

m-IDEALS AND ITS GENERATORS OF TERNARY SEMIGROUPS

M. PALANIKUMAR* AND K. ARULMOZHI

Abstract

The purpose of this paper is to introduce some new classes of m-bi ideals and m-quasi ideals in ternary semigroups and give some characterizations in terms of bi ideals and quasi ideals. Let U_{1} be the m-bi ideal of \mathbb{T} and U_{2} be the m-bi ideal of U_{1} such that $U_{2}^{3}=U_{2}$, shown that U_{2} is a m-bi ideal of \mathbb{T}. Let U_{1}, U_{2} and U_{3} be the three ternary subsemigroups of \mathbb{T}, it has been shown that $U_{1} U_{2} U_{3}$ is a t-bi ideal if at least one of U_{1}, U_{2}, U_{3} is l-RI or m-LATI or n-LI of \mathbb{T}. Also we discuss m-bi ideal generated by \mathscr{B} is $\left\langle\mathscr{B}>_{m}=\mathscr{B} \cup \sum_{\text {finite }} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B}\right.$. Examples are needed strengthen our results.

1. Introduction

The notion of ternary semigroup is a natural generalization of ternary group. The notion of ideal play very important role to study the algebraic structures. Lehmer initiated the concept of ternary algebraic systems called triplexes in 1932 [7]. A ternary semigroup is a nonempty set together with a ternary multiplication which is associative. The notion of ternary semigroups was known to banach who is credited with an example of a ternary semigroup which does not reduce to a semigroup. Ternary multiplication compatible with a vector space structure has been studied using both algebraic and functional analytical methods. In [8], Los studied some properties of ternary semigroup and proved that every ternary semigroup can be embedded in a semigroup. In [16], Sioson studied ideal theory in ternary semigroups. The notion of quasi-ideal in semigroup and in ring has been introduced by Steinfeld. In ternary semigroups, quasi-ideals are generalization of right ideals,lateral ideals and left ideals whereas bi-ideals are generalization of quasi-ideals. It is interesting to note that many of the results of semigroup theory can be obtained for ternary semigroups using various ideal concepts. If A, B and C are three subsets of ternary semgroups, $A B C=\left\{\sum_{\text {finite }} a_{i} b_{i} c_{i}: a_{i} \in A, b_{i} \in B, c_{i} \in C\right\}$. Our aim in this paper is threefold.
(1) To study the relationship between bi ideal and m-bi ideal.
(2) To study the relationship between m-quasi ideal and m-bi ideal.
(3) To characterize generators of bi ideal, left ideal and right ideal.

[^0]
2. Preliminaries

From now onward, unless stated otherwise, \mathbb{T} will denote a ternary semigroups.
Definition 2.1. [15] A ternary semigroup is a nonempty set \mathbb{T} together with a ternary operation $(a, b, c) \rightarrow[a b c]$ satisfying the associative law , $[[a b c] u v]=[a[b c u] v]=[a b[c u v]]$, $\forall a, b, c, u, v \in \mathbb{T}$.

Definition 2.2. [15] A non empty subset A of \mathbb{T} is said to be
(i) ternary subsemigroup (shortly TSS) if $A^{3}=A A A \subseteq A$.
(ii) left ideal (shortly LI) if $\mathbb{T} \mathbb{T} A \subseteq A$.
(iii) right ideal (shortly RI) if $A \mathbb{T} \mathbb{T} \subseteq A$.
(iv) lateral ideal (shortly LAT) if $\mathbb{T} A \mathbb{T} \subseteq A$.
(v) an ideal if it is a left, right and lateral ideal.

Definition 2.3. [15] For any non empty subset A of \mathbb{T}
(i) $A_{l}=A \cup \mathbb{T} \mathbb{T} A$ is the left ideal generated by A.
(ii) $A_{r}=A \cup A \mathbb{T} \mathbb{T}$ is the right ideal generated by A.
(iii) $A_{l a t}=A \cup \mathbb{T} A \mathbb{T} \cup \mathbb{T} A \mathbb{T} \mathbb{T}$ is the lateral ideal generated by A.
(iv) $(A)=A \cup \mathbb{T} \mathbb{T} A \cup A \mathbb{T} \cup \mathbb{T} A \mathbb{T} \cup \mathbb{T} \mathbb{T} A \mathbb{T} \mathbb{T}$ is the ideal generated by A.

Definition 2.4. (i) A $T S S B$ of \mathbb{T} is called a bi-ideal if $B \mathbb{T} B \mathbb{T} B \subseteq B$.
(ii) A $T S S Q$ of \mathbb{T} is called a quasi-ideal if $Q \mathbb{T} \mathbb{T} \cap(\mathbb{T} Q \mathbb{T} \cup \mathbb{T} Q \mathbb{T} \mathbb{T}) \cap \mathbb{T} Q \subseteq Q$.

Definition 2.5. (i) A subsemigroup L of semigroup S is called an l-left ideal if $S^{l} L \subseteq$ L.
(ii) A subsemigroup N of semigroup S is called an n-right ideal if $N S^{n} \subseteq N$, where l, n are positive integers.

Remark. For a semigroup S and l, m are positive integers, $S^{m}=S \cdot S \cdot S \cdot \ldots \cdot S(m-$ times). Now $S^{2}=S \cdot S \subseteq S$ and $S^{3}=S \cdot S \cdot S \subseteq S^{2} \subseteq S$. We conclude that $S^{l} \subseteq S^{m}$ such that $l \geq m$. Consequently $S^{m} \subseteq S$.

3. VARIOUS m-IDEALS

Here m-bi ideals (shortly $m \mathscr{B}$) and m-quasi ideals (shortly $m Q$) are introduced.
Definition 3.1. The $m \mathscr{B}$ of \mathbb{T} is a $T S S$ of \mathbb{T} such that $\mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \subseteq \mathscr{B}$, where $m \in \mathbb{Z}^{+}$.

Remark. If $m=1$, then 1 -bi ideal is simply bi ideal of \mathbb{T}.
Theorem 3.1. For $m \geq 1$, Every bi ideal is a $m \mathscr{B}$ of \mathbb{T}.
Proof. Let \mathscr{B} be the bi ideal of \mathbb{T}, then $\mathscr{B} \mathbb{T} \mathscr{B} \mathbb{T} \mathscr{B} \subseteq \mathscr{B}$. Now, $\mathscr{B} \mathbb{T}^{1} \mathscr{B} \mathbb{T}^{1} \mathscr{B}=$ $\mathscr{B} \mathbb{T} \mathscr{B} \mathbb{B} \subseteq \mathscr{B}$. Also, $\mathscr{B} \mathbb{T}^{2} \mathscr{B} \mathbb{T}^{2} \mathscr{B} \subseteq \mathscr{B} \mathbb{T}^{1} \mathscr{B} \mathbb{T}^{1} \mathscr{B} \subseteq \mathscr{B}$. Continuing like these, $\mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \subseteq \mathscr{B} \mathbb{T}^{m-1} \mathscr{B} \mathbb{T}^{m-1} \mathscr{B} \subseteq \mathscr{B}$. Therefore \mathscr{B} is a $m \mathscr{B}$ of \mathbb{T}.

Converse of the Theorem 3.1 is not true which can be illustrated as follows.
Example 3.2. Consider the ternary semigroups
$\mathbb{T}=\left\{\left.\left(\begin{array}{cccccc}0 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ 0 & 0 & x_{6} & x_{7} & x_{8} & x_{9} \\ 0 & 0 & 0 & x_{10} & x_{11} & x_{12} \\ 0 & 0 & 0 & 0 & x_{13} & x_{14} \\ 0 & 0 & 0 & 0 & 0 & x_{15} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, x_{i}^{\prime s} \in \mathbb{Z}_{0}^{-}, i=1,2, \ldots ., 15\right\}$.

Clearly $\mathscr{B}=\left\{\left.\left(\begin{array}{llllll}0 & x & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & y & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & z \\ 0 & 0 & 0 & 0 & z\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}_{0}^{-},\right\}$is a TSS.
Hence \mathscr{B} is a 2-bi ideal but not bi ideal of \mathbb{T}.
Theorem 3.2. The product of any three $m \mathscr{B}^{s}$ with identity element e is a $m \mathscr{B}^{s}$ of \mathbb{T}.
Proof. Let Z_{1}, Z_{2} and Z_{3} be the three $m \mathscr{B}^{s}$ of \mathbb{T} with bipotencies m_{1}, m_{2} and m_{3} respectively. Then $Z_{1} \mathbb{T}^{m_{1}} Z_{1} \mathbb{T}^{m_{1}} Z_{1} \subseteq Z_{1}, Z_{2} \mathbb{T}^{m_{2}} Z_{2} \mathbb{T}^{m_{2}} Z_{2} \subseteq Z_{2}$ and $Z_{3} \mathbb{T}^{m_{3}} Z_{3} \mathbb{T}^{m_{3}} Z_{3} \subseteq$ Z_{3}, where $m_{i} \in \mathbb{Z}^{+}$, for $i=1,2,3$. Put $t=\max m_{i}$ for $i=1,2,3$

$$
\begin{aligned}
\left(Z_{1} Z_{2} Z_{3}\right)^{3} & =\left(Z_{1} Z_{2} Z_{3}\right)\left(Z_{1} Z_{2} Z_{3}\right)\left(Z_{1} Z_{2} Z_{3}\right) \\
& \subseteq\left(Z_{1}\left(\mathbb{T} \mathbb{T} Z_{1}\right)\left(\mathbb{T} \mathbb{T} Z_{1}\right)\right) Z_{2} Z_{3} \\
& =\left(Z_{1}\left(\mathbb{T} \mathbb{T} e e e \ldots e Z_{1}\right)\left(\mathbb{T} \mathbb{T} e e e \ldots e Z_{1}\right)\right) Z_{2} Z_{3} \\
& \subseteq\left(Z_{1}\left(\mathbb{T} \mathbb{T} \ldots \mathbb{T} Z_{1}\right)\left(\mathbb{T} \mathbb{T} \ldots \mathbb{T} Z_{1}\right)\right) Z_{2} Z_{3} \\
& =\left(Z_{1} \mathbb{T}^{m} Z_{1} \mathbb{T}^{m} Z_{1}\right) Z_{2} Z_{3} \\
& \subseteq Z_{1} Z_{2} Z_{3} . \\
\left(Z_{1} Z_{2} Z_{3}\right) \mathbb{T}^{t}\left(Z_{1} Z_{2} Z_{3}\right) \mathbb{T}^{t}\left(Z_{1} Z_{2} Z_{3}\right) & =Z_{1}\left(Z_{2} Z_{3} \mathbb{T}^{t}\right) Z_{1}\left(Z_{2} Z_{3} \mathbb{T}^{t}\right)\left(Z_{1} Z_{2} Z_{3}\right) \\
& \subseteq Z_{1}\left(\mathbb{T}^{T} \mathbb{T}^{t}\right) Z_{1}\left(\mathbb{T} \mathbb{T}^{t}\right)\left(Z_{1} Z_{2} Z_{3}\right) \\
& =Z_{1} \mathbb{T}^{2+t} Z_{1} \mathbb{T}^{2+t}\left(Z_{1} Z_{2} Z_{3}\right) \\
& \subseteq\left(Z_{1} \mathbb{T}^{m} Z_{1} \mathbb{T}^{m_{1}}\right) Z_{1} Z_{2} Z_{3} \\
& =\left(Z_{1} \mathbb{T}^{m_{1}} Z_{1} \mathbb{T}^{m_{1}} Z_{1}\right) Z_{2} Z_{3} \\
& \subseteq Z_{1} Z_{2} Z_{3}
\end{aligned}
$$

Thus $Z_{1} Z_{2} Z_{3}$ is an m-bi ideal of \mathbb{T} with bipotency $\max m_{i}, i=1,2,3$.
Theorem 3.3. If Z is a $m \mathscr{B}$ of \mathbb{T} and T_{1}, T_{2} are two $T S S^{s}$ with e, then $Z T_{1} T_{2}, T_{1} Z T_{2}$ and $T_{1} T_{2} Z$ are $m \mathscr{B}^{s}$ of \mathbb{T}.

Proof. Let Z be $m \mathscr{B}$ of \mathbb{T} and T_{1}, T_{2} are two $T S S^{s}$ with e.

$$
\begin{aligned}
\left(Z T_{1} T_{2}\right)^{3} & =\left(Z T_{1} T_{2}\right)\left(Z T_{1} T_{2}\right)\left(Z T_{1} T_{2}\right) \\
\subseteq & (Z(\mathbb{T} \mathbb{T} Z)(\mathbb{T} \mathbb{T} Z)) T_{1} T_{2} \\
& =(Z(\mathbb{T} \mathbb{T} e e e \ldots e Z)(\mathbb{T} \mathbb{T} e e e \ldots e Z)) T_{1} T_{2} \\
& \subseteq(Z(\mathbb{T} \mathbb{T} \ldots \ldots \mathbb{T} Z)(\mathbb{T} \mathbb{T} \ldots \mathbb{T} Z)) T_{1} T_{2} \\
& =\left(Z \mathbb{T}^{m} Z \mathbb{T}^{m} Z\right) T_{1} T_{2} \\
\subseteq & \\
& \subseteq T_{1} T_{2} . \\
\left(Z T_{1} T_{2}\right) \mathbb{T}^{m}\left(Z T_{1} T_{2}\right) \mathbb{T}^{m}\left(Z T_{1} T_{2}\right) & =Z\left(T_{1} T_{2} \mathbb{T}^{m}\right) Z\left(T_{1} T_{2} \mathbb{T}^{m}\right)\left(Z T_{1} T_{2}\right) \\
& \subseteq Z\left(\mathbb{T}^{m} \mathbb{T}^{m}\right) Z\left(\mathbb{T}^{m} \mathbb{T}^{m}\right)\left(Z T_{1} T_{2}\right) \\
& =Z \mathbb{T}^{2+m} Z \mathbb{T}^{2+m}\left(Z T_{1} T_{2}\right) \\
& \subseteq\left(Z \mathbb{T}^{m} Z \mathbb{T}^{m}\right) Z T_{1} T_{2} \\
& =\left(Z \mathbb{T}^{m} Z \mathbb{T}^{m} Z\right) T_{1} T_{2} \\
& \subseteq Z T_{1} T_{2} .
\end{aligned}
$$

Thus, $Z T_{1} T_{2}$ is a $m \mathscr{B}$ of \mathbb{T}.
Similarly $T_{1} Z T_{2}$ and $T_{1} T_{2} Z$ are $m \mathscr{B}$ of \mathbb{T}.
Theorem 3.4. If Z is a $m \mathscr{B}$ and T_{1} is a $T S S$ of \mathbb{T}, then $Z \cap T_{1}$ is a $m \mathscr{B}$ of T_{1}.

Proof. Since $Z \cap T_{1} \subseteq Z$ and $Z \cap T_{1} \subseteq T_{1},\left(Z \cap T_{1}\right)\left(Z \cap T_{1}\right)\left(Z \cap T_{1}\right) \subseteq Z Z Z \subseteq Z$. $\left(Z \cap T_{1}\right) T_{1}^{m}\left(Z \cap T_{1}\right) T_{1}^{m}\left(Z \cap T_{1}\right) \subseteq\left(Z \cap T_{1}\right) \mathbb{T}^{m}\left(Z \cap T_{1}\right) \mathbb{T}^{m}\left(Z \cap T_{1}\right) \subseteq Z \mathbb{T}^{m} Z \mathbb{T}^{m} \subseteq Z$. Therefore $Z \cap T_{1}$ is a $m \mathscr{B}$ of T_{1}.

Theorem 3.5. The intersection of family of $m \mathscr{B}$ of \mathbb{T} is a $m \mathscr{B}$ with potencies m_{i} and potency $\max m_{i}$ for $i=1,2,3$.

Remark. Sum of two $m \mathscr{B}^{s}$ of \mathbb{T} is not a $m \mathscr{B}$ of \mathbb{T}.
Example 3.3. Consider the ternary semigroup $\mathbb{T}=\left\{\left.\left(\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right) \right\rvert\, a_{i} \in \mathbb{Z}_{0}^{-}\right\}$.
Let $X_{1}=\left\{\left.\left(\begin{array}{lll}p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, p \in \mathbb{Z}_{0}^{-}\right\}$and $X_{2}=\left\{\left.\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q\end{array}\right) \right\rvert\, q \in \mathbb{Z}_{0}^{-}\right\}$are $m \mathscr{B}$ of \mathbb{T} but $X_{1}+X_{2}$ is not a $m \mathscr{B}$ of \mathbb{T}.

Definition 3.4. A $T S S Q$ of \mathbb{T} is called a $m Q$ if $Q \mathbb{T}^{m} \cap \mathbb{T}^{m} Q \mathbb{T}^{m} \cap \mathbb{T}^{m} Q \subseteq Q$.
Remark. If $m=1$, then 1 -quasi ideal is simply quasi ideal of \mathbb{T}.
Theorem 3.6. Every $m Q$ is a $m \mathscr{B}$ of \mathbb{T}.
Proof. Let N be $m Q$ of \mathbb{T}. Now,

$$
\begin{aligned}
N \mathbb{T}^{m} N \mathbb{T}^{m} N & \subseteq N \mathbb{T}^{m} \mathbb{T}^{m} \mathbb{T} \\
& =N \mathbb{T}^{m+1} \mathbb{T}^{m+1} \\
& \subseteq N \mathbb{T}^{m}
\end{aligned}
$$

Similarly, $N \mathbb{T}^{m} N \mathbb{T}^{m} N \subseteq \mathbb{T}^{m} N \mathbb{T}^{m}$ and $N \mathbb{T}^{m} N \mathbb{T}^{m} N \subseteq \mathbb{T}^{m} N$.
Thus, $N \mathbb{T}^{m} N \mathbb{T}^{m} N \subseteq\left(N \mathbb{T}^{m}\right) \cap\left(\mathbb{T}^{m} N \mathbb{T}^{m}\right) \cap\left(\mathbb{T}^{m} N\right) \subseteq N$.
Converse of the above Theorem is not true by the following Example.
Example 3.5. Consider the ternary semigroup
$\mathbb{T}=\left\{\left.\left(\begin{array}{cccccc}0 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ 0 & 0 & x_{6} & x_{7} & x_{8} & x_{9} \\ 0 & 0 & 0 & x_{10} & x_{11} & x_{12} \\ 0 & 0 & 0 & 0 & x_{13} & x_{14} \\ 0 & 0 & 0 & 0 & 0 & x_{15} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, x_{i} \in \mathbb{Z}_{0}^{-}, i=1,2, \ldots, 15\right\}$.
Clearly $Q=\left\{\left.\left(\begin{array}{llllll}0 & x & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & y & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & z \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}_{0}^{-}\right\}$is a TSS.
Hence Q is a 2-bi ideal but not 2-quasi ideal of \mathbb{T}.
Theorem 3.7. Product of three $(l, m, n) Q^{s} N_{1}, N_{2}$ and N_{3} of \mathbb{T} is an $t \mathscr{B}$ of \mathbb{T}, where $t \in \mathbb{Z}^{+}$.

Proof. Put $Z=N_{1} N_{2} N_{3}=\left\{\sum_{\text {finite }} l_{i} m_{i} n_{i} \mid l_{i} \in N_{1}, m_{i} \in N_{2}, n_{i} \in N_{3}, i=\right.$ $1,2, \ldots\}$. Now,

$$
\begin{aligned}
Z^{3} & =\left(N_{1} N_{2} N_{3}\right)^{3} \\
& =\left(N_{1} N_{2} N_{3}\right)\left(N_{1} N_{2} N_{3}\right)\left(N_{1} N_{2} N_{3}\right) \\
& \subseteq N_{1}\left(N_{2} \mathbb{T} N_{2} \mathbb{T} N_{2}\right) N_{3} \\
& \subseteq N_{1} N_{2} N_{3} \\
& =Z .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Put } t=\max \left\{l_{1}, l_{2}, 1_{3}, m_{1}, m_{2}, m_{3}, n_{1}, n_{2}, n_{3}\right\} \text {. Now, } \\
& Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z=\left(N_{1} N_{2} N_{3}\right) \mathbb{T}^{t}\left(N_{1} N_{2} N_{3}\right) \mathbb{T}^{t}\left(N_{1} N_{2} N_{3}\right) \\
& \subseteq \quad N_{1}\left(N_{2} \mathbb{T} \mathbb{T}^{t} \mathbb{T} N_{2} \mathbb{T} \mathbb{T}^{t} \mathbb{T} N_{2}\right) N_{3} \\
& \subseteq \quad N_{1}\left(N_{2} \mathbb{T}^{t+2} N_{2} \mathbb{T}^{t+2} N_{2}\right) N_{3} \\
& \subseteq \quad N_{1}\left(N_{2} \mathbb{T}^{t} N_{2} \mathbb{T}^{t} N_{2}\right) N_{3} \\
& \subseteq \quad N_{1} N_{2} N_{3} \\
& =Z \text {. }
\end{aligned}
$$

Therefore Z is a $t \mathscr{B}$ of \mathbb{T}.

Definition 3.6. (i) A $T S S L$ of \mathbb{T} is called an l-LI if $\mathbb{T}^{l} L \subseteq L$.
(ii) A $T S S M$ of \mathbb{T} is called an m-LATI if $\mathbb{T}^{m} M \mathbb{T}^{m} \subseteq M$.
(iii) A $T S S N$ of \mathbb{T} is called an n - RI if $N \mathbb{T}^{n} \subseteq N$, where l, m, n are positive integers.

Theorem 3.8. Every l-LI ,m-LATI and $n-R I$ of \mathbb{T} is an $l \mathscr{B}, m \mathscr{B}, n \mathscr{B}$ of \mathbb{T} respectively.

Proof. Let L be the m-LATI of \mathbb{T}, then $\mathbb{T}^{m} L \mathbb{T}^{m} \subseteq L$.Now, $L \mathbb{T}^{m} L \mathbb{T}^{m} L \subseteq L\left(\mathbb{T}^{m} L \mathbb{T}^{m}\right)$ $L \subseteq L L L \subseteq L$. Therefore L is a $m \mathscr{B}$ of \mathbb{T}. Similarly other cases.

Theorem 3.9. The intersection of l-LI, m-LATI and n-RI is an l-LI, m-LATI and n-RI of \mathbb{T} respectively.

Theorem 3.10. Let U_{1}, U_{2}, U_{3} be an l-LI, m-LATI and $n-R I$ of \mathbb{T} respectively. Then $U_{1} \cap$ $U_{2} \cap U_{3}$ is an $t \mathscr{B}$, where $t=\max (l, m, n)$.

Proof. Clearly, $Z=U_{1} \cap U_{2} \cap U_{3}$ is a $T S S$ of \mathbb{T}. By Theorem 3.8, U_{1}, U_{2} and U_{3} are $l \mathscr{B}, m \mathscr{B}$ and $n \mathscr{B}$ respectively. The intersection of U_{1}, U_{2} and U_{3} becomes max (l, m, n) bi ideals by Theorem 3.5 .

$$
\begin{aligned}
Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z & \subseteq U_{1} \mathbb{T}^{t} U_{1} \mathbb{T}^{t} U_{1} \\
& \subseteq \mathbb{T}^{t} \mathbb{T}^{t} U_{1} \\
& =\mathbb{T}^{t+1} \mathbb{T}^{t+1} U_{1} \\
& \subseteq \mathbb{T}^{t} U_{1} \\
& \subseteq U_{1}
\end{aligned}
$$

Therefore $Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z \subseteq U_{1}$.
Similarly, $Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z \subseteq U_{2}$ and $Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z \subseteq U_{3}$.
Hence $Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z \subseteq Z$.

Theorem 3.11. The product of any three $t Q^{s}$ with e is a $t Q^{s}$ of \mathbb{T}, where $t \in \mathbb{Z}^{+}$.

Theorem 3.12. Let U_{1} be an $m \mathscr{B}$ of \mathbb{T} and U_{2} be an $m \mathscr{B}$ of U_{1} such that $U_{2}^{3}=U_{2}$. Then U_{2} is a $m \mathscr{B}$ of \mathbb{T}.

Proof. Since U_{1} is a $m \mathscr{B}$ of $\mathbb{T}, U_{1} \mathbb{T}^{m} U_{1} \mathbb{T}^{m} U_{1} \subseteq U_{1}$ and U_{2} is a $m \mathscr{B}$ of U_{1}, $U_{2} U_{1}^{m} U_{2} U_{1}^{m} U_{2} \subseteq U_{2}$. Now,

$$
\begin{aligned}
U_{2} \mathbb{T}^{m} U_{2} \mathbb{T}^{m} U_{2} & =\left(U_{2} U_{2} U_{2}\right) \mathbb{T}^{m} U_{2} \mathbb{T}^{m}\left(U_{2} U_{2} U_{2}\right) \\
& =U_{2} U_{2}\left(U_{2} \mathbb{T}^{m} U_{2} \mathbb{T}^{m} U_{2}\right) U_{2} U_{2} \\
& \subseteq U_{2} U_{2}\left(U_{1} \mathbb{T}^{m} U_{1} \mathbb{T}^{m} U_{1}\right) U_{2} U_{2} \\
& \subseteq U_{2} U_{2} U_{1} U_{2} U_{2} \\
& =U_{2} U_{2} U_{1} U_{2}\left(U_{2} U_{2} U_{2}\right) \\
& \subseteq U_{2}\left(U_{2} U_{1} U_{2} U_{1} U_{2}\right) U_{2} \\
& =U_{2} U_{2} U_{1} U_{2} U_{2} U_{2} U_{1} U_{2} U_{2} \\
& =U_{2} U_{1}^{3} U_{2} U_{1}^{3} U_{2} \\
& \cdots \\
& \cdots \\
& =U_{2} U_{1}^{m} U_{2} U_{1}^{m} U_{2} \\
& \subseteq U_{2}
\end{aligned}
$$

Thus, U_{2} is a $m \mathscr{B}$ of \mathbb{T}.
Theorem 3.13. Let U_{1}, U_{2} and U_{3} be the three $T S S$ of \mathbb{T} and $Z=U_{1} U_{2} U_{3}$. Then Z is a $t \mathscr{B}$ if at least one of U_{1}, U_{2}, U_{3} is l-RI or m-LATI or $n-L I$ of \mathbb{T}.

Proof. Let $Z=U_{1} U_{2} U_{3}$. Suppose U_{1} is a l-RI of \mathbb{T}. Now,

$$
\begin{aligned}
Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z & =\left(U_{1} U_{2} U_{3}\right) \mathbb{T}^{t}\left(U_{1} U_{2} U_{3}\right) \mathbb{T}^{t}\left(U_{1} U_{2} U_{3}\right) \\
& \subseteq U_{1}\left(\mathbb{T}^{T} \mathbb{T}^{t}\right)(\mathbb{T} \mathbb{T}) \mathbb{T}^{t} \mathbb{T} U_{2} U_{3} \\
& \subseteq U_{1}\left(\mathbb{T}^{t+2} \mathbb{T}^{3} \mathbb{T}^{t+1}\right) U_{2} U_{3} \\
& \subseteq\left(U_{1} \mathbb{T}^{t}\right) U_{2} U_{3} \\
& \subseteq U_{1} U_{2} U_{3} \\
& =Z
\end{aligned}
$$

Suppose that U_{2} is a l-RI of \mathbb{T}. Now,

$$
\begin{aligned}
Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z & =\left(U_{1} U_{2} U_{3}\right) \mathbb{T}^{t}\left(U_{1} U_{2} U_{3}\right) \mathbb{T}^{t}\left(U_{1} U_{2} U_{3}\right) \\
& \subseteq U_{1} U_{2}\left(\mathbb{T}^{t} \mathbb{T}\right)\left(\mathbb{T} \mathbb{T}^{t}\right) \mathbb{T} \mathbb{T} U_{3} \\
& \subseteq U_{1} U_{2}\left(\mathbb{T}^{t} \mathbb{T}^{t} \mathbb{T}\right) \mathbb{T} U_{3} \\
& \subseteq U_{1}\left(U_{2} \mathbb{T}^{t}\right) U_{3} \\
& \subseteq U_{1} U_{2} U_{3} \\
& =Z
\end{aligned}
$$

Suppose that U_{3} is a l-RI of \mathbb{T}. Now,

$$
\begin{aligned}
Z \mathbb{T}^{t} Z \mathbb{T}^{t} Z & =\left(U_{1} U_{2} U_{3}\right) \mathbb{T}^{t}\left(U_{1} U_{2} U_{3}\right) \mathbb{T}^{t}\left(U_{1} U_{2} U_{3}\right) \\
& \subseteq\left(U_{1} U_{2} U_{3}\right)\left(\mathbb{T}^{t} \mathbb{T} \mathbb{T}\right)\left(\mathbb{T} \mathbb{T}^{t} \mathbb{T}\right) \mathbb{T} \mathbb{T} \\
& \subseteq\left(U_{1} U_{2} U_{3}\right)\left(\mathbb{T}^{t} \mathbb{T}^{t}\right) \mathbb{T} \\
& \subseteq U_{1} U_{2}\left(U_{3} \mathbb{T}^{t}\right) \\
& \subseteq U_{1} U_{2} U_{3} \\
& =Z
\end{aligned}
$$

Thus, Z is a $t \mathscr{B}$ of \mathbb{T}. Similar proofs for other cases.
Theorem 3.14. Let Z be a TSS of \mathbb{T}. If U_{1} is a l-RI, U_{2} is a m-LATI and U_{3} is a n-LI of \mathbb{T} such that $U_{1} U_{2} U_{3} \subseteq Z \subseteq U_{1} \cap U_{2} \cap U_{3}$, then Z is a $m \mathscr{B}$ of \mathbb{T}.

Proof. Suppose that U_{1} is a l-RI, U_{2} is a m-LATI and U_{3} is a n-LI of \mathbb{T} such that $U_{1} U_{2} U_{3} \subseteq Z \subseteq U_{1} \cap U_{2} \cap U_{3}$. Then $Z \mathbb{T}^{m} Z \mathbb{T}^{m} Z \subseteq\left(U_{1} \cap U_{2} \cap U_{3}\right) \mathbb{T}^{m}\left(U_{1} \cap U_{2} \cap\right.$ $\left.U_{3}\right) \mathbb{T}^{m}\left(U_{1} \cap U_{2} \cap U_{3}\right) \subseteq U_{1}\left(\mathbb{T}^{m} U_{2} \mathbb{T}^{m}\right) U_{3} \subseteq U_{1} U_{2} U_{3} \subseteq Z$. Thus, Z is a $m \mathscr{B}$ of \mathbb{T}.

4. VARIOUS mideal generators

Theorem 4.1. Let \mathscr{B} be a nonempty subset of \mathbb{T}. Then the $m \mathscr{B}$ generated by \mathscr{B} is $<$ $\mathscr{B}>_{m}=\mathscr{B} \cup \sum_{\text {finite }} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B}$.

Proof. We show that $<\mathscr{B}>_{m}=\mathscr{B} \cup \sum_{\text {finite }} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B}$ is the smallest $m \mathscr{B}$ of \mathbb{T} containing \mathscr{B}. Let $a, b, c \in<\mathscr{B}>_{m}$. Then,
$a=i_{1}$ or $a=\sum_{\text {finite }}\left(s_{j} a_{j 1} a_{j 2} \ldots a_{j m} t_{j} a_{j 1} a_{j 2} \ldots a_{j n} r_{j}\right)$,
$b=i_{2}$ or $b=\sum_{\text {finite }}\left(s_{j}^{\prime} a_{j 1}^{\prime} a_{j 2}^{\prime} \ldots a_{j m}^{\prime} t_{j}^{\prime} a_{j 1}^{\prime} a_{j 2}^{\prime} \ldots a_{j n}^{\prime} r_{j}^{\prime}\right)$ and
$c=i_{3}$ or $c=\sum_{\text {finite }}\left(s_{j}^{\prime \prime} a_{j 1}^{\prime \prime} a_{j 2}^{\prime \prime} \ldots a_{j m}^{\prime \prime} t_{j}^{\prime \prime} a_{j 1}^{\prime \prime} a_{j 2}^{\prime \prime} \ldots a_{j n}^{\prime \prime} r_{j}^{\prime \prime}\right)$.
Where $a_{j 1} a_{j 2} \ldots a_{j n}, a_{j 1}^{\prime} a_{j 2}^{\prime} \ldots a_{j n}^{\prime}, a_{j 1}^{\prime \prime} a_{j 2}^{\prime \prime} \ldots a_{j n}^{\prime \prime}, a_{j 1} a_{j 2} \ldots a_{j m}, a_{j 1}^{\prime} a_{j 2}^{\prime} \ldots a_{j m}^{\prime}$,
$a_{j 1}^{\prime \prime} a_{j 2}^{\prime \prime} \ldots a_{j m}^{\prime \prime} \in \mathbb{T}$ and $s_{j}, t_{j}, r_{j}, s_{j}^{\prime}, t_{j}^{\prime}, r_{j}^{\prime}, s_{j}^{\prime \prime}, t_{j}^{\prime \prime}, r_{j}^{\prime \prime}, i_{1}, i_{2}, i_{3} \in \mathscr{B}$.
Put $y=s_{j} a_{j 1} a_{j 2} \ldots a_{j m} t_{j} a_{j 1} a_{j 2} \ldots a_{j n} r_{j}, \quad y^{\prime}=s_{j}^{\prime} a_{j 1}^{\prime} a_{j 2}^{\prime} \ldots a_{j m}^{\prime} t_{j}^{\prime} a_{j 1}^{\prime} a_{j 2}^{\prime} \ldots a_{j n}^{\prime} r_{j}^{\prime}$,
$y^{\prime \prime}=s_{j}^{\prime \prime} a_{j 1}^{\prime \prime} a_{j 2}^{\prime \prime} \ldots a_{j m}^{\prime \prime} t_{j}^{\prime \prime} a_{j 1}^{\prime \prime} a_{j 2}^{\prime \prime} \ldots a_{j n}^{\prime \prime} r_{j}^{\prime \prime}$.
Now, $a \cdot b \cdot c=i_{1} \cdot i_{2} \cdot i_{3} \in \mathscr{B} \subseteq<\mathscr{B}>_{m}$ and $a \cdot b \cdot c=\sum_{\text {finite }} y \cdot \sum_{\text {finite }} y^{\prime} \cdot \sum_{\text {finite }} y^{\prime \prime}=\sum_{\text {finite }} y$. $y^{\prime} \cdot y^{\prime \prime} \subseteq \sum_{\text {finite }} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \subseteq<\mathscr{B}>_{m}$. Routine calculation remaining cases, $<\mathscr{B}>_{m}$ is a $T S S$ of \mathbb{T}. Put $Q=\mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B}$. Now, $<\mathscr{B}>_{m} \mathbb{T}^{m}<\mathscr{B}>_{m} \mathbb{T}^{m}<\mathscr{B}>_{m}=$ $\left[\mathscr{B} \cup \sum_{\text {finite }} Q\right] \mathbb{T}^{m}\left[\mathscr{B} \cup \sum_{\text {finite }} Q\right] \mathbb{T}^{m}\left[\mathscr{B} \cup \sum_{\text {finite }} Q\right] \subseteq \mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B}$. Thus, $<\mathscr{B}>_{m}$ $\mathbb{T}^{m}<\mathscr{B}>_{m} \mathbb{T}^{m}<\mathscr{B}>_{m} \subseteq<\mathscr{B}>_{m}$. Hence $<\mathscr{B}>_{m}$ is an m-bi ideal containing \mathscr{B}. Let Y be any other $m \mathscr{B}$ of \mathbb{T} containing \mathscr{B}. Then $\mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \subseteq Y \mathbb{T}^{m} Y \mathbb{T}^{m} Y \subseteq Y$. Therefore $<\mathscr{B}>_{m}=\mathscr{B} \cup \sum_{\text {finite }} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \mathbb{T}^{m} \mathscr{B} \subseteq Y$. Hence, $\left\langle\mathscr{B}>_{m}\right.$ is the smallest $m \mathscr{B}$ of \mathbb{T} containing \mathscr{B}.
Corollary 4.2. Let I_{1} be a nonempty subset of \mathbb{T}. Then the $m-L I$ generated by I_{1} is $<I_{1}>_{l}=I_{1} \cup \sum_{\text {finite }} \mathbb{T}^{m} I_{1}$.
Corollary 4.3. Let I_{2} be a nonempty subset of \mathbb{T}. Then the m-RI generated by I_{2} is $<I_{2}>_{r}=I_{2} \cup \sum_{\text {finite }} I_{2} \mathbb{T}^{m}$.
Corollary 4.4. Let I_{3} be a nonempty subset of \mathbb{T}. Then the m-LATI generated by I_{3} is $<I_{3}>_{\text {lat }}=I_{3} \cup \sum_{\text {finite }} \mathbb{T}^{m} I_{3} \mathbb{T}^{m}$.

5. AcKNOWLEDGEMENTS

The author is obliged the thankful to the reviewer for the numerous and significant suggestions that raised the consistency of the ideas presented in this paper.

REFERENCES

[1] K. Arulmozhi. New approach of various ideals in Ternary Semirings, Journal of Xidian University, 14(3) (2020), 22-29.
[2] K. Arulmozhi. The algebraic theory of Semigroups and Semirings, LAP LAMBERT Academic Publishing, Mauritius, (2019), 1-102.
[3] K. Arulmozhi. Some Fuzzy ideals of Algebraic Structures, LAP LAMBERT Academic Publishing, Mauritius, (2019), 1-88.
[4] K. Arulmozhi and M. Palanikumar. New Ways to Q-Fuzzy ideals in Ordered Semigroups, Journal of Xidian University, 14(3) (2020), 36-48.
[5] S. Kar. On quasi-ideals and bi- ideals in ternary semirings, Int. J. Math.Math.Sc., 18 (2005), 3015-3023.
[6] S. Lajos, F. A. Szasz. On the bi-ideals in associative rings, Proc. Japan Acad., 49(6) (1970), 317-321.
[7] D. H. Lehmer. A ternary analogue of abelian groups, American Journal of Mathematics, (1932), 329-338.
[8] J. Los. On the extending of models I, Fundamenta Mathematicae, 42 (1955), 38-54.
[9] Mohammad Munir and Anum Shafiq. A generalization of bi-ideals in semirings, Bulletin of the International Mathematical Virtual Institute, 8 (2018), 123-133.
[10] M. Palanikumar, K. Arulmozhi. On Various ideals and its Applications of Bisemirings, Gedrag and Organisatie Review, 33(2) (2020), 522-533.
[11] M. Palanikumar, K. Arulmozhi. On New Ways of various ideals in ternary semigroups, Matrix Science Mathematic, 4(1) (2020), 06-09.
[12] M. Palanikumar, K. Arulmozhi. On New Approach of Various ideals in Ordered gamma semigroups, Gedrag and Organisatie Review, 33(2) (2020), 331-342.
[13] M. Palanikumar, K. Arulmozhi. On Various Tri-ideals in ternary Semirings, Bulletin of the International Mathematical Virtual Institute, 11(1) (2021), 79-90.
[14] M. Palanikumar, K. Arulmozhi. On Various Almost ideals of Semirings, Annals of Communications in Mathematics, 4(1) (2021), 17-25.
[15] M.L. Santiago, S. Sri Bala. Ternary semigroups, Semigroup Forum, 81 (2010), 380-388.
[16] F. M. Sioson. Ideal theory in ternary semigroups, Math. Japonica, 10 (1965), 63-84.
M. PALANIKUMAR

Kings Engineering College, Department of Mathematics, Chennai, 602117, India
E-mail address: palanimaths86@gmail.com
K. Arulmozhi

Bharath Institute of Higher Education and Research, Department of Mathematics, ChenNAI, 600073, INDIA

E-mail address: arulmozhiems@gmail.com

[^0]: 2010 Mathematics Subject Classification. 20M12, 20N10.
 Key words and phrases. m-ideals; m-bi ideals and m-quasi ideals.
 Received: April 30, 2021. Accepted: July 30, 2021. Published: September 30, 2021.
 *Corresponding author.

