COMMON FIXED POINT RESULT FOR GENERALIZED $\alpha_{*}-\psi$-CONTRACTION FOR C-CLASS FUNCTIONS IN b-METRIC SPACES

TAIEB HAMAIZIA* AND SAID BELOUL

Abstract

In this paper, we prove common fixed point theorems for $\alpha_{*}-\psi$-contraction in b-metric spaces, which generalizes the result of S. Aleksic et al [Remarks on common fixed point results for generalized $\alpha_{*}-\psi$-contraction multivalued mappings in b-metric spaces ,Adv. Fixed Point Theory, 9 (2019), No. 1, 1-16] using the concept of C class function in b-in metric spaces. An example is given to support our results.

1. Introduction

The Banach contraction principle [9] is the simplest and one of the important results in fixed point theory, that is, every contractive mapping T from a complete metric space (X, d) into itself has a unique fixed point z of the mapping $T(T z=z)$. Sufficient number of authors extended and generalize the concept of a metric space as b-metric spaces, fuzzy metric spaces, Menger metric spaces, quasi metric spaces...

Metric type spaces (or b-metric spaces) is one of the important generalization of metric spaces. This concept was introduced by Bakhtin 1989 [8] and Czerwik 1993 [11].

On the other hand, Nadler [22] introduced the notion of a multi-valued contractive mapping in a complete metric space and also proved Banach's fixed point theorem for a multivalued mapping in a complete metric space. Moreover many authors proved some fixed point theorems for single-valued and multi-valued mappings in b-metric spaces, we refer the reader to ([1], [3], [6], [7], [10], [12], [13], [14], [15], [16], [17], [19], [20], [21], [23]).

Motivated by the results and notions mentioned above. In this paper, we present new type contractions involving C-class functions and establish several common fixed point theorems for this class of mappings defined on b-metric spaces.Our main result is essentially inspired by S. Aleksic et al [2].

2. Preliminaries

We appeal the following notions and preliminaries.

[^0]Definition 2.1. Let X be a (nonempty) set and $s>1$ be a given real number. A function $d: X \times X \rightarrow[0,1)$ is a b-metric on X if for all $x, y, z \in X$, the following conditions hold:
(b1) $d(x, y)=0$ if and only if $x=y$,
(b2) $d(x, y)=d(y, x)$,
(b3) $d(x, z) \leq s[d(x, y)+d(y, z)]$.
A triplet (X, d, s) is called a b-metric space.
Also, every metric space is a b-metric space but the converse is not necessarily true.
Lemma 2.1. Let (X, d) be a b-metric space. The following properties are satisfied.

1) $D(x, B) \leq d(x, b)$ for all $x \in X, b \in B$ and $B \in C B(X)$.
2) $D(x, B) \leq H(A, B)$ for all $x \in X$ and $A, B \in C B(X)$.
3) $D(x, A) \leq s(d(x, y)+D(y, B))$ for all $x, y \in X$ and $A, B \in C B(X)$.

Let (X, d) be a metric space and $\alpha: X \times X \rightarrow[0,+\infty)$ be a given mapping. A mapping $T: X \rightarrow C L(X)$ is an
(1) α_{*}-admissible, if $\alpha(x, y) \geq 1$ implies $\alpha_{*}(T x, T y) \geq 1$, where $\alpha_{*}(T x, T y)=\inf \{\alpha(a, b): a \in T x, b \in T y\}$;
(2) α-admissible, if for each $x \in X$ and $y \in T x$ with $\alpha(x, y) \geq 1$, we have $\alpha(y, z) \geq 1$ for all $z \in T y$.

Definition 2.2. [4] Let $S, T: X \rightarrow C B(X)$ be two multi-valued mappings and α : $X \times X \rightarrow[0, \infty)$ a function.

The pair (S, T) is said to be triangular α_{*}-admissible if the following conditions hold:

1) (S, T) is α_{*}-admissible, that is, $\alpha(x, y) \geq 1$ implies that $\alpha_{*}(S x, T y) \geq 1$ and $\alpha_{*}(T x, S y) \geq 1$; where $\alpha_{*}(A, B)=\inf \{a(x, y) / x \in A, y \in B\}$,
2) $\alpha(x, u) \geq 1$ and $\alpha(u, y) \geq 1$ imply $\alpha(x, y) \geq 1$:

Definition 2.3. [4] Let $S, T: X \rightarrow C B(X)$ be two multi-valued mappings and $\alpha: X \times X \rightarrow[0, \infty)$ a function. The pair (S, T) is said to be α_{*}-orbital admissible if the conditions $\alpha_{*}(x, S x) \geq 1$ and $\alpha_{*}(x, T x) \geq 1$ imply $\alpha_{*}\left(S x, T^{2} x\right) \geq 1$ and $\alpha_{*}\left(T x, S^{2} x\right) \geq 1$.
Definition 2.4. [4] Let $S, T: X \rightarrow C B(X)$ be two multi-valued mappings and $\alpha: X \times X \rightarrow[0, \infty)$ a function. The pair (S, T) is said to be triangular α_{*} orbital admissible if the following conditions are satisfied :

1) (S, T) is α_{*}-orbital admissible,
2) $\alpha(x, y) \geq 1, \alpha_{*}(y, S y) \geq 1$ and $\alpha_{*}(y, T y) \geq 1$ implies that $\alpha_{*}(x, S y) \geq 1$ and $\alpha_{*}(x, T y) \geq 1$

Lemma 2.2. [22] If $A, B \in C B(X)$ and $k>1$, then for each $a \in A$, there exists $b \in B$ such that $d(a, b) \leq k H(A, B)$.
A. H. Ansari [5] introduced the concept of a C-class functions which covers a large class of contractive conditions

Definition 2.5. [5] A continuous function $F:[0, \infty)^{2} \rightarrow \mathbb{R}$ is called C-class function if for any $s, t \in[0, \infty)^{2}$; the following conditions hold
$c 1 F(s, t) \leq s ;$
$c 2 F(s, t)=s$ implies that either $s=0$ or $t=0$.
An extra condition on F that $F(0,0)=0$ could be imposed in some cases if required. The letter C will denote the class of all C - functions.

Example 2.6. The following examples shows that the class C is nonempty:

1. $F(s, t)=s-t$.
2. $F(s, t)=m s$, for some $m \in(0,1)$.
3. $F(s, t)=\frac{s}{(1+t)^{r}}$, for some $r \in(0,1)$.
4. $F(s, t)=\frac{\log \left(t+a^{s}\right)}{(1+t)}$, for some $a>1$.

Let u denote the class of the functions $\varphi:[0, \infty) \rightarrow[0, \infty)$ which satisfy the following conditions:
a) φ is continuous ;
b) $\varphi(t)>0, t>0$ and $\varphi(0) \geq 0$.

In 1984, Khan et al. [18] introduced altering distance function as follows:
Definition 2.7. [18] A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:
i) ψ is non-decreasing and continuous,
ii) $\psi(t)=0$ if and only if $t=0$.

Let us suppose that Ψ denote the class of the altering distance functions.
Definition 2.8. A tripled (ψ, φ, F) where $\psi \in \Psi ; \varphi \in \Phi_{u}$ and $F \in C$ is said to be a monotone if for any $x, y \in[0, \infty)$;

$$
x \leq y \Rightarrow F(\psi(x), \varphi(x)) \leq F(\psi(y), \varphi(y))
$$

Example 2.9. Let $F(s, t)=s-t, \varphi(x)=\sqrt{x}$

$$
\psi(x)=\left\{\begin{array}{c}
\sqrt{x} \quad \text { if } \quad 0 \leq x \leq 1 \\
x^{2} \quad \text { if } \quad x>1
\end{array}\right.
$$

then (ψ, φ, F) is monotone.
Example 2.10. Let $F(s, t)=s-t, \varphi(x)=x^{2}$

$$
\psi(x)=\left\{\begin{array}{c}
\sqrt{x} \quad \text { if } \quad 0 \leq x \leq 1 \\
x^{2} \quad \text { if } \quad x>1
\end{array}\right.
$$

then (ψ, φ, F) is monotone.
Example 2.11. Let $F(s, t)=\frac{s}{1+t}, \varphi(x)=\sqrt[3]{x}$

$$
\psi(x)=\left\{\begin{array}{c}
\sqrt[3]{x} \quad \text { if } \quad 0 \leq x \leq 1 \\
x^{3} \quad \text { if } \quad x>1
\end{array}\right.
$$

then (ψ, φ, F) is monotone.
Example 2.12. Let $F(s, t)=\log \left(\frac{t+e^{s}}{1+t}\right), \varphi(x)=e^{x}$ and $\psi(x)=x$ then (ψ, φ, F) is monotone.
Example 2.13. Let $F(s, t)=s-t, \varphi(x)=x^{3}$

$$
\psi(x)=\left\{\begin{array}{c}
\sqrt[3]{x} \quad \text { if } \quad 0 \leq x \leq 1 \\
x^{3} \quad \text { if } \quad x>1
\end{array}\right.
$$

then (ψ, φ, F) is monotone.

3. Main Results

Firstly, in this section we assume ψ is altering distance function, φ is ultra altering distance function and F is a C-class function.

Theorem 3.1. Let $(X, d, s>1)$ be a b-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ a function and $\varepsilon>1$. Let $S, T: X \rightarrow C B(X)$ be two multi-valued mappings such that for $x, y \in X$; with $\alpha(x, y) \geq 1$;
the pair (S, T) satisfies the inequality

$$
\begin{equation*}
\psi\left(s^{\varepsilon} \cdot H(S x, T y)\right) \leq F(\psi(M(x, y)), \varphi(M(x, y))) \tag{3.1}
\end{equation*}
$$

where

$$
M(x, y)=\max \left\{d(x, y), D(x, S x), D(y, T y), \frac{D(x, T y)+D(y, S x)}{2 s}\right\}
$$

Suppose that the following conditions are satisfied.
(i) (X, d) is an a-complete b-metric space.
(ii) (S, T) is triangular α_{*}-orbital admissible.
(iii) There exists $x_{0} \in X$ such that $\alpha_{*}\left(x_{0}, S x_{0}\right) \geq 1$.
(iv) S and T are a-continuous multi-valued mappings, or, if $\left\{x_{n}\right\}$ a sequence in X which converges to $x \in X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ satisfies $\alpha\left(x_{n_{k}}, x\right)$ for all $k \in \mathbb{N}$.

Then S and T have a common fixed point.

Proof. From (iii), there exists $x_{1} \in S x_{0}$ such that $\alpha_{*}\left(x_{0}, x_{1}\right) \geq 1$ and $x_{1} \neq x_{0}$. By the inequality (3.1) and (2) in Lemma 2.1, we have

$$
\begin{equation*}
0<\psi\left(s^{\varepsilon} D\left(x_{1}, T x_{1}\right)\right) \leq \psi\left(s^{\varepsilon} \cdot H\left(S x_{0}, T x_{1}\right)\right) \leq F\left(\psi\left(M\left(x_{0}, x_{1}\right)\right), \varphi\left(M\left(x_{0}, x_{1}\right)\right)\right) . \tag{3.2}
\end{equation*}
$$

Using Lemma 2.2 for

$$
k=s^{\varepsilon}
$$

there exists $x_{2} \in T x_{1}$ such that

$$
\begin{equation*}
\psi\left(d\left(x_{1}, x_{2}\right)\right) \leq \psi\left(s^{\varepsilon} \cdot H\left(S x_{0}, T x_{1}\right)\right) \leq F\left(\psi\left(M\left(x_{0}, x_{1}\right)\right), \varphi\left(M\left(x_{0}, x_{1}\right)\right)\right) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
M\left(x_{0}, x_{1}\right) & =\max \left\{d\left(x_{0}, x_{1}\right), D\left(x_{0}, S x_{0}\right), D\left(x_{1}, T x_{1}\right), \frac{D\left(x_{0}, T x_{1}\right)+D\left(x_{1}, S x_{0}\right)}{2 s}\right\} \\
& =\max \left\{d\left(x_{0}, x_{1}\right), D\left(x_{1}, T x_{1}\right), \frac{D\left(x_{0}, T x_{1}\right)}{2 s}\right\} \\
& =\max \left\{d\left(x_{0}, x_{1}\right), D\left(x_{1}, T x_{1}\right)\right\}
\end{aligned}
$$

If $M\left(x_{0}, x_{1}\right)=D\left(x_{1}, T x_{1}\right)$, then from (3.1), we obtain

$$
\begin{aligned}
0 & <\psi\left(D\left(x_{1}, T x_{1}\right)\right) \leq \psi\left(s^{\varepsilon} D\left(x_{1}, T x_{1}\right)\right) \leq \psi\left(s^{\varepsilon} \cdot H\left(S x_{0}, T x_{1}\right)\right) \\
& \leq F\left(\psi\left(D\left(x_{1}, T x_{1}\right)\right), \varphi\left(D\left(x_{1}, T x_{1}\right)\right)\right) \\
& \leq \psi\left(D\left(x_{1}, T x_{1}\right)\right)
\end{aligned}
$$

Since ψ is nondecreasing function, so $D\left(x_{1}, T x_{1}\right)=0$ which is a contradiction. Then

$$
\max \left\{d\left(x_{0}, x_{1}\right), D\left(x_{1}, T x_{1}\right)\right\}=d\left(x_{0}, x_{1}\right)
$$

According to the inequality 3.1)

$$
\begin{aligned}
\psi\left(d\left(x_{1}, x_{2}\right)\right) & \leq \psi\left(s^{\varepsilon} \cdot H\left(S x_{0}, T x_{1}\right)\right) \leq F\left(\psi\left(d\left(x_{0}, x_{1}\right)\right), \varphi\left(d\left(x_{0}, x_{1}\right)\right)\right) \\
& \leq \psi\left(d\left(x_{0}, x_{1}\right)\right)
\end{aligned}
$$

Since ψ is nondecreasing, we get

$$
d\left(x_{1}, x_{2}\right) \leq d\left(x_{0}, x_{1}\right)
$$

Similarly, for $x_{2} \in T x_{1}$, there exists $x_{3} \in S x_{2}$ such that

$$
\psi\left(d\left(x_{2}, x_{3}\right)\right) \leq s^{\varepsilon} H\left(T x_{1}, S x_{2}\right) F\left(\psi\left(d\left(x_{1}, x_{2}\right)\right), \varphi\left(d\left(x_{1}, x_{2}\right)\right)\right) \leq \psi\left(d\left(x_{1}, x_{2}\right)\right)
$$

Repeating this process, we can construct a sequence $\left\{x_{n}\right\} \subset X$ as follows.

$$
\left\{\begin{array}{l}
x_{2 k+1} \in S x_{2 k}, \\
x_{2 k+2} \in T x_{2 k+1}, \quad \text { otherwise }
\end{array}\right.
$$

for $k=1,2, \ldots$ Since (S, T) is is triangular $\alpha_{\grave{a} s t}$ orbital admissible, so from lemma 2.2 we get $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$. Hence we have

$$
\begin{align*}
\psi\left(d\left(x_{2 k+1}, x_{2 k+2}\right)\right) & \leq \psi\left(s^{\varepsilon} H\left(T x_{2 k}, S x_{2 k+1}\right)\right. \tag{3.4}\\
& \leq F\left(\psi\left(M\left(x_{2 k}, x_{2 k+1}\right)\right), \varphi\left(M\left(x_{2 k}, x_{2 k+1}\right)\right)\right)
\end{align*}
$$

where

$$
\begin{aligned}
M\left(x_{2 k}, x_{2 k+1}\right) & =\max \left\{\begin{array}{c}
d\left(x_{2 k}, x_{2 k+1}\right), D\left(x_{2 k}, S x_{2 k}\right), D\left(x_{2 k+1}, T x_{2 k+1}\right) \\
\frac{D\left(x_{2 k}, T x_{2 k+1}\right)+D\left(x_{2 k+1}, S x_{2 k}\right)}{2 s}
\end{array}\right\} \\
& =\max \left\{d\left(x_{2 k}, x_{2 k+1}\right), D\left(x_{2 k+1}, T x_{2 k+1}\right), \frac{D\left(x_{2 k}, T x_{2 k+1}\right)}{2 s}\right\} \\
& =\max \left\{d\left(x_{2 k}, x_{2 k+1}\right), D\left(x_{2 k+1}, T x_{2 k+1}\right)\right\}
\end{aligned}
$$

If $M\left(x_{2 k}, x_{2 k+1}\right)=D\left(x_{2 k+1}, T x_{2 k+1}\right)$, using 3.1), we get

$$
\begin{aligned}
0 & <\psi\left(s^{\varepsilon} D\left(x_{2 k+1}, T x_{2 k+1}\right)\right) \leq \psi\left(s^{\varepsilon} \cdot H\left(S x_{2 k}, T x_{2 k+1}\right)\right) \\
& \leq F\left(\psi\left(D\left(x_{2 k+1}, T x_{2 k+1}\right)\right), \varphi\left(D\left(x_{2 k+1}, T x_{2 k+1}\right)\right)\right) \\
& \leq \psi\left(D\left(x_{2 k+1}, T x_{2 k+1}\right)\right)
\end{aligned}
$$

which is a contradiction. Hence

$$
\begin{align*}
\psi\left(d\left(x_{2 k+1}, x_{2 k+2}\right)\right) & \leq \psi\left(s^{\varepsilon} \cdot H\left(S x_{2 k}, T x_{2 k+1}\right)\right) \leq F\left(\psi\left(d\left(x_{2 k}, x_{2 k+1}\right)\right), \varphi\left(d\left(x_{2 k}, x_{2 k+1}\right)\right)\right) \\
& \leq \psi\left(d\left(x_{2 k}, x_{2 k+1}\right)\right) \tag{3.5}
\end{align*}
$$

which implies

$$
d\left(x_{2 k+1}, x_{2 k+2}\right) \leq d\left(x_{2 k}, x_{2 k+1}\right)
$$

Thus for all $n \in \mathbb{N}$, we have

$$
d\left(x_{n+1}, x_{n+2}\right) \leq d\left(x_{n}, x_{n+1}\right)
$$

this yields $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is decreasing sequence.
The non increasing of ψ hold the decreasing the sequence $\left\{d\left(x_{n+1}, x_{n}\right)\right\}$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r$ Letting $n \rightarrow \infty$ in 3.5, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \psi\left(s^{1-\varepsilon} d\left(x_{n+2}, x_{n+1}\right)\right) & \leq \lim _{n \rightarrow \infty} \psi\left(d\left(x_{n+2}, x_{n+1}\right)\right) \\
& \leq \lim _{n \rightarrow \infty} F\left(\psi\left(s^{1-\varepsilon} d\left(x_{n}, x_{n-1}\right)\right), \varphi\left(s^{1-\varepsilon} d\left(x_{n}, x_{n+1}\right)\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \psi\left(s^{1-\varepsilon} d\left(x_{n}, x_{n+1}\right)\right)
\end{aligned}
$$

So, we conclud that

$$
\psi\left(s^{1-\varepsilon} r\right) \leq \lim _{n \rightarrow \infty} F\left(\psi\left(s^{1-\varepsilon} r\right), \varphi\left(s^{1-\varepsilon} r\right)\right) \leq \lim _{n \rightarrow \infty} \psi\left(s^{1-\varepsilon} r\right)
$$

For $s^{1-\varepsilon} \neq 0$, implies $r=0$, a contradiction. Hence, we conclude

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0
$$

Now, we prove that the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence. Suppose that the $\left\{x_{2 n}\right\}$ is not a Cauchy sequence. Then there exists an $\varepsilon>0$ for which we can find two sequences of positive integers $\{2 m(k)\}$ and $\{2 n(k)\}$ such that for all positive integers $k, 2 n(k)>$ $2 m(k)>k$ and $d\left(x_{m(k)}, x_{n(k)}\right) \geq \varepsilon$.

Let $2 n(k)$ be the smallest such positive integer $2 n(k)>2 m(k)>k$ such that

$$
d\left(x_{2 m(k)}, x_{2 n(k)}\right) \geq \varepsilon, \quad d\left(x_{2 m(k)}, x_{2 n(k)-1}\right)<\varepsilon
$$

by (3.1), we have

$$
\begin{aligned}
\left.\psi\left(s^{\varepsilon-1} d\left(x_{2 m(k)}, x_{2 n(k)}\right)\right)\right) & \leq F\left(\psi\left(M\left(x_{2 n(k)-1}, x_{2 m(k)}\right)\right), \varphi\left(M\left(x_{2 n(k)-1}, x_{2 m(k)}\right)\right)\right) \\
& =F\left(\psi\left(d\left(x_{2 n(k)-1}, x_{2 m(k)}\right)\right), \varphi\left(d\left(x_{2 n(k)-1}, x_{2 m(k)}\right)\right)\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$ we have

$$
\psi(\varepsilon) \leq \psi\left(s^{\varepsilon-1} \varepsilon\right) \leq F(\psi(\varepsilon), \varphi(\varepsilon)) \leq \psi(\varepsilon)
$$

Then $\psi(\varepsilon)=0$ contradiction with $\varepsilon>0$. Thus $\left(x_{n}\right)$ is a b-Cauchy sequence in X. α-completeness of (X, d) implies the existence of $z \in X$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0
$$

which implies $\lim _{n \rightarrow \infty} d\left(x_{2 k+1}, z\right)=0$ and $\lim _{n \rightarrow \infty} d\left(x_{2 k+2}, z\right)=0$.
If S, T are α-continuous, this gives $\lim _{n \rightarrow \infty} H\left(T x_{2 k+1}, z\right)=0$.
Using triangular inequality e get

$$
D(z, T z) \leq s\left(d\left(x_{2 k+1}, T x_{2 k}\right)+H\left(T x_{2 k+1}, T z\right)\right)
$$

passing to limit we obtain $D(z, T z)=0$, this yields $z \in T z$. Similarly we can show easily $z \in T z$ and z is a common fixed point for S and T.
If for a sequence $\left\{x_{n}\right\}$ in X which converges to $x \in X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ satisfies $\alpha\left(x_{n_{k}}, x\right)$ for all $k \in \mathbb{N}$.
Since $x_{n} \rightarrow z$, then there exists a sequence $\left\{x_{n_{k}}\right\}$ such that $\alpha\left(x_{n_{k}}, x\right)$, so we have

$$
D(z, T z) \leq s\left(d\left(x_{2 k+1}, T x_{2 k}\right)+H\left(T x_{2 k+1}, T z\right)\right)
$$

This complete the proof.
The following results are a special case of the main result
Corollary 3.2. Let (X, d) be a b-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ a function and $\varepsilon>1$. Let $S, T: X \rightarrow C B(X)$ be two multi-valued mappings such that for $x, y \in X$ with $\alpha(x, y) \geq 1$ we have

$$
\begin{equation*}
\psi\left(s^{\varepsilon} H(S x, T y)\right) \leq \psi(M(x, y))-\varphi(M(x, y)) \tag{3.6}
\end{equation*}
$$

where

$$
M(x, y)=\max \left\{d(x, y), D(x, S x), D(y, T y), \frac{D(x, T y)+D(y, S x)}{2 s}\right\}
$$

Then S and T have a common fixed point.
Corollary 3.3. Let (X, d) be a b-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ a function and $\varepsilon>1$. Let $S, T: X \rightarrow C B(X)$ be two multi-valued mappings such that for $x, y \in X$ with $\alpha(x, y) \geq 1$ we have

$$
\begin{equation*}
\left.s^{\varepsilon} H(S x, T y)\right) \leq \phi(M(x, y)) \tag{3.7}
\end{equation*}
$$

where $\phi:[0,+\infty) \rightarrow[0,+\infty)$ is a lower semi continuous function satisfying $\phi(t)=0$ if and only ift $=0$.

$$
M(x, y)=\max \left\{d(x, y), D(x, S x), D(y, T y), \frac{D(x, T y)+D(y, S x)}{2 s}\right\}
$$

Then S and T have a common fixed point.
Proof. It suffices to taking $\psi=I$ and $\phi=I-\varphi$ in Theorem3.1.
Example 3.1. Let $X=\{1,2,3\}$ and $d(x, y)=|x-y|^{2}$. Define $S, T: X \rightarrow C B(X)$ and $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\begin{aligned}
& S x= \begin{cases}\{2\}, & x \in\{1,2\} \\
\{1\}, & x=3\end{cases} \\
& T x= \begin{cases}\{3\}, & x=1 \\
\{2\}, & x \in\{2,3\}\end{cases}
\end{aligned}
$$

and

$$
\alpha(x, y)= \begin{cases}0, & (x, y) \in\{(3,1)\} \\ 1, & \text { otherwise }\end{cases}
$$

We claim that S and T satisfy 3.1, by taking $s=2, F(m, t)=\frac{1}{\sqrt{2}} m, \varepsilon=\frac{1}{2}$ and $\psi(t)=t$. For that, we need to show that

$$
2^{\varepsilon} H(S x, T y) \leq \frac{1}{\sqrt{2}} M_{s}(x, y)
$$

Note that $H(T x, T y)>0$ and $\alpha(x, y) \geq 1$ if and only if $(x, y) \in X^{2}-\{(2,2),(1,2),(1,3),(2,3),(3,1)\}$.
(1) For $x=1$ and $y=1$, we have

$$
H(S 1, T 1)=1 \leq \frac{1}{\sqrt{2}} D(1, T 1)=2 \sqrt{2}
$$

which implies

$$
2^{\frac{1}{2}} H(S 1, T 1) \leq \frac{1}{\sqrt{2}} M(1,1)
$$

(2) For $x=2$ and $y=1$, we have

$$
H(S 2, T 1)=1 \leq \frac{1}{\sqrt{2}} D(1, T 1)=2 \sqrt{2}
$$

which implies

$$
2^{\frac{1}{2}} H(S 2, T 1) \leq \frac{1}{\sqrt{2}} M(2,1)
$$

(3) For $x=3$ and $y=2$, we have

$$
H(S 3, T 2)=1 \leq \frac{1}{\sqrt{2}} D(3, S 3)=2 \sqrt{2}
$$

which implies

$$
2^{\frac{1}{2}} H(S 3, T 2) \leq \frac{1}{\sqrt{2}} M(3,2)
$$

(4) For $x=3$ and $y=3$, we have

$$
H(S 3, T 3)=1 \leq \frac{1}{\sqrt{2}} D(3, S 3)=2 \sqrt{2}
$$

which implies

$$
2^{\frac{1}{2}} H(S 3, T 3) \leq \frac{1}{\sqrt{2}} M(3,3)
$$

Consequently, S and T satisfy (3.1). Moreover, it is easy to see that (S, T) is triangular α_{*}-orbital admissible. Indeed
For $(x, y) \in\{1,2\}$, we have

$$
\alpha_{*}(x, S x)=\alpha_{*}(x, T x)=1 \geq 1, \text { and } \alpha_{*}\left(S x, T^{2} x\right)=\alpha_{*}\left(T x, S^{2} x\right)=1 \geq 1
$$

then (S, T) is α_{*}-orbital admissible.
For $(x, y) \in\{1,2\}$, we have

$$
\alpha(x, y)=1, \text { and } \alpha_{*}(y, S y)=\alpha_{*}(y, T y)=1 \geq 1
$$

and

$$
\alpha_{*}(x, S y)=\alpha_{*}(x, T y)=1 \geq 1
$$

Hence (S, T) is triangular α_{*}-orbital admissible, there exists $x_{0}=1 \in X$ such that $\alpha_{*}(1, S 1) \geq 1$. Also, For $x_{n}=1$, we have x_{n} converges to $1 \in X$, such that $\forall n \geq 0, \alpha\left(x_{n}, x_{n+1}\right)=\alpha(1,1)=1 \geq 1$, and $\alpha\left(x_{n}, 1\right)=1 \geq 1$, so it suffices to choose $x_{n_{k}}=x_{n}, \forall \varepsilon>0$. Consequently, all conditions of Theorem 3.1 are satisfied. Then T, S have a fixed point which is 2 .

4. Acknowledgements

The authors are grateful to the reviewers valuable comments that improved the manuscript.

REFERENCES

[1] A. Aghajani, M. Abbas and J.R. Roshan. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4 (2014), 941-960.
[2] S. Aleksic, T. Dosenovic, Z. D. Mitrovic and S. Radenovic. Remarks on common fixed point results for generalized $\alpha_{*}-\psi$-contraction multivalued mappings in b-metric spaces, Adv. Fixed Point Theory, $9(1)$ (2019), 1-16.
[3] A. Aliouche and T. Hamaizia. Common fixed point theorems for multivalued mappings in b-metric spaces with an application to integral inclusions. The Journal of Analysis, 2021, doi: 10.1186/s13660-017-1528-3.
[4] E. Ameer, M. Arshad and W. Shatanawi. Common fixed point results for generalized $\alpha_{*}-\psi$-contraction multivalued mappings in b-metric spaces, J. Fixed Point Theory Appl., 19(4) (2017), 3069-3086.
[5] A. H. Ansari. Note on φ - ψ-contractive type mappings and related fixed point", The 2nd regional conference on mathematics and applications, Payame Noor University, 2014, p 377-380.
[6] M. Arshad, E. Ameer and E. Karapinar. Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces. J Inequal. Appl., 2016, doi: 10.1186/s13660-016-1010-7.
[7] H. Aydi, A. Felhi and S. Sahmim. Common fixed points in rectangular b-metric spaces using (E:A) property, J. Adv. Math. Stud., 8(2) (2015), 159-169.
[8] I. A. Bakhtin. The contraction principle in quasi metric spaces, Funct. Anal., 30 (1989), 26-37.
[9] S. Banach. Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math. 3 (1922), 133-181.
[10] M. Boriceanu. Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Modern Math., 4 (2009), 285-301.
[11] S. Czerwik. Contraction mappings in b-metric spaces, Acta Math. Inform., Univ. Ostrav.,1 (1993), 5-11.
[12] T. Hamaizia. Fixed point theorems for generalized (ψ, φ, F)-contraction type mappings in b-metric spaces with applications, Open Journal of Mathematical Analysis, 5(1) (2021), 35-41.
[13] T. Hamaizia and A. Aliouche. A nonunique common fixed point theorem of Rhoades type in b-metric spaces with applications, Int. J. Nonlinear Anal. Appl., 12(2) (2021), 399-413.
[14] A. A. Harandi. Fixed point theory for quasi-contraction maps in b-metric spaces, Fixed Point Theory 15(2) (2014), 351-358.
[15] N. Hussain, V. Parvaneh, J. R. Roshan and Z. Kadelburg. Fixed points of cyclic weakly (ψ, φ, L, A, B) contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 256 (2013), $1-18$.
[16] N. Hussain and Z. D. Mitrovic. On multivalued weak quasi-contractions in b-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 3815-3823.
[17] M. Jleli, B. Samet, C. Vetro and F. Vetro. Fixed points for multivalued mappings in b-metric spaces. Abstr. Appl. Anal.,2015, doi: 10.1155/2015/718074.
[18] M. S. Khan, M. Swaleh and S. Sessa. Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30(1) (1989), 1-9.
[19] L. Liu and F. Gu. Common fixed point theorems for six self-maps in b-metric spaces with nonlinear contractive conditions, J. Nonlinear Sci. Appl. 9 (2016), 5909-5930.
[20] S. Merdaci and T. Hamaizia. Some fixed point theorems of rational type contraction in b-metric spaces, Moroccan J. of Pure and Appl. Anal., 7(3) (2021), 350-363.
[21] R. Miculescu and A. Mihail. New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19(3) (2017), 2153-2163.
[22] S. B. Nadler. Multi-valued contractions mappings, Pacific J. Math., 30(2) (1969), 475-488.
[23] W. Shatanawi and M. B. Hani. A fixed point theorem in b-metric spaces with nonlinear contractive condition. Far East J. Math. Sci. 100 (2016), 1901-1908.

Taieb Hamaizia
Laboratory of dynamical systems and control, Department of Mathematics and Informat-
ics, Larbi Ben M'Hidi University, Oum-El-Bouaghi, 04000, Algeria
Email address: tayeb042000@yahoo.fr
Said Beloul
Faculty of Exact Science, El-Oued University, Algeria
Email address: beloulsaid@gmail.com

[^0]: 2010 Mathematics Subject Classification. 54E50, 58J20, 46J10.
 Key words and phrases. b-metric space; Common fixed point; C-class function.
 Received: April 29, 2021. Accepted: July 20, 2021. Published: September 30, 2021.
 *Corresponding author.

