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ON PYTHAGOREAN NORMAL SUBBISEMIRING OF BISEMIRING

M. PALANIKUMAR* AND K. ARULMOZHI

ABSTRACT. We discuss the notion of Pythagorean subbisemiring, level sets of Pythagorean
subbisemirings and Pythagorean normal subbisemiring of a bisemiring. Also, we investi-
gate some of the properties related to subbisemirings. The fuzzy subset L = (7 I(j} ,w Lg; )is
a Pythagorean subbisemiring if and only if all non-empty level set L, &) (t, s € (0,1])isa
subbisemiring. The cartesian product of two Pythagorean subbisemiring is also Pythagorean
subbisemiring. The homomorphic image and preimage of Pythagorean subbisemiring is
also Pythagorean subbisemiring. To illustrate our results and examples are given.

1. INTRODUCTION

The study of semirings was started by the German Mathematician Dedekind in connec-
tion with ideals of commutative rings. Later on semiring were studied by the American
Mathematician Vandever in 1935 [[11], who accepted semiring as a fundamental algebraic
structure. It was basically the generalization of rings and distributive lattices. However the
developments of the theory in semirings have been taking place since 1950. L.A Zadeh
[18] proposed by fuzzy set theory in 1965 suggests that decision makers are to be solving
uncertain problems by considering membership degree. In 1986, Atanassov [7] introduced
the notion of intuitionistic fuzzy sets and is characterized by a degree of membership and
non-membership satisfying the condition that sum of its membership degree and non mem-
bership degree is not exceeding one [7]. However, we may interact a problem in decision
making events where the sum of the degree of membership and non-membership of a par-
ticular attribute is exceeding one. So Yager was introduced by the concept of Pythagorean
sets [16]]. It has been to extended the intuitionistic fuzzy sets and characterized by the
condition that square sum of its degree of membership and non membership is not exceed-
ing one. In 1993, J. Ahsan, K. Saifullah, and F. Khan [2] introduced the notion of fuzzy
semirings. In 2001, M.K Sen and S. Ghosh was introduced in bisemirings. A bisemir-
ing (S, +, o, x) is an algebraic structure in which (S, +, o) and (S, o, x) are semirings in
which (S, +), (S, o) and (S, x ) are semigroups such that (i) l;0(lo+13) = (I10l3)+(l10l3),
(>i1) (lg + 13) ol = (12 o ll) + (lg o ll) and (iii) [; x (12 o l3) = (ll X lg) o (ll X lg),
(iv) (lpol3) x 13 = (Ia xl3) o (I3 x 11),V l1,l2,l3 € S [15]. A non-empty subset
B of S is a subbisemiring if and only if l; + lo,l; o l3,l; X Iy € Bforallly,l, € B
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[1QO]. The purpose of this paper is to extend the concept of intuitionistic subsemiring of
semiring to Pythagorean subbisemiring of bisemiring. Also we obtain Pythagorean normal
subbisemiring of bisemiring.

2. PRELIMINARIES

Notations: (i) Pythagorean subsemirings, Pythagorean subbisemirings, Pythagorean
normal subsemirings, Pythagorean normal subbisemirings shortly PSS, PSBS, PNSS,
PNSBS respectively.

(ii) fuzzy subsemirings, subbisemirings, fuzzy subbisemirings shortly FSS, SBS, FSBS
respectively.

Definition 2.1. Let (S, +, -) be semiring. A fuzzy subset L of S is said to be FSS if

() 7 (u1 + u2) > min{nrg(u1), 7 (u2)}, (i) 7 (ug - ug) > min{mry (uy), 7 (ug)} for
all uy,ug € 5.

Definition 2.2. An intuitionistic fuzzy L in non-empty set U is defined, the form

L ={< u,np(u),wr(u)|lu € U >} where n;, : U — [0, 1](define the degree of mem-
bership) and wy, : U — [0,1] (degree of non-membership) for every u € U satisfying
0 <mp(u)+wp(u) <1.

Definition 2.3. A Pythagorean fuzzy subset L in non-empty set U is defined, the form
L = {< u,m7(u),w? (u)|u € U >} where 77" : U — [0, 1](define the degree of
membership) and wy’ : U — [0, 1] (degree of non-membership) for every u € U satisfying
0< (r (w)? + (Wi (w)* < 1.

Definition 2.4. Let L and M be any two Pythagorean fuzzy subsets of a set U.

() LN M = { (u,min{r? (u), 5] (u)}, max{w? (v), wiy (u)}) }

(i) LU M = { {(u,max{r? (u), 77 (u)}, min{wy (u),wi](u)}) }

(i) OL = { {(u, 77 (v),1 = 77 (u)) [u € U}

(iv) OL = { (u,1 —w? (u),w? (v))|lu € U} forallu € U.

Definition 2.5. Let (S, +, -) be semiring. A Pythagorean fuzzy subset L of S is said to be
PSS of S if

() 77 (u1 + uz) > min{ry (u1), 77 (uz)} and 77 (uy - ug) > min{n? (u1), 77 (u2)}
(i) w (ug +uz) < max{wy (u1),w? (u2)} and w? (uy-us) < max{w? (u1), w? (uz)}
for uy,us € S.

Definition 2.6. Let (S, +, -) be semiring. A Pythagorean fuzzy subset L of S is said to be
PNSS of S if

6)) WL‘@(ul +u2) = wi@(ug + u1) and W?(ul “Ug) = W?(Ug uy)

(ii) wi@(ul +ug) = wZJ(ug + up) and w?(ul “Ug) = ngz(uz -uq) for all uq, ug € S.
Definition 2.7. Let L and M be Pythagorean fuzzy subsets of G and H respectively. The
product of L and M denoted by L x M is defined as

Lx M = {((ur,u2), 77 s (w1, u2), w7 pp (ur,u)) | for all uy € G and up € H},
where 77, (u1,uz) = min{mw7 (u1), 757 (ug)} and

W?XM(ul’ u2) = maX{w?(u1)7wﬁ(“'2)}‘

Definition 2.8. [10] Let (S, +,-, x) and (S2,®, 0, ®) be two bisemirings. A function
0 : 51 — S is said to be a homomorphism if

() O(u1 + u2) = 0(uy) @ O(uz),

(11) 0(u1 . UQ) = 0(u1) o} 9(’&2),

(iil) O(u1 X ug) = 0(u1) ® O(us) for all uy, us € Sy.
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3. PYTHAGOREAN SUBBISEMIRING

Here S denotes a bisemiring unless otherwise mentioned.

Definition 3.1. A fuzzy subset L of S is said to be a FSBS if

mp(uy *1 ug) > min{mp (u1), 7z (u2)}
mr(ug *2 ug) > min{wy (ur), 7p (u2)}

mr(uy %3 up) > min{m (u1), 7z (u2)}

YV uy,ug € S.

Example 3.2. Let S = {s1, $2, S3, s4} be the bisemirings sith the Cayley tables:

*1 | 81| S2 | S3 | S4 || *2 |81 |S2| 83|84 ||*3 |81 |S2]| 83|84
S1 | S1 | S2 | S3 | 84 S1 |81 |81 |81 |81 S1 |81 |81 |81 |81
S2 | S2 | S2 | S2 | S2 S2 | 81| S2 | S2 | S2 S2 | S1 | S1 | S1 | S3
53 | 83 | S2 | 53 | 54 53 | 51| 83| 53| S3 53 | 81| 81|51 53
S4 | S4 | S2 | S4 | S4 S4 | S1 | S2 | S2 | 52 S4 | S1 | S1 | S1 | S3

65

Then 77,(s1) = 0.95, 7(s2) = 0.75 ,7(s3) = 0.65 ,7(s4) = 0.55. Clearly L is a

FSBS.

Definition 3.3. A Pythagorean fuzzy subset L = (77", w?’) of S is said to be a PSBS if

WL'@(ul *1 ug) > min{wi@(ul),wf’(uz)}
ﬂ?(ul *o Ug) > min{ﬂ?(ul),wz‘](uQ)}

77 (u1 *3 uz) > min{my (uy), 77 (uz)}

and
wfb(ul *1 ug) < max{wf}(ul),wfb(ug)}
wL‘@(ul *g Ug) < max{w?(ul),wfb(ug)}
wi’ (ug *3 uz) < max{wi” (u1),w;” (uz)}
v U, U2 € S.

Example 3.4. By the Example [3.2]

0.70 if s=9 0.50 if s=s1
0.65 7 = 0.60 ¢ =
AU NS IO S A
0.55 if s = s3 0.75 if s = s3
0.50 if s=s4 0.85 if s =s4

Clearly L is a PSBS.

Theorem 3.1. The intersection of a family of PSBS is a PSBS of S.
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Proof. Let {V; : i € I} be a family of PSBS and L = [(]V;. Let 51,52 € S. Then
i€l

w7 (s1%1 52) = fnf i, (51 %1 52)
> inf min{my (s1), 7/ (s2)}
in L L

= min {7 o) o )
= min{ry’ (s1), 77 (s2)}
Similarly, 77 (s1 %2 s2) > min{ry’ (s1), 77 (s2)} and
77 (81 %3 82) > min{n? (s1), 77 (s2)}

wfz(sl *1 S9) = SUIIO w“f(sl *1 S2)
i€

< sup max{wi/ (s1),wi’ (s2)}
iel

= max {sup w“f(sl), sup w?(sz)}
iel icl

= max{w? (s1),wy (s2)}

Similarly, w?’ (s1 x2 52) < max{wy’ (s1),w? (s2)} and
Wy (51 %3 82) < max{wy’ (s1),w (s2)}. Hence L is a PSBS.

Theorem 3.2. If L and M are any two PSBS of S1 and S5 respectively, then L x M is a
PSBS.

Proof. Let L and M be two PSBS of S; and S5 respectively. Let l;,lo € S and
mi, Mo € S5. Then (ll, lg) and (ml, mg) are in S7 x S3. Now

Tl ma) 1 (l2,ma)] = w75 ar (I 1 L2, ma 1 M)

= min{n (I %1 lz), 75 (M1 *1 ma)}
> min{min{r7" (), 77 (I2) }, min{my7 (m1), 77 (m2)} }
= min{min{r " (I1), 737 (m1)}, min{r{ (Is), 77 (m2) } }
= min{m 7 pr (I, m1), 77 g (I, m2) }

Also w7 (L, ma) %2 (I, mo)] > min{n?, o, (h,ma), w75 (I2,ma) ¥,

ngxM[(ll, mq) x3 (l2,m2)] > min{wLyxM(ll, my), '/TL'@XA[(ZQ, mg) }. Similarly,

wiarl(li,ma) %1 (Lo, m2)] = Wi (I #1 1z, my %1 mo)
= max{wy (I1 *1 ), wyy (my %1 ma)}
< max{max{w?’ (Ih),w (I2) }, max{wi (m1), wif (ma) }}
= max{max{w” (I1), w7 (m1)}, max{wy’ (I2), wys (m2)}}
= max{wy pr (I, m1), Wi ar(la, ma)}

Also wL@xM[(ll’ ml) *2 (l27 mQ)] < maX{w?xM(llv ml)?“L@xM(Z% mQ)}’

W arl(l,ma) x3 (Iz, m2)] < max{wy’, ,(l1,m1), w7 s (l2,m2)}. Hence L x M is a
PSBS.

Theorem 3.3. Let L be fuzzy subset of S. Then L = (7 ,w?’) is a PSBS if and only if
all non-empty level set L, 4 (t,s € (0,1]) is a SBS.
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Proof. Assume that L = (77", w;”) is a PSBS. For each t,5 € (0,1] and 1,1 € L ).
We have 77 (1) > t, 7 Z(ly) > t, w?(ly) g s and wy (Iz) < s. Since L is a PSBS,
Ty (ll x1 lg) > min{ry’ (ll),wf(l )} >t 7 (1y *2 12) > min{w? (1), 7TL Z(ly)} >t
and 77 (11 *1 12) > min{r?’ (ll) 77 (I2)} > t. Similarly we prove that, w?’ (I *1 lo) <
max{w? (I1),wy (I2)} < s,w? (ly %2 I3) < max{w? (I1),wy (I2)} < sand w? (I} %
12) < max{w?(ll),w?(lg)} < s. This implies that lix1ly € L(t,s)7 1%l € L(t,s) and
Iy %3l € Ly 5). Therefore L, ) is a SBS for each ¢, s € (0, 1].

Conversely, assume that L ) is a SBS for each ¢,s € (0,1]. Let l;,l € S. Then
li,lo € L g),where t = min{r7’ (1), 77 (I2)} and s = max{w;’ (I1),w? (I2)} . Thus,
lh x1 1o € L(t,s)all *g lo € L(t7s) and [ %3 ls € L(t75) imply W?(ll *1 lg) >t =
min{ﬂ?(ll),ﬂf(lg)}, W?(ll*glg) Z t= min{ﬂ'?(ll), F?(lg)} and F?(ll*glg) Z t=
min{7? (1y), 77 (I2)}. Similarly, w7 (I; x1 I2) < s = max{w? (11),w? (I2)},w? (11 %2
lh) < 5 = max{w? (I1),w? (I2)} and w? (ly x3 I2) < s = max{w? (l1),w? (l2)}.
Hence L = (77", w?’) is a PSBS.

Theorem 3.4. Let L be the PSBS and V' be the strongest Pythagorean relation of S. Then
L is the PSBS if and only if V' is a PSBS of S x S.

Proof. Let L be an PSBS and V' be the strongest Pythagorean relation of .S.
For | = (I1,12) and m = (mq,mg) arein S x S. We have

w7 (L m) = 77 [((In, L) %1 (ma,ma)]
= 7 (11 %1 M1, Iy *1 my)
= min{n? (I; ¥ m1), 77 (Iz %1 m2)}
> min{min{r{’ (l), 77" (m1)}, min{r" (l2), 77" (m2)}}
= min{min{r (I), 77 (I2)}, min{x? (my), 77 (mz)}}
= mm{ﬂv (ll,lg),ﬂ'i/@(ml,mg)}

— min{? (1), 7 (m)}

Similarly, wi? (1 %1 m) < max{wi? (1),w (m)},w (I k2 m) < max{w (1),w? (m)},

wi (I x3 m) < max{w{ (1),wi? (m)}. Hence V is a PSBS of S x S.
Conversely assume that V' is a PSBS of S x S, = (l1,l2) and m = (my, mg) are in
S x S. NOW, min{ﬂ‘L@(ll *1 ml),’lT‘L@(ZQ *1 mg)]

Also ﬂ"‘?(l *o M) > min{ﬂ'?(l),w“/@(m)} Ty Z (1 %3 m) > min{ﬂv ), l(m 1.

=i/ (I %1 M1, Iy 1 m2)

=i/ [(I1,12) %1 (M1, m)]

=Ty (l *1 m)

> min{n/ (1), 7/ (m)}

}vﬁ\e(mlvmﬂ)}

L), 7 (I2)}, min{my” (ma), 7 (ma)}}

Ifr? (11 x1my) < w7 (la %1 ma), then 77 (11) < 77 (I2) and 77 (my) < w7 (ma). We
get w7 (14 x1 my) > m1n{7rL (), 77 (mq)} forall Iy, m; € S, and

min{ﬂL (11 %2 ml) 77 (lg %3 ma)} > min{min{r (1,), 77 (I2)},

mln{ﬂL (ma), 7 (m 2) 1)

If Ty, (ll *92 ml) § 7, (l2 *92 mg), then W‘I%Z(ll *92 ml) 2 min{wfa(ll),w‘?(ml)}.

= min{ﬂ‘g/z(ll, 2

A\_/

= min{min{r;’

— =
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min{ﬂ'L (11 *3 ml) 77 (I x3 m2)} > min{min{r? (l), 77 (I2)},

win{r? (m). 7/ (m3)})

Ifﬂ'L (ll *3 ml) < Ty, (ZQ *3 mg), then ﬁL‘@(h *3 ml) > min{ﬂ?(ll),ﬂz‘](ml)}.
Similarly

max{wy (Iy %1 m1),w? (I2 x1 m2)} < max{max{w?’ (I),w? (I2)},
max{w? (m1), wi (ma)

If w7 (I %1 m1) > w? (I x1 ma), then w?’ (I1) > w? (I2) and wy’ (my) > w7 (My).
We get w? (I3 1 m1) < max{w? (I1),w? (m1)}.

max{w? (I %2 m1),w? (I x2 m2)} < max{max{w?’ (I1),w? (I2)},
max{w? (m1), wi (ma)

If w7 (Iy %2 m1) > w? (Iz x2 ma), then w7’ (11 %3 my) < ma x{wL (l),w? (m1)}.
max{wy (I %3 m1),w? (I x3 m2)} < max{max{w?’ (I1),w? (I2)},
mas{w (1), wf (ma) }

If w7 (I3 %3 m1) > w? (I2 x3 ma), then w?’ (I3 3 my) < max{w? (I1),w? (m1)}.
Hence L is a PSBS.

Theorem 3.5. (i) If L is the PSBS, then H; = {s|s € S : 77 (s) = 1,wy? (s) = 0} is
either empty or is a SBS.

(ii) If L is the PSBS, then Hy = {(s,77(s)) : 0 < n’(s) < 1,w{(s) = 0} is either
empty or SBS.

(iii) If L is the PSBS, then Hs = {(s, 77’ (s)) : 0 < w7 (s) < 1} is either empty or SBS.
(iv) If L is the PSBS, then Hy = {(s,w?’(s)) : 0 < w{’(s) < 1} is either empty or SBS.

Theorem 3.6. If L is a PSBS of (.S, *1, %2, x3), then OL is a PSBS.

Proof. Let L be an PSBS of a bisemiring S. Consider L = {(s,77(s) >},
for all s € S. Take OL = M = {(s,m5/(s),wi(s))} .where WI%?;(S) = 77 (s),
wy(s) = 1 —77(s). Clearlt w5/ (s %1 t) > min{wﬁ( R AT ACET t) >

min{n{ (s), 75 (¢ )} (s xgt) > mln{wM( ) (1)}, Vsand tin S. Since L is
an PSBS. Then 77" (s %1 t) > min{n7(s), 77 (¢ )} implies that 1 — wy (s x; t) >
m;n{(l —wir(s), (1 — wOI(t))} Thus wi(s %1 t) < 1 — mln{(l —wir(s), (1 —
wir (1)} = max{wy (s), wM( )}. Therefore w]\‘g‘;(s x1 1) < max{w{] (s ),wﬁ(ot)}. Sim-
ilarly, w7 (s %2 t) < max{wy] (s),wys ()} and wi] (s *3 t) < max{wy] (s),ws (t)}, for

all s,t € S. Hence OL is a PSBS .

The reverse of the Theorem [3.6] fails by the Example[3.2]

(0.85,0.15) if s= s (0.85,0.45) if 5= s
~)(0.75,0.25) if 5= s _ }(0.75,0.55) if 5= s
(0.65,0.35) if s = s3 ] (0.65,0.70) if s =s3
(0.60,0.40) if s = s4 (0.60,0.65) if s = s4

Clearly OL is a PSBS, but L is not a PSBS .
Theorem 3.7. If L is a PSBS of (.S, 1, *2,*3) then L is a PSBS.
Proof. Let L be an PSBS. Consider L = {(s, 77 (s), w7 (s))}, Vs € S. Take OL =

M = {(s,m5](s),wi(s))} where 75 (s) = 1—w7’(s), wi, (s) = w? (s) and the process
of Theorem[3.6l Hence ¢ is a PSBS.
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The inversion of Theorem 3.7 fails as in the Example[3.2]

(0.45,0.55) if s= s (0.60,0.65) if s=s;
of — 3 (030,0.70) if s=s2 _ J(0.50,070) if s = s,
(0.25,0.75) if s = s3 (0.55,0.75) if 5= s3
(0.15,0.85) if s =s4 (0.40,0.85) if s =s4

Clearly L is a PSBS, but L is not a PSBS.

Definition 3.5. Let (S, ®1, @9, ®3) and (S2, ®1, ®2, ®3) be any two bisemirings Let

A : 87 — S5 be any function and L be the PSBS in S1, V be the PSBS in A(S;) = S,

defined by 77 (s2) = sup 77 (s1)andw (s3) = inf  w?(sy),foralls; € S
s1€EA—1sy s1€EAT sy

and sy € S. Then L is called preimage of V under A and is denoted by A~1(V).

Theorem 3.8. Let (S1,®1, D2, P3) and (S2,©1,®2, ©3) be any two bisemirings. The
homomorphic image of PSBS of S1 is a PSBS of So.

Proof. Let A : S; — S be a homomorphism. Then A(s; ®1 s2) = A(s1) ®1
A(s2), A(s1 D2 s2) = A(s1) @2 A(s2) and A(sy @3 s2) = A(s1) @3 A(sz) for all
$1,82 € S1. LetV = A(L), L is the PSBS of S;. Let A(Sl), A(SQ) € Sy,

™/ (A(s1) @1 A(s2)) > 7 (s1 @y s2)

> min{ny (s1), 77 (s2)}

= min{r{y A(s1), 70 A(s)}
T/ (A(s1) ©2 A(s2)) > 77 (51 B 52)

> min{ny(s1), 77 (s2)}

= min{r? A(s1), 7 A(s2)}
7 (A(s1) @3 A(s2)) > 7 (51 D3 52)

> min{r? (s1), 77 (52}

= min{r{y A(s1), 7, A(s)}

and

wi (A(s1) @1 A(s2)) < wi (51 @1 52)

< max{w? (s1),w? (s2)}

= maX{W?A(Sl),W‘i}A(SQ)}
Wi (A(s1) @2 A(s2)) < wi(s1 B2 s2)

< max{wf (s1),0 (52)}

= max{wif A(s1),wi? A(s2)}
Wiy (A(s1) O3 A(s2)) < wi (51 D3 s2)

< mas{w (s1),07 (52)}

= max{wi/ A(s1),wi? A(s2)}.

Hence V is a PSBS of S5.

Theorem 3.9. Let (S, ®1, Do, ®3) and (S2, ®O1, ®O2, ®O3) be any two bisemirings. The
homomorphic preimage of PSBS of Sy is PSBS of 51.
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Proof. Let A : S; — S5 be a homomorphism. Then A(s; @1 s2) = A(s1) @1 A(sz),
A(s1 D2 s2) = A(s1) Oz A(sz) and A(sy @3 s2) = A(s1) @3 A(sa) V s1,82 € 5.
Let V = A(L), where V is an PSBS of S5. Now,

w7 (s1@1 82) = 7 (A(s1) ©1 A(s2))
> min{r A(s1), 77 A(s2)}
= min{r (s1), 77 (s2)}
w7 (51 @2 52) = 7 (A(s1) O A(s2))
> min{m{? A(sy), 77 A(s2)}
= min{ry (s1), 77 (s2)}
w7 (51 @3 82) = 7 (A(s1) ©3 A(s2))
> min{r A(s1), 77 A(s2)}
= min{r (s1), 77 (s2)}
and
wi(s1®152) = wil (A(s1) ©O1 A(s2))
< max{w{? A(s1),wil Asz)}
= max{w (s1), w7 (s2)}
wi (s1 @2 82) = wi (A(s1) O A(s2))
< max{w{? A(s1),wid Asy)}
= max{wy (s1),wr (s2)}
wi (s1 @3 52) = wif (A(s1) O3 A(s2))
< max{wi/@A(sl),wV@A(sQ)}
= max{w (s1),wy (s2)}
Hence L is a PSBS of 5.
Theorem 3.10. Let L be a PSBS of S, then L, g) is a SBS, for o, 8 € [0, 1].

Theorem 3.11. Let (S, ®1, B2, ®3) and (S2, ®1,©2, ®3) be any two bisemirings. If
A2 Sy — Sy is a homomorphism, then A(L q, py) is a level SBS of an PSBS V' of Ss.

Proof. Let A : S; — Sy be a homomorphism. Then A(s; @1 s2) = A(s1) ®1
A(s2), A(s1 D2 s2) = A(s1) @2 A(s2) and A(sy @3 s2) = A(s1) @3 A(sz) for all
s1,82 € P.LetV = A(L), L is a PSBS of S;. By Theorem[3.8] V is a PSBS of S5. Let
L(q,p5) be alevel SBS of L. Suppose 51, 52 € L(q,5). Then A(sy @1 52), A(s1 @2 52) and
A(Sl D3 82) € L(aﬁ)- NOW, W‘%J(A(Sﬁ) > 71'?(81) > 0[77T‘%2,(A(82)) > W?(Sz) > .
Then W“?(A(Sl) ®1 A(SQ)) > ’/T?(Sl @1 52) Z «, W“?(A(Sl) ®2 A(Sg)) Z 7TL97(51 D2
s9) > aand ( (s1)©3A(s )) > 77 (s1®382) > a, forall A(s1), A(sz) € Sa. Now,
w2 (D(s2)) S w7 (51) < oo (Als2)) < w0 (32) < B. ThenwiZ (As1) On A(sn) <
w? (s1 ®1 32) < B, wil (A(s1) @2 A(s2)) < w(s1 D2 52) < B and wil (A(sy) O3
A(s2)) S wf(s1@382) < B, forall A(sy), A(s2) € So. Hence A(L(q,4)) is a level SBS
of aPSBS V of Ss.

Theorem 3.12. Ler (S1,®1, @9, ®3) and (52, ®1, D2, @3) be any two bisemirings. If
A1 Sy — Sy is a homomorphism, then L, gy is a level SBS of an PSBS L of S;.
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Proof. Let A : S; — Sy be a homomorphism. Then A(s; ®1 s2) = A(sy) ®1
A(s2), A(s1 B2 s2) = A(s1) @2 A(se) and A(sy B3 s2) = A(s1) @3 A(sz) for all
s1,82 € S1. Let V. = A(L), V is a PSBS of Sy. By Theorem L is an PSBS of
S1. Let A(L,,p)) be a level SBS of V. Suppose A(s1), A(s2) € A(La,p)). Then
A(Sl D1 52), A(Sl Do 52) and A(Sl D3 82) c A(L(aﬁ)) NOW, 7'("[1@(51) = W‘?(A(sl)) Z
a,wL‘@(SQ) = W“?(A(SQ)) > «. Then 71'?(51 D1 82) > a,ﬂL‘@(sl @9 s2) > « and
77 (51@352) > a. Now, w? (s1) = wiZ (A(s1)) < B,w? (s2) = wiZ (A(s2)) < B. Then
Wy (51®152) = wif (A(s1) ©1A(52)) < B, w7 (51B252) = wif (A(s1) ©2A(s2)) < B
and w7’ (51 B3 s2) = w (A(s1) @3 A(s2)) < B, for all sy, 52 € Sy. Hence L, ) is a
level SBS of a PSBS L of S;.

4. PYTHAGOREAN NORMAL SUBBISEMIRING
Definition 4.1. A fuzzy subset L of S is said to be a FNSBS if

7TL(U1 *1 u2) = 7TL(U2 *1 U1)
7TL(U1 *9 UQ) = 7TL(U2 *9 Ul)

7TL(U1 *3 Ug) = 7TL(U2 *3 ’U,l)

YV ui,ug € S.

Definition 4.2. A Pythagorean fuzzy subset L of S is said to be a PNSBS if

ﬂ?(ul *1 Ug) = WL‘@(UQ *1 Up)

W?(ul *9 ’LLQ) = W?(UQ *9 Ul)

W?(ul *3 Ug) = W’LQZ(UQ *3 Ul)

wfz(ul *1 Ug) = w?(ug *1 Up)
wL‘@(ul *9 Ug) = w?(uQ, *9 ul)
wfv(ul *3 UQ) = u}ng(’LLQ *3 Ul)

vV ouy,ug € S.
Theorem 4.1. The intersection of a family of PNSBS is a PNSBS.

Theorem 4.2. If L and M are any two PNSBS of S1 and Ss respectively, then L x M is
a PNSBS of S.

Theorem 4.3. Let L be the PNSBS of S and V' be the strongest Pythagorean relation of
S. Then L is a PNSBS of S if and only if V is a PNSBS of S x S.

Theorem 4.4. Let (S1, D1, B2, P3) and (Sa, @1, @2, @3) be any two bisemirings.
(i) The homomorphic image of a PNSBS of S is a PNSBS of Ss.
(i) The homomorphic preimage of a PNSBS of S5 is a PNSBS of S1.

5. CONCLUSIONS

The main goal of this work is to present a Pythagorean normal subbisemiring of bisemir-
ing. We proposed image and preimage of Pythagorean subbisemiring of bisemiring. So in
future, we should consider the Pythagorean spherical and cubic subbisemiring of bisemir-
ing.
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