

ON PYTHAGOREAN NORMAL SUBBISEMIRING OF BISEMIRING

M. PALANIKUMAR* AND K. ARULMOZHI

Abstract

We discuss the notion of Pythagorean subbisemiring, level sets of Pythagorean subbisemirings and Pythagorean normal subbisemiring of a bisemiring. Also, we investigate some of the properties related to subbisemirings. The fuzzy subset $L=\left(\pi_{L}^{\mathscr{P}}, \omega_{L}^{\mathscr{P}}\right)$ is a Pythagorean subbisemiring if and only if all non-empty level set $L_{(t, s)}(t, s \in(0,1])$ is a subbisemiring. The cartesian product of two Pythagorean subbisemiring is also Pythagorean subbisemiring. The homomorphic image and preimage of Pythagorean subbisemiring is also Pythagorean subbisemiring. To illustrate our results and examples are given.

1. Introduction

The study of semirings was started by the German Mathematician Dedekind in connection with ideals of commutative rings. Later on semiring were studied by the American Mathematician Vandever in 1935 [11], who accepted semiring as a fundamental algebraic structure. It was basically the generalization of rings and distributive lattices. However the developments of the theory in semirings have been taking place since 1950. L.A Zadeh [18] proposed by fuzzy set theory in 1965 suggests that decision makers are to be solving uncertain problems by considering membership degree. In 1986, Atanassov [7] introduced the notion of intuitionistic fuzzy sets and is characterized by a degree of membership and non-membership satisfying the condition that sum of its membership degree and non membership degree is not exceeding one [7]. However, we may interact a problem in decision making events where the sum of the degree of membership and non-membership of a particular attribute is exceeding one. So Yager was introduced by the concept of Pythagorean sets [16]. It has been to extended the intuitionistic fuzzy sets and characterized by the condition that square sum of its degree of membership and non membership is not exceeding one. In 1993, J. Ahsan, K. Saifullah, and F. Khan [2] introduced the notion of fuzzy semirings. In 2001, M.K Sen and S. Ghosh was introduced in bisemirings. A bisemiring $(S,+, \circ, \times)$ is an algebraic structure in which $(S,+, \circ)$ and (S, \circ, \times) are semirings in which $(S,+),(S, \circ)$ and (S, \times) are semigroups such that (i) $l_{1} \circ\left(l_{2}+l_{3}\right)=\left(l_{1} \circ l_{2}\right)+\left(l_{1} \circ l_{3}\right)$, (ii) $\left(l_{2}+l_{3}\right) \circ l_{1}=\left(l_{2} \circ l_{1}\right)+\left(l_{3} \circ l_{1}\right)$ and (iii) $l_{1} \times\left(l_{2} \circ l_{3}\right)=\left(l_{1} \times l_{2}\right) \circ\left(l_{1} \times l_{3}\right)$, (iv) $\left(l_{2} \circ l_{3}\right) \times l_{1}=\left(l_{2} \times l_{1}\right) \circ\left(l_{3} \times l_{1}\right), \forall l_{1}, l_{2}, l_{3} \in S$ [15]. A non-empty subset B of S is a subbisemiring if and only if $l_{1}+l_{2}, l_{1} \circ l_{2}, l_{1} \times l_{2} \in B$ for all $l_{1}, l_{2} \in B$

2010 Mathematics Subject Classification. 16Y60, 05C60, 03 E 72.
Key words and phrases. Subbisemiring; bisemiring; Homomorphism; Normal.
Received: December 28, 2020. Accepted: March 11, 2021. Published: March 31, 2021.
*Corresponding author.
[10]. The purpose of this paper is to extend the concept of intuitionistic subsemiring of semiring to Pythagorean subbisemiring of bisemiring. Also we obtain Pythagorean normal subbisemiring of bisemiring.

2. Preliminaries

Notations: (i) Pythagorean subsemirings, Pythagorean subbisemirings, Pythagorean normal subsemirings, Pythagorean normal subbisemirings shortly PSS, PSBS, PNSS, PNSBS respectively.
(ii) fuzzy subsemirings, subbisemirings, fuzzy subbisemirings shortly FSS, SBS, FSBS respectively.

Definition 2.1. Let $(S,+, \cdot)$ be semiring. A fuzzy subset L of S is said to be FSS if (i) $\pi_{L}\left(u_{1}+u_{2}\right) \geq \min \left\{\pi_{L}\left(u_{1}\right), \pi_{L}\left(u_{2}\right)\right\}$, (ii) $\pi_{L}\left(u_{1} \cdot u_{2}\right) \geq \min \left\{\pi_{L}\left(u_{1}\right), \pi_{L}\left(u_{2}\right)\right\}$ for all $u_{1}, u_{2} \in S$.
Definition 2.2. An intuitionistic fuzzy L in non-empty set U is defined, the form $L=\left\{<u, \pi_{L}(u), \omega_{L}(u) \mid u \in U>\right\}$ where $\pi_{L}: U \rightarrow[0,1]$ (define the degree of membership) and $\omega_{L}: U \rightarrow[0,1]$ (degree of non-membership) for every $u \in U$ satisfying $0 \leq \pi_{L}(u)+\omega_{L}(u) \leq 1$.
Definition 2.3. A Pythagorean fuzzy subset L in non-empty set U is defined, the form $L=\left\{<u, \pi_{L}^{\mathscr{P}}(u), \omega_{L}^{\mathscr{P}}(u) \mid u \in U>\right\}$ where $\pi_{L}^{\mathscr{P}}: U \rightarrow[0,1]$ (define the degree of membership) and $\omega_{L}^{\mathscr{P}}: U \rightarrow[0,1]$ (degree of non-membership) for every $u \in U$ satisfying $0 \leq\left(\pi_{L}^{\mathscr{P}}(u)\right)^{2}+\left(\omega_{L}^{\mathscr{P}}(u)\right)^{2} \leq 1$.
Definition 2.4. Let L and M be any two Pythagorean fuzzy subsets of a set U.
(i) $L \cap M=\left\{\left\langle u, \min \left\{\pi_{L}^{\mathscr{P}}(u), \pi_{M}^{\mathscr{P}}(u)\right\}, \max \left\{\omega_{L}^{\mathscr{P}}(u), \omega_{M}^{\mathscr{P}}(u)\right\}\right\rangle\right\}$
(ii) $L \cup M=\left\{\left\langle u, \max \left\{\pi_{L}^{\mathscr{P}}(u), \pi_{M}^{\mathscr{P}}(u)\right\}, \min \left\{\omega_{L}^{\mathscr{P}}(u), \omega_{M}^{\mathscr{P}}(u)\right\}\right\rangle\right\}$
(iii) $\square L=\left\{\left\langle u, \pi_{L}^{\mathscr{P}}(u), 1-\pi_{L}^{\mathscr{P}}(u)\right\rangle \mid u \in U\right\}$
(iv) $\diamond L=\left\{\left\langle u, 1-\omega_{L}^{\mathscr{P}}(u), \omega_{L}^{\mathscr{P}}(u)\right\rangle \mid u \in U\right\}$ for all $u \in U$.

Definition 2.5. Let $(S,+, \cdot)$ be semiring. A Pythagorean fuzzy subset L of S is said to be PSS of S if
(i) $\pi_{L}^{\mathscr{P}}\left(u_{1}+u_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(u_{1}\right), \pi_{L}^{\mathscr{P}}\left(u_{2}\right)\right\}$ and $\pi_{L}^{\mathscr{P}}\left(u_{1} \cdot u_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(u_{1}\right), \pi_{L}^{\mathscr{P}}\left(u_{2}\right)\right\}$
(ii) $\omega_{L}^{\mathscr{P}}\left(u_{1}+u_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(u_{1}\right), \omega_{L}^{\mathscr{P}}\left(u_{2}\right)\right\}$ and $\omega_{L}^{\mathscr{P}}\left(u_{1} \cdot u_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(u_{1}\right), \omega_{L}^{\mathscr{P}}\left(u_{2}\right)\right\}$ for $u_{1}, u_{2} \in S$.
Definition 2.6. Let $(S,+, \cdot)$ be semiring. A Pythagorean fuzzy subset L of S is said to be PNSS of S if
(i) $\pi_{L}^{\mathscr{P}}\left(u_{1}+u_{2}\right)=\pi_{L}^{\mathscr{P}}\left(u_{2}+u_{1}\right)$ and $\pi_{L}^{\mathscr{P}}\left(u_{1} \cdot u_{2}\right)=\pi_{L}^{\mathscr{P}}\left(u_{2} \cdot u_{1}\right)$
(ii) $\omega_{L}^{\mathscr{P}}\left(u_{1}+u_{2}\right)=\omega_{L}^{\mathscr{P}}\left(u_{2}+u_{1}\right)$ and $\omega_{L}^{\mathscr{P}}\left(u_{1} \cdot u_{2}\right)=\omega_{L}^{\mathscr{P}}\left(u_{2} \cdot u_{1}\right)$ for all $u_{1}, u_{2} \in S$.

Definition 2.7. Let L and M be Pythagorean fuzzy subsets of G and H respectively. The product of L and M denoted by $L \times M$ is defined as
$L \times M=\left\{\left\langle\left(u_{1}, u_{2}\right), \pi_{L \times M}^{\mathscr{P}}\left(u_{1}, u_{2}\right), \omega_{L \times M}^{\mathscr{P}}\left(u_{1}, u_{2}\right)\right\rangle \mid\right.$ for all $u_{1} \in G$ and $\left.u_{2} \in H\right\}$, where $\pi_{L \times M}^{\mathscr{P}}\left(u_{1}, u_{2}\right)=\min \left\{\pi_{L}^{\mathscr{P}}\left(u_{1}\right), \pi_{M}^{\mathscr{P}}\left(u_{2}\right)\right\}$ and $\omega_{L \times M}^{\mathscr{P}}\left(u_{1}, u_{2}\right)=\max \left\{\omega_{L}^{\mathscr{P}}\left(u_{1}\right), \omega_{M}^{\mathscr{P}}\left(u_{2}\right)\right\}$.
Definition 2.8. [10] Let $\left(S_{1},+, \cdot, \times\right)$ and $\left(S_{2}, \oplus, \circ, \otimes\right)$ be two bisemirings. A function $\theta: S_{1} \rightarrow S_{2}$ is said to be a homomorphism if
(i) $\theta\left(u_{1}+u_{2}\right)=\theta\left(u_{1}\right) \oplus \theta\left(u_{2}\right)$,
(ii) $\theta\left(u_{1} \cdot u_{2}\right)=\theta\left(u_{1}\right) \circ \theta\left(u_{2}\right)$,
(iii) $\theta\left(u_{1} \times u_{2}\right)=\theta\left(u_{1}\right) \otimes \theta\left(u_{2}\right)$ for all $u_{1}, u_{2} \in S_{1}$.

3. Pythagorean Subbisemiring

Here S denotes a bisemiring unless otherwise mentioned.

Definition 3.1. A fuzzy subset L of S is said to be a FSBS if

$$
\left\{\begin{array}{l}
\pi_{L}\left(u_{1} \star_{1} u_{2}\right) \geq \min \left\{\pi_{L}\left(u_{1}\right), \pi_{L}\left(u_{2}\right)\right\} \\
\pi_{L}\left(u_{1} \star_{2} u_{2}\right) \geq \min \left\{\pi_{L}\left(u_{1}\right), \pi_{L}\left(u_{2}\right)\right\} \\
\pi_{L}\left(u_{1} \star_{3} u_{2}\right) \geq \min \left\{\pi_{L}\left(u_{1}\right), \pi_{L}\left(u_{2}\right)\right\}
\end{array}\right.
$$

$\forall u_{1}, u_{2} \in S$.

Example 3.2. Let $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ be the bisemirings sith the Cayley tables:

\star_{1}	s_{1}	s_{2}	s_{3}	s_{4}
s_{1}	s_{1}	s_{2}	s_{3}	s_{4}
s_{2}	s_{2}	s_{2}	s_{2}	s_{2}
s_{3}	s_{3}	s_{2}	s_{3}	s_{4}
s_{4}	s_{4}	s_{2}	s_{4}	s_{4}

\star_{2}	s_{1}	s_{2}	s_{3}	s_{4}
s_{1}	s_{1}	s_{1}	s_{1}	s_{1}
s_{2}	s_{1}	s_{2}	s_{2}	s_{2}
s_{3}	s_{1}	s_{3}	s_{3}	s_{3}
s_{4}	s_{1}	s_{2}	s_{2}	s_{2}

\star_{3}	s_{1}	s_{2}	s_{3}	s_{4}
s_{1}	s_{1}	s_{1}	s_{1}	s_{1}
s_{2}	s_{1}	s_{1}	s_{1}	s_{3}
s_{3}	s_{1}	s_{1}	s_{1}	s_{3}
s_{4}	s_{1}	s_{1}	s_{1}	s_{3}

Then $\pi_{L}\left(s_{1}\right)=0.95, \pi_{L}\left(s_{2}\right)=0.75, \pi_{L}\left(s_{3}\right)=0.65, \pi_{L}\left(s_{4}\right)=0.55$. Clearly L is a FSBS.

Definition 3.3. A Pythagorean fuzzy subset $L=\left(\pi_{L}^{\mathscr{P}}, \omega_{L}^{\mathscr{P}}\right)$ of S is said to be a PSBS if

$$
\left\{\begin{array}{l}
\pi_{L}^{\mathscr{P}}\left(u_{1} \star_{1} u_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(u_{1}\right), \pi_{L}^{\mathscr{P}}\left(u_{2}\right)\right\} \\
\pi_{L}^{\mathscr{P}}\left(u_{1} \star_{2} u_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(u_{1}\right), \pi_{L}^{\mathscr{P}}\left(u_{2}\right)\right\} \\
\pi_{L}^{\mathscr{P}}\left(u_{1} \star_{3} u_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(u_{1}\right), \pi_{L}^{\mathscr{P}}\left(u_{2}\right)\right\}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\omega_{L}^{\mathscr{P}}\left(u_{1} \star_{1} u_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(u_{1}\right), \omega_{L}^{\mathscr{P}}\left(u_{2}\right)\right\} \\
\omega_{L}^{\mathscr{P}}\left(u_{1} \star_{2} u_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(u_{1}\right), \omega_{L}^{\mathscr{P}}\left(u_{2}\right)\right\} \\
\omega_{L}^{\mathscr{P}}\left(u_{1} \star_{3} u_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(u_{1}\right), \omega_{L}^{\mathscr{P}}\left(u_{2}\right)\right\}
\end{array}\right.
$$

$\forall u_{1}, u_{2} \in S$.

Example 3.4. By the Example 3.2 .

$$
\pi_{L}^{\mathscr{P}}(s)=\left\{\begin{array}{l}
0.70 \text { if } s=s_{1} \\
0.65 \text { if } s=s_{2} \\
0.55 \text { if } s=s_{3} \\
0.50 \text { if } s=s_{4}
\end{array} \quad \omega_{L}^{\mathscr{P}}(s)=\left\{\begin{array}{l}
0.50 \text { if } s=s_{1} \\
0.60 \text { if } s=s_{2} \\
0.75 \text { if } s=s_{3} \\
0.85 \text { if } s=s_{4}
\end{array}\right.\right.
$$

Clearly L is a PSBS.

Theorem 3.1. The intersection of a family of PSBS is a PSBS of S.

Proof. Let $\left\{V_{i}: i \in I\right\}$ be a family of PSBS and $L=\bigcap_{i \in I} V_{i}$. Let $s_{1}, s_{2} \in S$. Then

$$
\begin{aligned}
\pi_{L}^{\mathscr{P}}\left(s_{1} \star_{1} s_{2}\right) & =\inf _{i \in I} \pi_{V_{i}}^{\mathscr{P}}\left(s_{1} \star_{1} s_{2}\right) \\
& \geq \inf _{i \in I} \min \left\{\pi_{V_{i}}^{\mathscr{P}}\left(s_{1}\right), \pi_{V_{i}}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\min \left\{\inf _{i \in I} \pi_{V_{i}}^{\mathscr{P}}\left(s_{1}\right), \inf _{i \in I} \pi_{V_{i}}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\}
\end{aligned}
$$

Similarly, $\pi_{L}^{\mathscr{P}}\left(s_{1} \star_{2} s_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\}$ and $\pi_{L}^{\mathscr{P}}\left(s_{1} \star_{3} s_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\}$.

$$
\begin{aligned}
\omega_{L}^{\mathscr{P}}\left(s_{1} \star_{1} s_{2}\right) & =\sup _{i \in I} \omega_{V_{i}}^{\mathscr{P}}\left(s_{1} \star_{1} s_{2}\right) \\
& \leq \sup _{i \in I} \max \left\{\omega_{V_{i}}^{\mathscr{P}}\left(s_{1}\right), \omega_{V_{i}}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\max \left\{\sup _{i \in I} \omega_{V_{i}}^{\mathscr{P}}\left(s_{1}\right), \sup _{i \in I} \omega_{V_{i}}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\}
\end{aligned}
$$

Similarly, $\omega_{L}^{\mathscr{P}}\left(s_{1} \star_{2} s_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\}$ and $\omega_{L}^{\mathscr{P}}\left(s_{1} \star_{3} s_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\}$. Hence L is a PSBS.
Theorem 3.2. If L and M are any two PSBS of S_{1} and S_{2} respectively, then $L \times M$ is a PSBS.

Proof. Let L and M be two PSBS of S_{1} and S_{2} respectively. Let $l_{1}, l_{2} \in S_{1}$ and $m_{1}, m_{2} \in S_{2}$. Then $\left(l_{1}, l_{2}\right)$ and $\left(m_{1}, m_{2}\right)$ are in $S_{1} \times S_{2}$. Now

$$
\begin{aligned}
\pi_{L \times M}^{\mathscr{P}}\left[\left(l_{1}, m_{1}\right) \star_{1}\left(l_{2}, m_{2}\right)\right] & =\pi_{L \times M}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}, m_{1} \star_{1} m_{2}\right) \\
& =\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}\right), \pi_{M}^{\mathscr{P}}\left(m_{1} \star_{1} m_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}, \min \left\{\pi_{M}^{\mathscr{P}}\left(m_{1}\right), \pi_{M}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{M}^{\mathscr{P}}\left(m_{1}\right)\right\}, \min \left\{\pi_{L}^{\mathscr{P}}\left(l_{2}\right), \pi_{M}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\} \\
& =\min \left\{\pi_{L \times M}^{\mathscr{P}}\left(l_{1}, m_{1}\right), \pi_{L \times M}^{\mathscr{P}}\left(l_{2}, m_{2}\right)\right\}
\end{aligned}
$$

Also $\pi_{L \times M}^{\mathscr{P}}\left[\left(l_{1}, m_{1}\right) \star_{2}\left(l_{2}, m_{2}\right)\right] \geq \min \left\{\pi_{L \times M}^{\mathscr{P}}\left(l_{1}, m_{1}\right), \pi_{L \times M}^{\mathscr{P}}\left(l_{2}, m_{2}\right)\right\}$, $\pi_{L \times M}^{\mathscr{P}}\left[\left(l_{1}, m_{1}\right) \star_{3}\left(l_{2}, m_{2}\right)\right] \geq \min \left\{\pi_{L \times M}^{\mathscr{P}}\left(l_{1}, m_{1}\right), \pi_{L \times M}^{\mathscr{P}}\left(l_{2}, m_{2}\right)\right\}$. Similarly, $\omega_{L \times M}^{\mathscr{P}}\left[\left(l_{1}, m_{1}\right) \star_{1}\left(l_{2}, m_{2}\right)\right]=\omega_{L \times M}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}, m_{1} \star_{1} m_{2}\right)$

$$
=\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}\right), \omega_{M}^{\mathscr{P}}\left(m_{1} \star_{1} m_{2}\right)\right\}
$$

$$
\leq \max \left\{\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}, \max \left\{\omega_{M}^{\mathscr{P}}\left(m_{1}\right), \omega_{M}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\}
$$

$$
=\max \left\{\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{M}^{\mathscr{P}}\left(m_{1}\right)\right\}, \max \left\{\omega_{L}^{\mathscr{P}}\left(l_{2}\right), \omega_{M}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\}
$$

$$
=\max \left\{\omega_{L \times M}^{\mathscr{P}}\left(l_{1}, m_{1}\right), \omega_{L \times M}^{\mathscr{P}}\left(l_{2}, m_{2}\right)\right\}
$$

Also $\omega_{L \times M}^{\mathscr{P}}\left[\left(l_{1}, m_{1}\right) \star_{2}\left(l_{2}, m_{2}\right)\right] \leq \max \left\{\omega_{L \times M}^{\mathscr{P}}\left(l_{1}, m_{1}\right), \omega_{L \times M}^{\mathscr{P}}\left(l_{2}, m_{2}\right)\right\}$, $\omega_{L \times M}^{\mathscr{P}}\left[\left(l_{1}, m_{1}\right) \star_{3}\left(l_{2}, m_{2}\right)\right] \leq \max \left\{\omega_{L \times M}^{\mathscr{P}}\left(l_{1}, m_{1}\right), \omega_{L \times M}^{\mathscr{P}}\left(l_{2}, m_{2}\right)\right\}$. Hence $L \times M$ is a PSBS.
Theorem 3.3. Let L be fuzzy subset of S. Then $L=\left(\pi_{L}^{\mathscr{P}}, \omega_{L}^{\mathscr{P}}\right)$ is a PSBS if and only if all non-empty level set $L_{(t, s)}(t, s \in(0,1])$ is a SBS.

Proof. Assume that $L=\left(\pi_{L}^{\mathscr{P}}, \omega_{L}^{\mathscr{P}}\right)$ is a PSBS. For each $t, s \in(0,1]$ and $l_{1}, l_{2} \in L_{(t, s)}$. We have $\pi_{L}^{\mathscr{P}}\left(l_{1}\right) \geq t, \pi_{L}^{\mathscr{P}}\left(l_{2}\right) \geq t, \omega_{L}^{\mathscr{P}}\left(l_{1}\right) \leq s$ and $\omega_{L}^{\mathscr{P}}\left(l_{2}\right) \leq s$. Since L is a PSBS, $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\} \geq t, \pi_{L}^{\mathscr{P}}\left(l_{1} \star_{2} l_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\} \geq t$ and $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\} \geq t$. Similarly we prove that, $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}\right) \leq$ $\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\} \leq s, \omega_{L}^{\mathscr{P}}\left(l_{1} \star_{2} l_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\} \leq s$ and $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{1}\right.$ $\left.l_{2}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\} \leq s$. This implies that $l_{1} \star_{1} l_{2} \in L_{(t, s)}, l_{1} \star_{2} l_{2} \in L_{(t, s)}$ and $l_{1} \star_{3} l_{2} \in L_{(t, s)}$. Therefore $L_{(t, s)}$ is a SBS for each $t, s \in(0,1]$.
Conversely, assume that $L_{(t, s)}$ is a $\mathbf{S B S}$ for each $t, s \in(0,1]$. Let $l_{1}, l_{2} \in S$. Then $l_{1}, l_{2} \in L_{(t, s)}$,where $t=\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}$ and $s=\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}$. Thus, $l_{1} \star_{1} l_{2} \in L_{(t, s)}, l_{1} \star_{2} l_{2} \in L_{(t, s)}$ and $l_{1} \star_{3} l_{2} \in L_{(t, s)}$ imply $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}\right) \geq t=$ $\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}, \pi_{L}^{\mathscr{P}}\left(l_{1} \star_{2} l_{2}\right) \geq t=\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}$ and $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{3} l_{2}\right) \geq t=$ $\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}$. Similarly, $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{1} l_{2}\right) \leq s=\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}, \omega_{L}^{\mathscr{P}}\left(l_{1} \star_{2}\right.$ $\left.l_{2}\right) \leq s=\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}$ and $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{3} l_{2}\right) \leq s=\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}$. Hence $L=\left(\pi_{L}^{\mathscr{P}}, \omega_{L}^{\mathscr{P}}\right)$ is a PSBS.
Theorem 3.4. Let L be the PSBS and V be the strongest Pythagorean relation of S. Then L is the PSBS if and only if V is a PSBS of $S \times S$.

Proof. Let L be an PSBS and V be the strongest Pythagorean relation of S. For $l=\left(l_{1}, l_{2}\right)$ and $m=\left(m_{1}, m_{2}\right)$ are in $S \times S$. We have

$$
\begin{aligned}
\pi_{V}^{\mathscr{P}}\left(l \star_{1} m\right) & =\pi_{V}^{\mathscr{P}}\left[\left(\left(l_{1}, l_{2}\right) \star_{1}\left(m_{1}, m_{2}\right)\right]\right. \\
& =\pi_{V}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}, l_{2} \star_{1} m_{2}\right) \\
& =\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2} \star_{1} m_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(m_{1}\right)\right\}, \min \left\{\pi_{L}^{\mathscr{P}}\left(l_{2}\right), \pi_{L}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}, \min \left\{\pi_{L}^{\mathscr{P}}\left(m_{1}\right), \pi_{L}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\} \\
& =\min \left\{\pi_{V}^{\mathscr{P}}\left(l_{1}, l_{2}\right), \pi_{V}^{\mathscr{P}}\left(m_{1}, m_{2}\right)\right\} \\
& =\min \left\{\pi_{V}^{\mathscr{P}}(l), \pi_{V}^{\mathscr{P}}(m)\right\}
\end{aligned}
$$

Also $\pi_{V}^{\mathscr{P}}\left(l \star_{2} m\right) \geq \min \left\{\pi_{V}^{\mathscr{P}}(l), \pi_{V}^{\mathscr{P}}(m)\right\}, \pi_{V}^{\mathscr{P}}\left(l \star_{3} m\right) \geq \min \left\{\pi_{V}^{\mathscr{P}}(l), \pi_{V}^{\mathscr{P}}(m)\right\}$.
Similarly, $\omega_{V}^{\mathscr{P}}\left(l \star_{1} m\right) \leq \max \left\{\omega_{V}^{\mathscr{P}}(l), \omega_{V}^{\mathscr{P}}(m)\right\}, \omega_{V}^{\mathscr{P}}\left(l \star_{2} m\right) \leq \max \left\{\omega_{V}^{\mathscr{P}}(l), \omega_{V}^{\mathscr{P}}(m)\right\}$, $\omega_{V}^{\mathscr{P}}\left(l \star_{3} m\right) \leq \max \left\{\omega_{V}^{\mathscr{P}}(l), \omega_{V}^{\mathscr{P}}(m)\right\}$. Hence V is a PSBS of $S \times S$.
Conversely assume that V is a PSBS of $S \times S, l=\left(l_{1}, l_{2}\right)$ and $m=\left(m_{1}, m_{2}\right)$ are in $S \times S$. Now, $\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2} \star_{1} m_{2}\right)\right]$

$$
\begin{aligned}
& =\pi_{V}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}, l_{2} \star_{1} m_{2}\right) \\
& =\pi_{V}^{\mathscr{P}}\left[\left(l_{1}, l_{2}\right) \star_{1}\left(m_{1}, m_{2}\right)\right] \\
& =\pi_{V}^{\mathscr{P}}\left(l \star_{1} m\right) \\
& \geq \min \left\{\pi_{V}^{\mathscr{P}}(l), \pi_{V}^{\mathscr{P}}(m)\right\} \\
& \left.=\min \left\{\pi_{V}^{\mathscr{P}}\left(l_{1}, l_{2}\right)\right\}, \pi_{V}^{\mathscr{P}}\left(m_{1}, m_{2}\right)\right\} \\
& =\min \left\{\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}, \min \left\{\pi_{L}^{\mathscr{P}}\left(m_{1}\right), \pi_{L}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\}
\end{aligned}
$$

If $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}\right) \leq \pi_{L}^{\mathscr{P}}\left(l_{2} \star_{1} m_{2}\right)$, then $\pi_{L}^{\mathscr{P}}\left(l_{1}\right) \leq \pi_{L}^{\mathscr{P}}\left(l_{2}\right)$ and $\pi_{L}^{\mathscr{P}}\left(m_{1}\right) \leq \pi_{L}^{\mathscr{P}}\left(m_{2}\right)$. We get $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(m_{1}\right)\right\}$ for all $l_{1}, m_{1} \in S$, and
$\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{2} m_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2} \star_{2} m_{2}\right)\right\} \geq \min \left\{\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}\right.$,
$\left.\min \left\{\pi_{L}^{\mathscr{P}}\left(m_{1}\right), \pi_{L}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\}$
If $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{2} m_{1}\right) \leq \pi_{L}^{\mathscr{P}}\left(l_{2} \star_{2} m_{2}\right)$, then $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{2} m_{1}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(m_{1}\right)\right\}$.
$\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{3} m_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2} \star_{3} m_{2}\right)\right\} \geq \min \left\{\min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}\right.$,
$\left.\min \left\{\pi_{L}^{\mathscr{P}}\left(m_{1}\right), \pi_{L}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\}$
If $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{3} m_{1}\right) \leq \pi_{L}^{\mathscr{P}}\left(l_{2} \star_{3} m_{2}\right)$, then $\pi_{L}^{\mathscr{P}}\left(l_{1} \star_{3} m_{1}\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(l_{1}\right), \pi_{L}^{\mathscr{P}}\left(m_{1}\right)\right\}$.
Similarly
$\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2} \star_{1} m_{2}\right)\right\} \leq \max \left\{\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}\right.$,
$\left.\max \left\{\omega_{L}^{\mathscr{P}}\left(m_{1}\right), \omega_{L}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\}$
If $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}\right) \geq \omega_{L}^{\mathscr{P}}\left(l_{2} \star_{1} m_{2}\right)$, then $\omega_{L}^{\mathscr{P}}\left(l_{1}\right) \geq \omega_{L}^{\mathscr{P}}\left(l_{2}\right)$ and $\omega_{L}^{\mathscr{P}}\left(m_{1}\right) \geq \omega_{L}^{\mathscr{P}}\left(m_{2}\right)$.
We get $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{1} m_{1}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(m_{1}\right)\right\}$.
$\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{2} m_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2} \star_{2} m_{2}\right)\right\} \leq \max \left\{\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}\right.$,
$\left.\max \left\{\omega_{L}^{\mathscr{P}}\left(m_{1}\right), \omega_{L}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\}$
If $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{2} m_{1}\right) \geq \omega_{L}^{\mathscr{P}}\left(l_{2} \star_{2} m_{2}\right)$, then $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{2} m_{1}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(m_{1}\right)\right\}$.
$\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{3} m_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2} \star_{3} m_{2}\right)\right\} \leq \max \left\{\max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(l_{2}\right)\right\}\right.$,
$\left.\max \left\{\omega_{L}^{\mathscr{P}}\left(m_{1}\right), \omega_{L}^{\mathscr{P}}\left(m_{2}\right)\right\}\right\}$
If $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{3} m_{1}\right) \geq \omega_{L}^{\mathscr{P}}\left(l_{2} \star_{3} m_{2}\right)$, then $\omega_{L}^{\mathscr{P}}\left(l_{1} \star_{3} m_{1}\right) \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(l_{1}\right), \omega_{L}^{\mathscr{P}}\left(m_{1}\right)\right\}$.
Hence L is a PSBS.
Theorem 3.5. (i) If L is the PSBS, then $H_{1}=\left\{s \mid s \in S: \pi_{L}^{\mathscr{P}}(s)=1, \omega_{L}^{\mathscr{P}}(s)=0\right\}$ is either empty or is a SBS.
(ii) If L is the PSBS, then $H_{2}=\left\{\left\langle s, \pi_{L}^{\mathscr{P}}(s)\right\rangle: 0<\pi_{L}^{\mathscr{P}}(s) \leq 1, \omega_{L}^{\mathscr{P}}(s)=0\right\}$ is either empty or SBS.
(iii) If L is the PSBS, then $H_{3}=\left\{\left\langle s, \pi_{L}^{\mathscr{P}}(s)\right\rangle: 0<\pi_{L}^{\mathscr{P}}(s) \leq 1\right\}$ is either empty or SBS. (iv) If L is the PSBS, then $H_{4}=\left\{\left\langle s, \omega_{L}^{\mathscr{P}}(s)\right\rangle: 0<\omega_{L}^{\mathscr{P}}(s) \leq 1\right\}$ is either empty or $\mathbf{S B S}$.

Theorem 3.6. If L is a PSBS of $\left(S, \star_{1}, \star_{2}, \star_{3}\right)$, then $\square L$ is a PSBS.
Proof. Let L be an PSBS of a bisemiring S. Consider $L=\left\{\left\langle s, \pi_{L}^{\mathscr{P}}(s), \omega_{L}^{\mathscr{P}}(s)\right\rangle\right\}$, for all $s \in S$. Take $\square L=M=\left\{\left\langle s, \pi_{M}^{\mathscr{P}}(s), \omega_{M}^{\mathscr{P}}(s)\right\rangle\right\}$, where $\pi_{M}^{\mathscr{P}}(s)=\pi_{L}^{\mathscr{P}}(s)$, $\omega_{M}^{\mathscr{P}}(s)=1-\pi_{L}^{\mathscr{P}}(s)$. Clearlt $\pi_{M}^{\mathscr{P}}\left(s \star_{1} t\right) \geq \min \left\{\pi_{M}^{\mathscr{P}}(s), \pi_{M}^{\mathscr{P}}(t)\right\}, \pi_{M}^{\mathscr{P}}\left(s \star_{2} t\right) \geq$ $\min \left\{\pi_{M}^{\mathscr{P}}(s), \pi_{M}^{\mathscr{P}}(t)\right\}, \pi_{M}^{\mathscr{P}}\left(s \star_{3} t\right) \geq \min \left\{\pi_{M}^{\mathscr{P}}(s), \pi_{M}^{\mathscr{P}}(t)\right\}, \forall s$ and t in S. Since L is an PSBS. Then $\pi_{L}^{\mathscr{P}}\left(s \star_{1} t\right) \geq \min \left\{\pi_{L}^{\mathscr{P}}(s), \pi_{L}^{\mathscr{P}}(t)\right\}$ implies that $1-\omega_{M}^{\mathscr{P}}\left(s \star_{1} t\right) \geq$ $\min \left\{\left(1-\omega_{M}^{\mathscr{P}}(s)\right),\left(1-\omega_{M}^{\mathscr{P}}(t)\right)\right\}$. Thus $\omega_{M}^{\mathscr{P}}\left(s \star_{1} t\right) \leq 1-\min \left\{\left(1-\omega_{M}^{\mathscr{P}}(s)\right),(1-\right.$ $\left.\left.\omega_{M}^{\mathscr{P}}(t)\right)\right\}=\max \left\{\omega_{M}^{\mathscr{P}}(s), \omega_{M}^{\mathscr{P}}(t)\right\}$. Therefore $\omega_{M}^{\mathscr{P}}\left(s \star_{1} t\right) \leq \max \left\{\omega_{M}^{\mathscr{P}}(s), \omega_{M}^{\mathscr{P}}(t)\right\}$. Similarly, $\omega_{M}^{\mathscr{P}}\left(s \star_{2} t\right) \leq \max \left\{\omega_{M}^{\mathscr{P}}(s), \omega_{M}^{\mathscr{P}}(t)\right\}$ and $\omega_{M}^{\mathscr{P}}\left(s \star_{3} t\right) \leq \max \left\{\omega_{M}^{\mathscr{P}}(s), \omega_{M}^{\mathscr{P}}(t)\right\}$, for all $s, t \in S$. Hence $\square L$ is a PSBS .

The reverse of the Theorem 3.6 fails by the Example 3.2

$$
\square L=\left\{\begin{array}{ll}
\langle 0.85,0.15\rangle & \text { if } s=s_{1} \\
\langle 0.75,0.25\rangle & \text { if } s=s_{2} \\
\langle 0.65,0.35\rangle & \text { if } s=s_{3} \\
\langle 0.60,0.40\rangle & \text { if } s=s_{4}
\end{array} \quad L= \begin{cases}\langle 0.85,0.45\rangle & \text { if } s=s_{1} \\
\langle 0.75,0.55\rangle & \text { if } s=s_{2} \\
\langle 0.65,0.70\rangle & \text { if } s=s_{3} \\
\langle 0.60,0.65\rangle & \text { if } s=s_{4}\end{cases}\right.
$$

Clearly $\square L$ is a PSBS, but L is not a PSBS .
Theorem 3.7. If L is a PSBS of $\left(S, \star_{1}, \star_{2}, \star_{3}\right)$ then $\diamond L$ is a PSBS.
Proof. Let L be an PSBS. Consider $L=\left\{\left\langle s, \pi_{L}^{\mathscr{P}}(s), \omega_{L}^{\mathscr{P}}(s)\right\rangle\right\}, \forall s \in S$. Take $\diamond L=$ $M=\left\{\left\langle s, \pi_{M}^{\mathscr{P}}(s), \omega_{M}^{\mathscr{P}}(s)\right\rangle\right\}$ where $\pi_{M}^{\mathscr{P}}(s)=1-\omega_{L}^{\mathscr{P}}(s), \omega_{M}^{\mathscr{P}}(s)=\omega_{L}^{\mathscr{P}}(s)$ and the process of Theorem 3.6. Hence $\diamond L$ is a PSBS.

The inversion of Theorem 3.7 fails as in the Example 3.2 ,

$$
\diamond L=\left\{\begin{array}{l}
\langle 0.45,0.55\rangle \\
\langle 0.30,0.70\rangle \\
\text { if } s=s_{1} \\
\langle 0.25,0.75\rangle \\
\langle 0 . \\
\text { if } s=s_{3} \\
\langle 0.15,0.85\rangle
\end{array} \quad \text { if } s=s_{4} . \quad L= \begin{cases}\langle 0.60,0.65\rangle & \text { if } s=s_{1} \\
\langle 0.50,0.70\rangle & \text { if } s=s_{2} \\
\langle 0.55,0.75\rangle & \text { if } s=s_{3} \\
\langle 0.40,0.85\rangle & \text { if } s=s_{4}\end{cases}\right.
$$

Clearly $\diamond L$ is a PSBS, but L is not a PSBS.
Definition 3.5. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings Let $\Delta: S_{1} \rightarrow S_{2}$ be any function and L be the PSBS in S_{1}, V be the PSBS in $\Delta\left(S_{1}\right)=S_{2}$, defined by $\pi_{V}^{\mathscr{P}}\left(s_{2}\right)=\sup _{s_{1} \in \Delta^{-1} s_{2}} \pi_{L}^{\mathscr{P}}\left(s_{1}\right)$ and $\omega_{V}^{\mathscr{P}}\left(s_{2}\right)=\inf _{s_{1} \in \Delta^{-1} s_{2}} \omega_{L}^{\mathscr{P}}\left(s_{1}\right)$, for all $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$. Then L is called preimage of V under Δ and is denoted by $\Delta^{-1}(V)$.
Theorem 3.8. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. The homomorphic image of PSBS of S_{1} is a PSBS of S_{2}.

Proof. Let $\Delta: S_{1} \rightarrow S_{2}$ be a homomorphism. Then $\Delta\left(s_{1} \oplus_{1} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{1}$ $\Delta\left(s_{2}\right), \Delta\left(s_{1} \oplus_{2} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)$ and $\Delta\left(s_{1} \oplus_{3} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)$ for all $s_{1}, s_{2} \in S_{1}$. Let $V=\Delta(L), L$ is the PSBS of S_{1}. Let $\Delta\left(s_{1}\right), \Delta\left(s_{2}\right) \in S_{2}$,

$$
\begin{aligned}
\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{1} \Delta\left(s_{2}\right)\right) & \geq \pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{1} s_{2}\right) \\
& \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\min \left\{\pi_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \pi_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)\right) & \geq \pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{2} s_{2}\right) \\
& \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\min \left\{\pi_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \pi_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)\right) & \geq \pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{3} s_{2}\right) \\
& \geq \min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\min \left\{\pi_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \pi_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{1} \Delta\left(s_{2}\right)\right) & \leq \omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{1} s_{2}\right) \\
& \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\max \left\{\omega_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \omega_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)\right) & \leq \omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{2} s_{2}\right) \\
& \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\max \left\{\omega_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \omega_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)\right) & \leq \omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{3} s_{2}\right) \\
& \leq \max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
& =\max \left\{\omega_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \omega_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} .
\end{aligned}
$$

Hence V is a PSBS of S_{2}.
Theorem 3.9. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. The homomorphic preimage of PSBS of S_{2} is PSBS of S_{1}.

Proof. Let $\Delta: S_{1} \rightarrow S_{2}$ be a homomorphism. Then $\Delta\left(s_{1} \oplus_{1} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{1} \Delta\left(s_{2}\right)$, $\Delta\left(s_{1} \oplus_{2} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)$ and $\Delta\left(s_{1} \oplus_{3} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right) \forall s_{1}, s_{2} \in S_{1}$. Let $V=\Delta(L)$, where V is an PSBS of S_{2}. Now,

$$
\begin{aligned}
\pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{1} s_{2}\right) & =\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{1} \Delta\left(s_{2}\right)\right) \\
& \geq \min \left\{\pi_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \pi_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
& =\min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
\pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{2} s_{2}\right) & =\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)\right) \\
& \geq \min \left\{\pi_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \pi_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
& =\min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
\pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{3} s_{2}\right) & =\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)\right) \\
& \geq \min \left\{\pi_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \pi_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
& =\min \left\{\pi_{L}^{\mathscr{P}}\left(s_{1}\right), \pi_{L}^{\mathscr{P}}\left(s_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{1} s_{2}\right) & =\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{1} \Delta\left(s_{2}\right)\right) \\
& \leq \max \left\{\omega_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \omega_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
& =\max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
\omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{2} s_{2}\right) & =\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)\right) \\
& \leq \max \left\{\omega_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \omega_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
& =\max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\} \\
\omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{3} s_{2}\right) & =\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)\right) \\
& \leq \max \left\{\omega_{V}^{\mathscr{P}} \Delta\left(s_{1}\right), \omega_{V}^{\mathscr{P}} \Delta\left(s_{2}\right)\right\} \\
& =\max \left\{\omega_{L}^{\mathscr{P}}\left(s_{1}\right), \omega_{L}^{\mathscr{P}}\left(s_{2}\right)\right\}
\end{aligned}
$$

Hence L is a PSBS of S_{1}.
Theorem 3.10. Let L be a PSBS of S, then $L_{(\alpha, \beta)}$ is a SBS, for $\alpha, \beta \in[0,1]$.
Theorem 3.11. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. If $\Delta: S_{1} \rightarrow S_{2}$ is a homomorphism, then $\Delta\left(L_{(\alpha, \beta)}\right)$ is a level SBS of an PSBS V of S_{2}.

Proof. Let $\Delta: S_{1} \rightarrow S_{2}$ be a homomorphism. Then $\Delta\left(s_{1} \oplus_{1} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{1}$ $\Delta\left(s_{2}\right), \Delta\left(s_{1} \oplus_{2} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)$ and $\Delta\left(s_{1} \oplus_{3} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)$ for all $s_{1}, s_{2} \in P$. Let $V=\Delta(L), L$ is a PSBS of S_{1}. By Theorem 3.8, V is a PSBS of S_{2}. Let $L_{(\alpha, \beta)}$ be a level SBS of L. Suppose $s_{1}, s_{2} \in L_{(\alpha, \beta)}$. Then $\Delta\left(s_{1} \oplus_{1} s_{2}\right), \Delta\left(s_{1} \oplus_{2} s_{2}\right)$ and $\Delta\left(s_{1} \oplus_{3} s_{2}\right) \in L_{(\alpha, \beta)}$. Now, $\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right)\right) \geq \pi_{L}^{\mathscr{P}}\left(s_{1}\right) \geq \alpha, \pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{2}\right)\right) \geq \pi_{L}^{\mathscr{P}}\left(s_{2}\right) \geq \alpha$. Then $\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{1} \Delta\left(s_{2}\right)\right) \geq \pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{1} s_{2}\right) \geq \alpha, \pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)\right) \geq \pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{2}\right.$ $\left.s_{2}\right) \geq \alpha$ and $\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)\right) \geq \pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{3} s_{2}\right) \geq \alpha$, for all $\Delta\left(s_{1}\right), \Delta\left(s_{2}\right) \in S_{2}$. Now, $\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right)\right) \leq \omega_{L}^{\mathscr{P}}\left(s_{1}\right) \leq \beta, \omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{2}\right)\right) \leq \omega_{L}^{\mathscr{P}}\left(s_{2}\right) \leq \beta$. Then $\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{1} \Delta\left(s_{2}\right)\right) \leq$ $\omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{1} s_{2}\right) \leq \beta, \omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)\right) \leq \omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{2} s_{2}\right) \leq \beta$ and $\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{3}\right.$ $\left.\Delta\left(s_{2}\right)\right) \leq \omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{3} s_{2}\right) \leq \beta$, for all $\Delta\left(s_{1}\right), \Delta\left(s_{2}\right) \in S_{2}$. Hence $\Delta\left(L_{(\alpha, \beta)}\right)$ is a level SBS of a PSBS V of S_{2}.
Theorem 3.12. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. If $\Delta: S_{1} \rightarrow S_{2}$ is a homomorphism, then $L_{(\alpha, \beta)}$ is a level SBS of an PSBS L of S_{1}.

Proof. Let $\Delta: S_{1} \rightarrow S_{2}$ be a homomorphism. Then $\Delta\left(s_{1} \oplus_{1} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{1}$ $\Delta\left(s_{2}\right), \Delta\left(s_{1} \oplus_{2} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)$ and $\Delta\left(s_{1} \oplus_{3} s_{2}\right)=\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)$ for all $s_{1}, s_{2} \in S_{1}$. Let $V=\Delta(L), V$ is a PSBS of S_{2}. By Theorem 3.9, L is an PSBS of S_{1}. Let $\Delta\left(L_{(\alpha, \beta)}\right)$ be a level SBS of V. Suppose $\Delta\left(s_{1}\right), \Delta\left(s_{2}\right) \in \Delta\left(L_{(\alpha, \beta)}\right)$. Then $\Delta\left(s_{1} \oplus_{1} s_{2}\right), \Delta\left(s_{1} \oplus_{2} s_{2}\right)$ and $\Delta\left(s_{1} \oplus_{3} s_{2}\right) \in \Delta\left(L_{(\alpha, \beta)}\right)$. Now, $\pi_{L}^{\mathscr{P}}\left(s_{1}\right)=\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right)\right) \geq$ $\alpha, \pi_{L}^{\mathscr{P}}\left(s_{2}\right)=\pi_{V}^{\mathscr{P}}\left(\Delta\left(s_{2}\right)\right) \geq \alpha$. Then $\pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{1} s_{2}\right) \geq \alpha, \pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{2} s_{2}\right) \geq \alpha$ and $\pi_{L}^{\mathscr{P}}\left(s_{1} \oplus_{3} s_{2}\right) \geq \alpha$. Now, $\omega_{L}^{\mathscr{P}}\left(s_{1}\right)=\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right)\right) \leq \beta, \omega_{L}^{\mathscr{P}}\left(s_{2}\right)=\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{2}\right)\right) \leq \beta$. Then $\omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{1} s_{2}\right)=\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{1} \Delta\left(s_{2}\right)\right) \leq \beta, \omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{2} s_{2}\right)=\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{2} \Delta\left(s_{2}\right)\right) \leq \beta$ and $\omega_{L}^{\mathscr{P}}\left(s_{1} \oplus_{3} s_{2}\right)=\omega_{V}^{\mathscr{P}}\left(\Delta\left(s_{1}\right) \odot_{3} \Delta\left(s_{2}\right)\right) \leq \beta$, for all $s_{1}, s_{2} \in S_{1}$. Hence $L_{(\alpha, \beta)}$ is a level SBS of a PSBS L of S_{1}.

4. Pythagorean Normal Subbisemiring

Definition 4.1. A fuzzy subset L of S is said to be a FNSBS if

$$
\left\{\begin{array}{l}
\pi_{L}\left(u_{1} \star_{1} u_{2}\right)=\pi_{L}\left(u_{2} \star_{1} u_{1}\right) \\
\pi_{L}\left(u_{1} \star_{2} u_{2}\right)=\pi_{L}\left(u_{2} \star_{2} u_{1}\right) \\
\pi_{L}\left(u_{1} \star_{3} u_{2}\right)=\pi_{L}\left(u_{2} \star_{3} u_{1}\right)
\end{array}\right.
$$

$\forall u_{1}, u_{2} \in S$.
Definition 4.2. A Pythagorean fuzzy subset L of S is said to be a PNSBS if

$$
\left\{\begin{array}{l}
\pi_{L}^{\mathscr{P}}\left(u_{1} \star_{1} u_{2}\right)=\pi_{L}^{\mathscr{P}}\left(u_{2} \star_{1} u_{1}\right) \\
\pi_{L}^{\mathscr{P}}\left(u_{1} \star_{2} u_{2}\right)=\pi_{L}^{\mathscr{P}}\left(u_{2} \star_{2} u_{1}\right) \\
\pi_{L}^{\mathscr{P}}\left(u_{1} \star_{3} u_{2}\right)=\pi_{L}^{\mathscr{P}}\left(u_{2} \star_{3} u_{1}\right)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\omega_{L}^{\mathscr{P}}\left(u_{1} \star_{1} u_{2}\right)=\omega_{L}^{\mathscr{P}}\left(u_{2} \star_{1} u_{1}\right) \\
\omega_{L}^{\mathscr{P}}\left(u_{1} \star_{2} u_{2}\right)=\omega_{L}^{\mathscr{P}}\left(u_{2} \star_{2} u_{1}\right) \\
\omega_{L}^{\mathscr{P}}\left(u_{1} \star_{3} u_{2}\right)=\omega_{L}^{\mathscr{P}}\left(u_{2} \star_{3} u_{1}\right)
\end{array}\right.
$$

$\forall u_{1}, u_{2} \in S$.
Theorem 4.1. The intersection of a family of PNSBS is a PNSBS.
Theorem 4.2. If L and M are any two $\mathbf{P N S B S}$ of S_{1} and S_{2} respectively, then $L \times M$ is a PNSBS of S.

Theorem 4.3. Let L be the PNSBS of S and V be the strongest Pythagorean relation of S. Then L is a PNSBS of S if and only if V is a PNSBS of $S \times S$.

Theorem 4.4. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings.
(i) The homomorphic image of a PNSBS of S_{1} is a PNSBS of S_{2}.
(ii) The homomorphic preimage of a PNSBS of S_{2} is a PNSBS of S_{1}.

5. Conclusions

The main goal of this work is to present a Pythagorean normal subbisemiring of bisemiring. We proposed image and preimage of Pythagorean subbisemiring of bisemiring. So in future, we should consider the Pythagorean spherical and cubic subbisemiring of bisemiring.

6. ACKNOWLEDGEMENTS

The author is obliged the thankful to the reviewer for the numerous and significant suggestions that raised the consistency of the ideas presented in this paper.

REFERENCES

[1] A.K. Adak and D. Darvishi Salokolaei. Some properties of Pythagorean fuzzy ideal of near rings, International Journal of Applied Operational Research, 9(3) (2019), 1-9.
[2] J. Ahsan, K. Saifullah, and F. Khan. Fuzzy semirings, Fuzzy Sets and systems, 60 (1993), 309-320.
[3] K. Arulmozhi. New approach of various ideals in Ternary Semirings, Journal of Xidian University, 14(3) (2020), 22-29.
[4] K. Arulmozhi. The algebraic theory of Semigroups and Semirings, LAP LAMBERT Academic Publishing, Mauritius, (2019), 1-102.
[5] K. Arulmozhi. Some Fuzzy ideals of Algebraic Structures, LAP LAMBERT Academic Publishing, Mauritius, (2019), 1-88.
[6] K. Arulmozhi and M. Palanikumar. New Ways to Q-Fuzzy ideals in Ordered Semigroups, Journal of Xidian University, 14(3) (2020), 36-48.
[7] K. T. Atanassov. intuitionistic fuzzy sets, Fuzzy sets and Systems, 20 (1986), 87-96.
[8] Chiranjibe Jana, Tapan Senapati and Madhumangal Pal. Pythagorean fuzzy Dombi aggregation operators and its applications in multiple attribute decision making, International Journal of Intelligent Systems, 34(9) (2019), 2019-2038.
[9] Chiranjibe Jana and Madhumangal Pal. Application of bipolar intuitionistic fuzzy soft sets in decision making problem, International Journal of Fuzzy System Applications, 7(3) (2018), 32-55.
[10] Faward Hussian, Raja Muhammad Hashism, Ajab Khan and Muhammad Naeem. Generalization of bisemirings, International Journal of Computer Science and Information Security, 14(9) (2016), 275-289.
[11] S.J. Golan. Semirings and their Applications, Kluwer Academic Publishers, London, 1999.
[12] M. Palanikumar and K. Arulmozhi. On Various ideals and its Applications of Bisemirings, Gedrag And Organisatie Review, 33(2) (2020), 522-533.
[13] M. Palanikumar and K. Arulmozhi. On New Approach of Various fuzzy ideals in Ordered gamma semigroups, Gedrag And Organisatie Review, 33(2) (2020), 331-342.
[14] M. Palanikumar and K. Arulmozhi. On Various Tri-ideals in Ternary Semirings, Bulletin of the Mathematical Virtual Institute, 11(1) (2021), 79-90.
[15] M.K. Sen, S. Ghosh. An introduction to bisemirings, Southeast Asian Bulletin of Mathematics, 28(3) (2001), 547-559.
[16] R.R. Yager. Pythagorean membership grades in multi criteria decision making, IEEE Trans. Fuzzy Systems, 22 (2014), 958-965.
[17] Kifayat Ullah, Tahir Mahmood, Zeeshan Ali and Naeem Jan. On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Complex and Intelligent Systems, (2019), 1-13.
[18] L. A. Zadeh. Fuzzy sets, Information and Control, 8 (1965), 338-353.
M. PALANIKUMAR

Annamalai University, Department of Mathematics, Chidambaram, 608002, India
Email address: palanimaths86@gmail.com
K. Arulmozhi

Annamalai University, Department of Mathematics, Chidambaram, 608002, India
Email address: arulmozhiems@gmail.com

