3.2. Consider the ternary semigroups

$$\mathbb{T} = \left\{ \begin{pmatrix} 0 & x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & x_6 & x_7 & x_8 & x_9 \\ 0 & 0 & 0 & x_{10} & x_{11} & x_{12} \\ 0 & 0 & 0 & 0 & x_{13} & x_{14} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \middle| x_i^{'s} \in \mathbb{Z}_0^-, \ i = 1, 2,, 15 \right\}.$$

Theorem 3.2. The product of any three $m\mathscr{B}^s$ with identity element e is a $m\mathscr{B}^s$ of \mathbb{T} .

Proof. Let Z_1, Z_2 and Z_3 be the three $m\mathscr{B}^s$ of \mathbb{T} with bipotencies m_1, m_2 and m_3 respectively. Then $Z_1 \mathbb{T}^{m_1} Z_1 \mathbb{T}^{m_1} Z_1 \subseteq Z_1, Z_2 \mathbb{T}^{m_2} Z_2 \mathbb{T}^{m_2} Z_2 \subseteq Z_2$ and $Z_3 \mathbb{T}^{m_3} Z_3 \mathbb{T}^{m_3} Z_3 \subseteq Z_3$, where $m_i \in \mathbb{Z}^+$, for i = 1, 2, 3. Put $t = max \ m_i$ for i = 1, 2, 3

$$(Z_{1}Z_{2}Z_{3})^{3} = (Z_{1}Z_{2}Z_{3})(Z_{1}Z_{2}Z_{3})(Z_{1}Z_{2}Z_{3})$$

$$\subseteq (Z_{1}(\mathbb{T}\mathbb{T}Z_{1})(\mathbb{T}\mathbb{T}Z_{1}))Z_{2}Z_{3}$$

$$= (Z_{1}(\mathbb{T}\mathbb{T}eee...eZ_{1})(\mathbb{T}\mathbb{T}eee...eZ_{1}))Z_{2}Z_{3}$$

$$\subseteq (Z_{1}(\mathbb{T}\mathbb{T}\mathbb{T}...\mathbb{T}Z_{1})(\mathbb{T}\mathbb{T}\mathbb{T}...\mathbb{T}Z_{1}))Z_{2}Z_{3}$$

$$= (Z_{1}\mathbb{T}^{m}Z_{1}\mathbb{T}^{m}Z_{1})Z_{2}Z_{3}$$

$$\subseteq Z_{1}Z_{2}Z_{3}.$$

$$(Z_{1}Z_{2}Z_{3})\mathbb{T}^{t}(Z_{1}Z_{2}Z_{3})\mathbb{T}^{t}(Z_{1}Z_{2}Z_{3}) = Z_{1}(Z_{2}Z_{3}\mathbb{T}^{t})Z_{1}(Z_{2}Z_{3}\mathbb{T}^{t})(Z_{1}Z_{2}Z_{3})$$

$$\subseteq Z_{1}(\mathbb{T}\mathbb{T}\mathbb{T}^{t})Z_{1}(\mathbb{T}\mathbb{T}\mathbb{T}^{t})(Z_{1}Z_{2}Z_{3})$$

$$\equiv Z_{1}\mathbb{T}^{2+t}Z_{1}\mathbb{T}^{2+t}(Z_{1}Z_{2}Z_{3})$$

$$\subseteq (Z_{1}\mathbb{T}^{m_{1}}Z_{1}\mathbb{T}^{m_{1}})Z_{1}Z_{2}Z_{3}$$

$$\equiv (Z_{1}\mathbb{T}^{m_{1}}Z_{1}\mathbb{T}^{m_{1}}Z_{1})Z_{2}Z_{3}$$

$$\subseteq Z_{1}Z_{2}Z_{3}$$

Thus $Z_1Z_2Z_3$ is an *m*-bi ideal of \mathbb{T} with bipotency $max \ m_i, \ i = 1, 2, 3$.

Theorem 3.3. If Z is a $m\mathscr{B}$ of \mathbb{T} and T_1, T_2 are two TSS^s with e, then ZT_1T_2, T_1ZT_2 and T_1T_2Z are $m\mathscr{B}^s$ of \mathbb{T} .

Proof. Let Z be $m\mathscr{B}$ of \mathbb{T} and T_1, T_2 are two TSS^s with e.

$$(ZT_1T_2)^3 = (ZT_1T_2)(ZT_1T_2)(ZT_1T_2)$$

$$\subseteq (Z(\mathbb{T}\mathbb{T}Z)(\mathbb{T}\mathbb{T}Z))T_1T_2$$

$$= (Z(\mathbb{T}\mathbb{T}eee...eZ)(\mathbb{T}\mathbb{T}eee...eZ))T_1T_2$$

$$\subseteq (Z(\mathbb{T}\mathbb{T}\mathbb{T}...\mathbb{T}Z)(\mathbb{T}\mathbb{T}\mathbb{T}...\mathbb{T}Z))T_1T_2$$

$$= (Z\mathbb{T}^m Z\mathbb{T}^m Z)T_1T_2$$

$$\subseteq ZT_1T_2.$$

$$(ZT_1T_2)\mathbb{T}^m(ZT_1T_2)\mathbb{T}^m(ZT_1T_2) = Z(T_1T_2\mathbb{T}^m)Z(T_1T_2\mathbb{T}^m)(ZT_1T_2)$$

$$\subseteq Z(\mathbb{T}\mathbb{T}\mathbb{T}^m)Z(\mathbb{T}\mathbb{T}\mathbb{T}^m)(ZT_1T_2)$$

$$= Z\mathbb{T}^{2+m}Z\mathbb{T}^{2+m}(ZT_1T_2)$$

$$\subseteq (Z\mathbb{T}^m Z\mathbb{T}^m)ZT_1T_2$$

$$\subseteq (Z\mathbb{T}^m Z\mathbb{T}^m)ZT_1T_2$$

$$\subseteq ZT_1T_2.$$

Thus, ZT_1T_2 is a $m\mathscr{B}$ of \mathbb{T} . Similarly T_1ZT_2 and T_1T_2Z are $m\mathscr{B}$ of \mathbb{T} .

Theorem 3.4. If Z is a m \mathscr{B} and T_1 is a TSS of \mathbb{T} , then $Z \cap T_1$ is a m \mathscr{B} of T_1 .

166

Proof. Since $Z \cap T_1 \subseteq Z$ and $Z \cap T_1 \subseteq T_1$, $(Z \cap T_1)(Z \cap T_1)(Z \cap T_1) \subseteq ZZZ \subseteq Z$. $(Z \cap T_1)T_1^m(Z \cap T_1)T_1^m(Z \cap T_1) \subseteq (Z \cap T_1)\mathbb{T}^m(Z \cap T_1)\mathbb{T}^m(Z \cap T_1) \subseteq Z\mathbb{T}^mZ\mathbb{T}^m \subseteq Z$. Therefore $Z \cap T_1$ is a $m\mathscr{B}$ of T_1 .

Theorem 3.5. The intersection of family of $m\mathcal{B}$ of \mathbb{T} is a $m\mathcal{B}$ with potencies m_i and potency max m_i for i = 1, 2, 3.

Remark. Sum of two $m\mathscr{B}^s$ of \mathbb{T} is not a $m\mathscr{B}$ of \mathbb{T} .

Example 3.3. Consider the ternary semigroup $\mathbb{T} = \left\{ \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{pmatrix} | a_i \in \mathbb{Z}_0^- \right\}.$ Let $X_1 = \left\{ \begin{pmatrix} p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} | p \in \mathbb{Z}_0^- \right\}$ and $X_2 = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} | q \in \mathbb{Z}_0^- \right\}$ are $m\mathscr{B}$ of \mathbb{T} but $X_1 + X_2$ is not a $m\mathscr{B}$ of \mathbb{T} .

Definition 3.4. A *TSS* Q of \mathbb{T} is called a mQ if $Q\mathbb{T}^m \cap \mathbb{T}^m Q\mathbb{T}^m \cap \mathbb{T}^m Q \subseteq Q$.

Remark. If m = 1, then 1-quasi ideal is simply quasi ideal of \mathbb{T} .

Theorem 3.6. Every mQ is a $m\mathcal{B}$ of \mathbb{T} .

Proof. Let N be mQ of \mathbb{T} . Now,

$$\begin{split} N\mathbb{T}^{m}N\mathbb{T}^{m}N &\subseteq N\mathbb{T}^{m}\mathbb{T}\mathbb{T}^{m}\mathbb{T} \\ &= N\mathbb{T}^{m+1}\mathbb{T}^{m+1} \\ &\subseteq N\mathbb{T}^{m} \end{split}$$

Similarly, $N\mathbb{T}^m N\mathbb{T}^m N \subseteq \mathbb{T}^m N\mathbb{T}^m$ and $N\mathbb{T}^m N\mathbb{T}^m N \subseteq \mathbb{T}^m N$. Thus, $N\mathbb{T}^m N\mathbb{T}^m N \subseteq (N\mathbb{T}^m) \cap (\mathbb{T}^m N\mathbb{T}^m) \cap (\mathbb{T}^m N) \subseteq N$.

Converse of the above Theorem is not true by the following Example.

Example 3.5. Consider the ternary semigroup

Theorem 3.7. Product of three $(l, m, n)Q^s N_1, N_2$ and N_3 of \mathbb{T} is an $t\mathscr{B}$ of \mathbb{T} , where $t \in \mathbb{Z}^+$.

Proof. Put $Z = N_1 N_2 N_3 = \left\{ \sum_{finite} l_i m_i n_i | l_i \in N_1, m_i \in N_2, n_i \in N_3, i = 1, 2, ... \right\}$. Now,

$$Z^{\circ} = (N_1 N_2 N_3)^{\circ} = (N_1 N_2 N_3) (N_1 N_2 N_3) (N_1 N_2 N_3) \subseteq N_1 (N_2 \mathbb{T} N_2 \mathbb{T} N_2) N_3 \subseteq N_1 N_2 N_3 = Z.$$

Put $t = \max\{l_1, l_2, 1_3, m_1, m_2, m_3, n_1, n_2, n_3\}$. Now,

$$Z\mathbb{T}^{t}Z\mathbb{T}^{t}Z = (N_{1}N_{2}N_{3})\mathbb{T}^{t}(N_{1}N_{2}N_{3})\mathbb{T}^{t}(N_{1}N_{2}N_{3})$$

$$\subseteq N_{1}(N_{2}\mathbb{T}\mathbb{T}^{t}\mathbb{T}N_{2}\mathbb{T}\mathbb{T}^{t}\mathbb{T}N_{2})N_{3}$$

$$\subseteq N_{1}(N_{2}\mathbb{T}^{t+2}N_{2}\mathbb{T}^{t+2}N_{2})N_{3}$$

$$\subseteq N_{1}(N_{2}\mathbb{T}^{t}N_{2}\mathbb{T}^{t}N_{2})N_{3}$$

$$\subseteq N_{1}N_{2}N_{3}$$

$$= Z.$$

Therefore Z is a $t\mathscr{B}$ of \mathbb{T} .

Definition 3.6. (i) A TSS L of \mathbb{T} is called an l-LI if $\mathbb{T}^l L \subseteq L$. (ii) A TSS M of \mathbb{T} is called an m-LATI if $\mathbb{T}^m M \mathbb{T}^m \subseteq M$. (iii) A TSS N of \mathbb{T} is called an n-RI if $N\mathbb{T}^n \subseteq N$, where l, m, n are positive integers.

Theorem 3.8. Every *l*-LI, *m*-LATI and *n*-RI of \mathbb{T} is an *l* \mathscr{B} , *m* \mathscr{B} , *n* \mathscr{B} of \mathbb{T} respectively.

Proof. Let L be the m-LATI of \mathbb{T} , then $\mathbb{T}^m L \mathbb{T}^m \subseteq L$.Now, $L \mathbb{T}^m L \mathbb{T}^m L \subseteq L(\mathbb{T}^m L \mathbb{T}^m)$ $L \subseteq LLL \subseteq L$. Therefore L is a $m\mathscr{B}$ of \mathbb{T} . Similarly other cases.

Theorem 3.9. The intersection of *l*-LI, *m*-LATI and *n*-RI is an *l*-LI, *m*-LATI and *n*-RI of \mathbb{T} respectively.

Theorem 3.10. Let U_1, U_2, U_3 be an *l*-LI, *m*-LATI and *n*-RI of \mathbb{T} respectively. Then $U_1 \cap U_2 \cap U_3$ is an $t\mathscr{B}$, where $t = \max(l, m, n)$.

Proof. Clearly, $Z = U_1 \cap U_2 \cap U_3$ is a TSS of \mathbb{T} . By Theorem 3.8, U_1 , U_2 and U_3 are $l\mathscr{B}$, $m\mathscr{B}$ and $n\mathscr{B}$ respectively. The intersection of U_1, U_2 and U_3 becomes $\max(l, m, n)$ -bi ideals by Theorem 3.5.

$$Z\mathbb{T}^{t}Z\mathbb{T}^{t}Z \subseteq U_{1}\mathbb{T}^{t}U_{1}\mathbb{T}^{t}U_{1}$$
$$\subseteq \mathbb{T}\mathbb{T}^{t}\mathbb{T}\mathbb{T}^{t}U_{1}$$
$$= \mathbb{T}^{t+1}\mathbb{T}^{t+1}U_{1}$$
$$\subseteq \mathbb{T}^{t}U_{1}$$
$$\subseteq U_{1}.$$

Therefore $Z\mathbb{T}^t Z\mathbb{T}^t Z \subseteq U_1$. Similarly, $Z\mathbb{T}^t Z\mathbb{T}^t Z \subseteq U_2$ and $Z\mathbb{T}^t Z\mathbb{T}^t Z \subseteq U_3$. Hence $Z\mathbb{T}^t Z\mathbb{T}^t Z \subseteq Z$.

Theorem 3.11. The product of any three tQ^s with e is a tQ^s of \mathbb{T} , where $t \in \mathbb{Z}^+$.

Theorem 3.12. Let U_1 be an $m\mathscr{B}$ of \mathbb{T} and U_2 be an $m\mathscr{B}$ of U_1 such that $U_2^3 = U_2$. Then U_2 is a $m\mathscr{B}$ of \mathbb{T} .

Proof. Since U_1 is a $m\mathscr{B}$ of \mathbb{T} , $U_1\mathbb{T}^mU_1\mathbb{T}^mU_1 \subseteq U_1$ and U_2 is a $m\mathscr{B}$ of U_1 , $U_2U_1^mU_2U_1^mU_2 \subseteq U_2$. Now,

$$\begin{array}{rcl} U_{2}\mathbb{T}^{m}U_{2}\mathbb{T}^{m}U_{2} &=& (U_{2}U_{2}U_{2})\mathbb{T}^{m}U_{2}\mathbb{T}^{m}(U_{2}U_{2}U_{2})\\ &=& U_{2}U_{2}(U_{2}\mathbb{T}^{m}U_{2}\mathbb{T}^{m}U_{2})U_{2}U_{2}\\ &\subseteq& U_{2}U_{2}(U_{1}\mathbb{T}^{m}U_{1}\mathbb{T}^{m}U_{1})U_{2}U_{2}\\ &=& U_{2}U_{2}U_{1}U_{2}(U_{2}U_{2}U_{2})\\ &\subseteq& U_{2}(U_{2}U_{1}U_{2}U_{1}U_{2})U_{2}\\ &=& U_{2}U_{2}U_{1}U_{2}U_{2}U_{2}U_{1}U_{2}U_{2}\\ &=& U_{2}U_{1}^{3}U_{2}U_{1}^{3}U_{2}\\ &\ldots\\ &\ldots\\ &\ldots\\ &=& U_{2}U_{1}^{m}U_{2}U_{1}^{m}U_{2}\\ &\subseteq& U_{2}\end{array}$$

Thus, U_2 is a $m\mathscr{B}$ of \mathbb{T} .

Theorem 3.13. Let U_1, U_2 and U_3 be the three TSS of \mathbb{T} and $Z = U_1U_2U_3$. Then Z is a $t\mathscr{B}$ if at least one of U_1, U_2, U_3 is l-RI or m-LATI or n-LI of \mathbb{T} .

Proof. Let
$$Z = U_1 U_2 U_3$$
. Suppose U_1 is a l -RI of \mathbb{T} . Now,

$$Z \mathbb{T}^t Z \mathbb{T}^t Z = (U_1 U_2 U_3) \mathbb{T}^t (U_1 U_2 U_3) \mathbb{T}^t (U_1 U_2 U_3)$$

$$\subseteq U_1 (\mathbb{T} \mathbb{T} \mathbb{T}^t) (\mathbb{T} \mathbb{T} \mathbb{T}) \mathbb{T}^t \mathbb{T} U_2 U_3$$

$$\subseteq U_1 (\mathbb{T}^{t+2} \mathbb{T}^3 \mathbb{T}^{t+1}) U_2 U_3$$

$$\subseteq U_1 U_2 U_3$$

$$\equiv Z.$$

Suppose that U_2 is a *l*-RI of \mathbb{T} . Now,

$$Z\mathbb{T}^{t}Z\mathbb{T}^{t}Z = (U_{1}U_{2}U_{3})\mathbb{T}^{t}(U_{1}U_{2}U_{3})\mathbb{T}^{t}(U_{1}U_{2}U_{3})$$

$$\subseteq U_{1}U_{2}(\mathbb{T}\mathbb{T}^{t}\mathbb{T})(\mathbb{T}\mathbb{T}\mathbb{T}^{t})\mathbb{T}\mathbb{T}U_{3}$$

$$\subseteq U_{1}(U_{2}\mathbb{T}^{t}\mathbb{T}^{t}\mathbb{T})U_{3}$$

$$\subseteq U_{1}(U_{2}\mathbb{T}^{t})U_{3}$$

$$\equiv Z.$$

Suppose that U_3 is a *l*-RI of \mathbb{T} . Now,

$$Z\mathbb{T}^{t}Z\mathbb{T}^{t}Z = (U_{1}U_{2}U_{3})\mathbb{T}^{t}(U_{1}U_{2}U_{3})\mathbb{T}^{t}(U_{1}U_{2}U_{3})$$

$$\subseteq (U_{1}U_{2}U_{3})(\mathbb{T}^{t}\mathbb{T}\mathbb{T})(\mathbb{T}\mathbb{T}^{t}\mathbb{T})\mathbb{T}\mathbb{T}$$

$$\subseteq (U_{1}U_{2}U_{3})(\mathbb{T}^{t}\mathbb{T}\mathbb{T}^{t})\mathbb{T}$$

$$\subseteq U_{1}U_{2}(U_{3}\mathbb{T}^{t})$$

$$\subseteq U_{1}U_{2}U_{3}$$

$$= Z.$$

Thus, Z is a $t\mathscr{B}$ of \mathbb{T} . Similar proofs for other cases.

Theorem 3.14. Let Z be a TSS of \mathbb{T} . If U_1 is a l-RI, U_2 is a m-LATI and U_3 is a n-LI of \mathbb{T} such that $U_1U_2U_3 \subseteq Z \subseteq U_1 \cap U_2 \cap U_3$, then Z is a mBof \mathbb{T} .

Proof. Suppose that U_1 is a *l*-RI, U_2 is a *m*-LATI and U_3 is a *n*-LI of \mathbb{T} such that $U_1U_2U_3 \subseteq Z \subseteq U_1 \cap U_2 \cap U_3$. Then $Z\mathbb{T}^m Z\mathbb{T}^m Z \subseteq (U_1 \cap U_2 \cap U_3)\mathbb{T}^m (U_1 \cap U_2 \cap U_3)$ $U_3)\mathbb{T}^m (U_1 \cap U_2 \cap U_3) \subseteq U_1(\mathbb{T}^m U_2\mathbb{T}^m) U_3 \subseteq U_1U_2U_3 \subseteq Z$. Thus, Z is a $m\mathscr{B}$ of \mathbb{T} .

4. VARIOUS *m*IDEAL GENERATORS

Theorem 4.1. Let \mathscr{B} be a nonempty subset of \mathbb{T} . Then the $m\mathscr{B}$ generated by \mathscr{B} is $\langle \mathscr{B} \rangle_m = \mathscr{B} \cup \sum_{finite} \mathscr{B}\mathbb{T}^m \mathscr{B}\mathbb{T}^m \mathscr{B}$.

Proof. We show that $\langle \mathscr{B} \rangle_m = \mathscr{B} \cup \sum_{finite} \mathscr{B}\mathbb{T}^m \mathscr{B}\mathbb{T}^m \mathscr{B}$ is the smallest $m\mathscr{B}$ of \mathbb{T} containing \mathscr{B} . Let $a, b, c \in \mathscr{B} >_m$. Then,

$$a = i_1 \text{ or } a = \sum_{finite}^{n} (s_j a_{j1} a_{j2} \dots a_{jm} t_j a_{j1} a_{j2} \dots a_{jn} r_j),$$

$$b = i_2 \text{ or } b = \sum_{finite}^{n} (s_j a_{j1} a_{j2} \dots a_{jm} t_j a_{j1} a_{j2} \dots a_{jn} r_j) \text{ and }$$

$$c = i_3 \text{ or } c = \sum_{finite}^{n} (s_j a_{j1} a_{j2} \dots a_{jm} t_j a_{j1} a_{j2} \dots a_{jn} r_j).$$

$$\begin{split} & finite \quad finite$$

Corollary 4.2. Let I_1 be a nonempty subset of \mathbb{T} . Then the m-LI generated by I_1 is $\langle I_1 \rangle_l = I_1 \cup \sum_{finite} \mathbb{T}^m I_1$.

Corollary 4.3. Let I_2 be a nonempty subset of \mathbb{T} . Then the m-RI generated by I_2 is $\langle I_2 \rangle_r = I_2 \cup \sum_{finite} I_2 \mathbb{T}^m$.

Corollary 4.4. Let I_3 be a nonempty subset of \mathbb{T} . Then the *m*-LATI generated by I_3 is $\langle I_3 \rangle_{lat} = I_3 \cup \sum_{finite} \mathbb{T}^m I_3 \mathbb{T}^m$.

5. ACKNOWLEDGEMENTS

The author is obliged the thankful to the reviewer for the numerous and significant suggestions that raised the consistency of the ideas presented in this paper.

REFERENCES

- K. Arulmozhi. New approach of various ideals in Ternary Semirings, Journal of Xidian University, 14(3) (2020), 22–29.
- [2] K. Arulmozhi. The algebraic theory of Semigroups and Semirings, LAP LAMBERT Academic Publishing, Mauritius, (2019), 1–102.
- [3] K. Arulmozhi. Some Fuzzy ideals of Algebraic Structures, LAP LAMBERT Academic Publishing, Mauritius, (2019), 1–88.
- [4] K. Arulmozhi and M. Palanikumar. New Ways to Q-Fuzzy ideals in Ordered Semigroups, Journal of Xidian University, 14(3) (2020), 36–48.
- [5] S. Kar. On quasi-ideals and bi- ideals in ternary semirings, Int. J. Math.Math.Sc., 18 (2005), 3015–3023.
- [6] S. Lajos, F. A. Szasz. On the bi-ideals in associative rings, Proc. Japan Acad., 49(6) (1970), 317–321.
- [7] D. H. Lehmer. A ternary analogue of abelian groups, American Journal of Mathematics, (1932), 329–338.
- [8] J. Los. On the extending of models I, Fundamenta Mathematicae, 42 (1955), 38-54.
- [9] Mohammad Munir and Anum Shafiq. A generalization of bi-ideals in semirings, Bulletin of the International Mathematical Virtual Institute, 8 (2018), 123–133.
- [10] M. Palanikumar, K. Arulmozhi. On Various ideals and its Applications of Bisemirings, Gedrag and Organisatie Review, 33(2) (2020), 522–533.
- [11] M. Palanikumar, K. Arulmozhi. On New Ways of various ideals in ternary semigroups, Matrix Science Mathematic, 4(1) (2020), 06–09.
- [12] M. Palanikumar, K. Arulmozhi. On New Approach of Various ideals in Ordered gamma semigroups, Gedrag and Organisatie Review, 33(2) (2020), 331–342.
- [13] M. Palanikumar, K. Arulmozhi. On Various Tri-ideals in ternary Semirings, Bulletin of the International Mathematical Virtual Institute, 11(1) (2021), 79–90.
- [14] M. Palanikumar, K. Arulmozhi. On Various Almost ideals of Semirings, Annals of Communications in Mathematics, 4(1) (2021), 17–25.
- [15] M.L. Santiago, S. Sri Bala. Ternary semigroups, Semigroup Forum, 81 (2010), 380–388.
- [16] F. M. Sioson. Ideal theory in ternary semigroups, Math. Japonica, 10 (1965), 63-84.

M. PALANIKUMAR

KINGS ENGINEERING COLLEGE, DEPARTMENT OF MATHEMATICS, CHENNAI, 602117, INDIA *E-mail address*: palanimaths86@gmail.com

K. Arulmozhi

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH, DEPARTMENT OF MATHEMATICS, CHENNAI, 600073, INDIA

E-mail address: arulmozhiems@gmail.com