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EXISTENCE OF GENERALIZED SUPER QUASI-CONSTANT CURVATURE

M. VASIULLA, Q. KHAN, A. KHAN AND M. ALI

ABSTRACT. In this paper we define and study a new kind of quasi-constant curvature
called generalized super-quasi-constant curvature. The existence of a generalized super
quasi-constant curvature has also been verified by an example. We prove that a super
quasi-umbilical hypersurface of a constant curvature manifold is a generalized super quasi-
constant curvature manifold. Furthermore, it is proved that manifold of generalized super
quasi-constant curvature is a super quasi-Einstein manifold. We have also introduced a
sufficient condition to be a Super quasi-Einstein manifold. Lastly, we construct an example
super quasi-Einstein manifold in general form.

1. INTRODUCTION

An Einstein manifold is a Riemannian or pseudo-Riemannian manifold whose Ricci
tensor Ric of type (0, 2) is non-zero and proportional to the metric tensor. Einstein mani-
folds form a natural subclass of various classes of Riemannian or semi-Riemannian mani-
folds by a curvature condition imposed on their Ricci tensor [1]. Also, the Einstein man-
ifold plays a very important role in Riemannian geometry as well as in general theory of
relativity.

In 2000, M.C. Chaki and R.K. Maity introduced and studied the quasi-Einstein manifold
[4]. A non flat n-dimensional Riemannian manifold (Mn, g) (n > 2) is said to be a
quasi-Einstein manifold if its Ricci tensor Ric of type (0, 2) is non-zero and satisfies the
following condition

Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ), (1.1)

where a, b are scalars and A is a non-zero 1-form such that

g(X, ρ) = A(X), g(ρ, ρ) = A(ρ) = 1, (1.2)

for all vector fieldX . ρ being a unit vector field called the generator of the manifold. Also,
the 1-form A is called the associated 1-form. From (1.1), it follows that every Einstein
manifold is a subclass of a quasi-Einstein manifold. This manifold is denoted by (QE)n.

Quasi Einstein manifolds arose during the study of exact solutions of the Einstein field
equations as well as during considerations of semi-Euclidean spaces. Several authors have
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studied Einstein’s field equations. For example, in [11], Naschie turned the tables on the
theory of elementary particles and showed the expectation number of elementary particles
of the standard model using Einstein’s unified field equation. He also discussed possible
connections between Gödel′s classical solution of Einstein’s field equations and E-infinity
in [10]. Also quasi-Einstein manifolds have some importance in the general theory of
relativity. For instance, the Robertson-Walker spacetimes are quasi Einstein manifolds.
Further, quasi Einstein manifold can be taken as a model of the perfect fluid spacetime in
general relativity [5]. Perfect fluid spacetimes in n-dimensions subjected to the restriction
DmC

m
jkl = 0, where C is the Weyl conformal curvature tensor, recently investigated in [8]

by Mantica, Molinari and De (see also [9]).
A non flat Riemannian manifold (Mn, g) (n ≥ 2) is said to be a generalized quasi-

Einstein manifold [2] if its Ricci tensor Ric of type (0, 2) is non-zero and satisfies the
following condition

Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ) + cB(X)B(Y ), (1.3)

where a, b, c are scalars andA,B are two non-zero 1-forms associated with two orthogonal
unit vectors ρ and σ are defined by

g(X, ρ) = A(X), g(X,σ) = B(X), g(ρ, ρ) = 1, g(σ, σ) = 1. (1.4)

An n-dimensional generalized quasi-Einstein manifold is denoted by G(QE)n.
In [3], Chaki introduced the concept of a super quasi-Einstein manifold as a general-

ization of the quasi-Einstein manifold. According to him, a super quasi-Einstein manifold
(Mn, g)(n > 2) is a non-flat Riemannian or semi-Riemannian manifold whose Ricci ten-
sor Ric of type (0, 2) is non-zero and satisfies the following condition

Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y )

+ c[A(X)B(Y ) +A(Y )B(X)] + dE(X,Y ).
(1.5)

A non flat Riemannian manifold (Mn, g) (n ≥ 3) is said to be a nearly quasi-Einstein
manifold [7] if its Ricci tensor Ric of type (0, 2) is non-zero and satisfies the following
condition

Ric(X,Y ) = ag(X,Y ) + bE(X,Y ), (1.6)
where a, b are scalars and E is a non-zero symmetric tensor of type (0, 2). A nearly
quasi-Einstein manifold is denoted by N(QE)n. Several authors have been studied on this
manifold [13, 14] and many others.

Further, we know that if the Riemannian curvature tensor R of type (0, 4) has the form

K(X,Y, Z,W ) = k[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )] (1.7)

then the manifold is said to be of constant curvature k. The generalization of this manifold
is the manifold of quasi-constant curvature and in this case the curvature tensor has the
following form

K(X,Y, Z,W ) = f1[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + f2[g(Y,Z)A(X)A(W )

− g(Y,W )A(X)A(Z) + g(X,W )A(Y )A(Z)− g(X,Z)A(Y )A(W )],
(1.8)

where g(K(X,Y )Z,W ) = K(X,Y, Z,W ), K is the curvature tensor of type (1, 3) and
a, b are scalar function of which b 6= 0 and A is non-zero 1-form which is earlier defined.
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It can be easily seen that if the curvature tensor K of the form (1.8), then the manifold
is conformally flat. Hence a Riemannian or semi-Riemannian manifold is said to be quasi-
constant curvature if the curvature tensor K satisfied the relation (1.8). Such a manifold is
denoted by (QC)n.

In 2004, U.C. De and G.C. Ghosh [6] introduced the concept of generalized quasi-
constant curvature. A Riemannian manifold is said to be a manifold of generalized quasi-
constant curvature if the curvature tensor satisfies the following condition

K(X,Y, Z,W ) = f1[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + f2[g(X,W )A(Y )A(Z)

− g(Y,W )A(X)A(Z) + g(Y,Z)A(X)A(W )− g(X,Z)A(Y )A(W )]

+ f3[g(X,W )B(Y )B(Z)− g(Y,W )B(X)B(Z)

+ g(Y,Z)B(X)B(W )− g(X,Z)B(Y )B(W )].
(1.9)

A non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n ≥ 3) shall be called a
manifold of super quasi-constant curvature if its curvature tensor K of type (0, 4) satisfies
the following condition

K(X,Y, Z,W ) = f1[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + f2[g(X,W )A(Y )A(Z)

− g(Y,W )A(X)A(Z) + g(Y,Z)A(X)A(W )− g(X,Z)A(Y )A(W )]

+ f3[g(X,W ){A(Y )B(Z) +B(Y )A(Z)} − g(Y,W ){A(X)B(Z)

+B(X)A(Z)}+ g(Y,Z){A(X)B(W ) +B(X)A(W )}
− g(X,Z){A(Y )B(W ) +B(Y )A(W )}] + f4[E(Y, Z)g(X,W )

− E(X,Z)g(Y,W ) + E(X,W )g(Y,Z)− E(Y,W )g(X,Z)],
(1.10)

where f1, f2, f3, f4 are scalars of which f1 6= 0, f2 6= 0, f3 6= 0, f4 6= 0 and A,
B are two non-zero 1-forms defined earlier, ρ, σ being two unit vector fields such that
g(ρ, σ) = 0. Such an n-dimensional manifold shall be denoted by S(QC)n. If in (1.10),
f3 = f4 = 0 then the manifold reduces to a manifold of quasi-constant curvature. Such
a generalization of quasi-constant curvature motivates us to study the generalized super-
quasi-constant curvature.

Definition 1.1. A non-flat Riemannian manifold is said to be a manifold of generalized
super quasi-constant curvature if the curvature tensor K of type (0, 4) has the following
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form
K(X,Y, Z,W ) = f1[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + f2[g(X,W )A(Y )A(Z)

− g(Y,W )A(X)A(Z) + g(Y,Z)A(X)A(W )− g(X,Z)A(Y )A(W )]

+ f3[g(X,W ){A(Y )B(Z) +B(Y )A(Z)} − g(Y,W ){A(X)B(Z)

+B(X)A(Z)}+ g(Y,Z){A(X)B(W ) +B(X)A(W )}
− g(X,Z){A(Y )B(W ) +B(Y )A(W )}] + f4[E(Y, Z)g(X,W )

− E(X,Z)g(Y,W ) + E(X,W )g(Y,Z)− E(Y,W )g(X,Z)]

+ f5[E(Y, Z)A(X)A(W )− E(X,Z)A(Y )A(W )

+ E(X,W )A(Y )A(Z)− E(Y,W )A(X)A(Z)]

+ f6[E(X,W ){A(Y )B(Z) +B(Y )A(Z)} − E(Y,W ){A(X)B(Z)

+B(X)A(Z)}+ E(Y,Z){A(X)B(W ) +B(X)A(W )}
− E(X,Z){A(Y )B(W ) +B(Y )A(W )}] + f7[A(X)A(W )B(Y )B(Z)

−A(Y )A(W )B(X)B(Z) +A(Y )A(Z)B(X)B(W )

−A(X)A(Z)B(Y )B(W )] + f8[E(Y,Z)E(X,W )

− E(X,Z)E(Y,W )],
(1.11)

where f1, f2, f3,.......,f8 are non-zero scalars and A, B are two non-zero 1-forms defined
in (1.4), ρ, σ being two unit vector fields such that g(ρ, σ) = 0 andE is a symmetric tensor
of type (0, 2) such that E(X, ρ) = 0, for all X .

2. EXISTENCE OF GENERALIZED SUPER QUASI-CONSTANT CURVATURE

In this section, we have studied the hypersurface of a Riemannian manifold and the
existence of the generalized super quasi-constant curvature defined by (1.11) has been
proved in two different methods. Let (Mn, g) be a hypersurface of (Mn+1, g), for g being
induced metric on Mn+1. If H , R and U denote the second fundamental tensor, a tensor
of type (1, 1) and a unit normal vector field respectively then

g(RU (Y ), Z) = g(H(Y,Z), U). (2.1)

Let H be a symmetric tensor of type (0, 2) associated with R such that

g(RU (Y ), Z) = HU (Y,Z). (2.2)

Now, we define a super quasi-umbilical hypersurface.

Definition 2.1. A hypersurface is said to be a super quasi-umbilical hypersurface if the
second fundamental tensor H has the form

HU (Y,Z) = β1g(X,Y ) + β2A(X)A(Y )

+ β3[A(X)B(Y ) +A(Y )B(X)] + β4E(X,Y ),
(2.3)

where βi, 1 ≤ i ≤ 4 are scalars and A, B are non-zero 1-forms and E is the symmetric
tensor of type (0, 2).

Proposition 2.1. The hypersurface categories are determined by some conditions on βi.

(i) If βi = 0 for 1 ≤ i ≤ 4 then hypersurface is called geodesics.
(ii) If βi = 0 for 2 ≤ i ≤ 4 then hypersurface is called umbilical.

(iii) If βi = 0 for i 6= 2 or i 6= 3 then hypersurface is called cylindrical.
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(iv) If βi = 0 for 3 ≤ i ≤ 4 then hypersurface is said to be quasi-umbilical.
(v) A hypersurface is known as generalized quasi-umbilical if β4 = 0.

(vi) A hypersurface is said to be nearly quasi-umbilical if βi = 0 for 2 ≤ i ≤ 3.

Let the hypersurface be a super quasi-umbilical hypersurface, then (2.1), (2.2) and (2.3)
together give

H(X,Y ) = β1g(X,Y )U + β2A(X)A(Y )U

+ β3[A(X)B(Y ) +A(Y )B(X)]U + β4E(X,Y )U.
(2.4)

The Gauss equation for the hypersurface is given by [12]

K(X,Y, Z,W ) = R(X,Y, Z,W ) + g(H(X,W ), H(Y, Z))− g(H(Y,W ), H(X,Z)),
(2.5)

where K is the curvature tensor of the hypersurface.
Assuming the manifold has constant curvature, we use (1.7) and (2.4) in (2.5), we get

K(X,Y, Z,W ) = k[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )] + β2
1 [g(Y,Z)g(X,W )

− g(X,Z)g(Y,W )] + β1β2[g(X,W )A(Y )A(Z)− g(Y,W )A(X)A(Z)

+ g(Y, Z)A(X)A(W )− g(X,Z)A(Y )A(W )]

+ β1β3[g(X,W ){A(Y )B(Z) +B(Y )A(Z)} − g(Y,W ){A(X)B(Z)

+B(X)A(Z)}+ g(Y, Z){A(X)B(W ) +B(X)A(W )}
− g(X,Z){A(Y )B(W ) +B(Y )A(W )}] + β1β4[E(Y,Z)g(X,W )

− E(X,Z)g(Y,W ) + E(X,W )g(Y,Z)− E(Y,W )g(X,Z)]

+ β2β4[E(Y,Z)A(X)A(W )− E(X,Z)A(Y )A(W )

+ E(X,W )A(Y )A(Z)− E(Y,W )A(X)A(Z)]

+ β3β4[E(X,W ){A(Y )B(Z) +B(Y )A(Z)}
− E(Y,W ){A(X)B(Z) +B(X)A(Z)}
+ E(Y,Z){A(X)B(W ) +B(X)A(W )}
− E(X,Z){A(Y )B(W ) +B(Y )A(W )}]
+ β2

3 + β2β4[A(X)A(W )B(Y )B(Z)−A(Y )A(W )B(X)B(Z)

+A(Y )A(Z)B(X)B(W )−A(X)A(Z)B(Y )B(W )]

+ β2
4 [E(Y, Z)E(X,W )− E(X,Z)E(Y,W )],

(2.6)
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On simplifying, one gets

K(X,Y, Z,W ) = f1[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + f2[g(X,W )A(Y )A(Z)

− g(Y,W )A(X)A(Z) + g(Y,Z)A(X)A(W )− g(X,Z)A(Y )A(W )]

+ f3[g(X,W ){A(Y )B(Z) +B(Y )A(Z)} − g(Y,W ){A(X)B(Z)

+B(X)A(Z)}+ g(Y,Z){A(X)B(W ) +B(X)A(W )}
− g(X,Z){A(Y )B(W ) +B(Y )A(W )}] + f4[E(Y, Z)g(X,W )

− E(X,Z)g(Y,W ) + E(X,W )g(Y,Z)− E(Y,W )g(X,Z)]

+ f5[E(Y, Z)A(X)A(W )− E(X,Z)A(Y )A(W )

+ E(X,W )A(Y )A(Z)− E(Y,W )A(X)A(Z)]

+ f6[E(X,W ){A(Y )B(Z) +B(Y )A(Z)}
− E(Y,W ){A(X)B(Z) +B(X)A(Z)}
+ E(Y,Z){A(X)B(W ) +B(X)A(W )}
− E(X,Z){A(Y )B(W ) +B(Y )A(W )}]
+ f7[A(X)A(W )B(Y )B(Z)−A(Y )A(W )B(X)B(Z)

+A(Y )A(Z)B(X)B(W )−A(X)A(Z)B(Y )B(W )]

+ f8[E(Y, Z)E(X,W )− E(X,Z)E(Y,W )],
(2.7)

where f1 = (k + β2
1), f2 = β1β2, f3 = β1β3, f4 = β1β4, f5 = β2β4, f6 =

β3β4,
f7 = β3

2 + β2β4, f8 = β4
2.

Thus we can state the following theorem:

Theorem 2.2. A super quasi-umbilical hypersurface of a manifold of constant curvature
is a manifold of generalized super quasi-constant curvature.

Putting X = W = ei in (2.7), where {ei} is an orthonormal basis of the tangent space
at each point on the manifold and taking summation over i, 1 ≤ i ≤ n, we get

Ric(Y,Z) = f1[ng(Y, Z)− g(Y, Z)] + f2[nA(Y )A(Z)−A(Y )A(Z)

+ g(Y,Z)−A(Y )A(Z)] + f3[n{A(Y )B(Z) +A(Z)B(Y )}
−A(Y )B(Z)−A(Z)B(Y )−A(Y )B(Z)−A(Z)B(Y )]

+ f4[nE(Y,Z)− E(Y,Z)− E(Y,Z)] + f5[E(Y,Z)

−A(Y )A(Z) +A(Y )A(Z)] + f6[−A(Y )B(Z)−A(Z)B(Y )

−A(Y )B(Z)−A(Z)B(Y )] + f7[B(Y )B(Z) +A(Y )A(Z)]

− f8E(Y, Z)

(2.8)

On simplifying, one gets
Ric(Y, Z) = f1(n− 1)g(Y,Z) + f2[(n− 2)A(Y )A(Z) + g(Y,Z)]

+ f3(n− 2)[A(Y )B(Z) +A(Z)B(Y )]

+ f4(n− 2)E(Y, Z) + f5E(Y,Z)

− 2f6[A(Y )B(Z) +A(Z)B(Y )] + f7[B(Y )B(Z)

+A(Y )A(Z)]− f8E(Y, Z)

(2.9)
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i.e.,
Ric(Y, Z) = ag(Y, Z) + bA(Y )A(Z)

+ c[A(Y )B(Z) +A(Z)B(Y )] + dE(Y,Z),
(2.10)

where a = f1(n− 1) + f2, b = f2(n− 2) + f7, c = f3(n− 2)− 2f6,
dE(Y, Z) = f4(n− 2) + f5 − f8.
Thus, we can state the following theorem:

Theorem 2.3. A manifold of generalized super quasi-constant curvature is a super quasi-
Einstein manifold.

Also, we can conclude

Theorem 2.4. A super quasi-umbilical hypersurface of a manifold of constant curvature
is a super quasi-Einstein manifold.

3. EXAMPLE OF GENERALIZED SUPER QUASI-CONSTANT CURVATURE

We define a Riemannian metric g in 4-dimensional space R4 by the relation

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2], (3.1)

where x1, x2, x3, x4 are non-zero finite and p = ex
1

k−2. Then the covariant and con-
travariant components of the metric tensor are

g11 = g22 = g33 = g44 = (1 + 2p), gij = 0 ∀ i 6= j (3.2)
and

g11 = g22 = g33 = g44 =
1

1 + 2p
, gij = 0 ∀ i 6= j. (3.3)

The only non-vanishing components of the Christoffel symbols are{
1
11

}
=

{
2
12

}
=

{
3
13

}
=

{
4
14

}
=

p

1 + 2p
(3.4)

and {
1
22

}
=

{
1
33

}
=

{
1
44

}
=
−p

1 + 2p
. (3.5)

The non-zero derivatives of (3.4), we have
∂

∂x1

{
1
11

}
=

∂

∂x1

{
2
12

}
=

∂

∂x1

{
3
13

}
=

∂

∂x1

{
4
14

}
=

p

(1 + 2p)2
(3.6)

and
∂

∂x1

{
1
22

}
=

∂

∂x1

{
1
33

}
=

∂

∂x1

{
1
44

}
=

−p
(1 + 2p)2

. (3.7)

For the Riemannian curvature tensor,

Rl
ijk =

∣∣∣∣∣∣∣∣
∂

∂xj
∂

∂xk{
l
ij

} {
l
ik

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

I

+

∣∣∣∣∣∣∣∣
{
m
ik

} {
m
ij

}
{

l
mk

} {
l
mj

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

II

.

The non-zero components of (I) are:

R1
221 = − ∂

∂x1

{
1
22

}
=

p

(1 + 2p)2
,
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R1
331 = − ∂

∂x1

{
1
33

}
=

p

(1 + 2p)2
,

R1
414 = − ∂

∂x1

{
1
44

}
=

p

(1 + 2p)2

and the non-zero components of (II) are:

R2
332 =

{
m
32

}{
2
m3

}
−
{
m
33

}{
2
m2

}
= −

{
1
33

}{
2
12

}
=

p2

(1 + 2p)2
,

R2
442 =

{
m
42

}{
2
m4

}
−
{
m
44

}{
2
m2

}
= −

{
1
44

}{
2
12

}
=

p2

(1 + 2p)2
,

R3
443 =

{
m
43

}{
3
m4

}
−
{
m
44

}{
3
m3

}
= −

{
1
44

}{
3
13

}
=

p2

(1 + 2p)2
.

Adding components corresponding (I) and (II), we have

R1
221 = R1

331 = R1
441 =

p

(1 + 2p)2
(3.8)

and

R2
332 = R2

442 = R3
443 =

p2

(1 + 2p)2
. (3.9)

In view of Rhijk = ghlR
l
ijk and (3.8), (3.9) we can show that

R1221 = R1331 = R1441 =
p

1 + 2p
,

R2332 = R2442 = R3443 =
p2

1 + 2p
.

Let us consider the associated scalars fi, 1 ≤ i ≤ 8 and the associated tensorE are defined
by
f1 = − p

(1 + 2p)3
, f2 = −2f3, ,f6 = f5, f8 = 3f5, f4, f7 is arbitrary

and
E11 = −(1 + 2p), E22 = (1 + 2p), E12 =

√
1 + 2p, E21 = −

√
1 + 2p

the 1-form
A1 = B1 =

√
1 + 2p, A2 = B2 = 1.

For the non-zero components of the curvature tensor R, the (1.11) reduces to
R1221 = f1[g12g21 − g11g22] + f2[g12A1A2 + g21A1A2 − g22A1A1 − g11A2A2]

+ f3[g12(A1B2 +A2B1) + g21(A1B2 +A2B1)− 2g22A1B1 − 2g11A2B2]

+ f4[E12g21 + E21g12 − E22g11 − E11g22]

+ f5[E12A1A2 + E21A1A2 − E22A1A1 − E11A2A2]

+ f6[E12(A1B2 +A2B1) + E21(A1B2 +A2B1)− 2E22A1B1 − 2E11A2B2]

+ f7[2A1A2B1B2 −A1A1B2B2 −A2A2B1B1]

+ f8[E12E21 − E11E22].
(3.10)
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R.H.S of (3.10) = f1[−(1 + 2p)2] + 2f3[(1 + 2p)2 + (1 + 2p)]

− 2f3[(1 + 2p)2 + (1 + 2p)] + f4[(1 + 2p)2 − (1 + 2p)2]

+ f5[−(1 + 2p)2 + (1 + 2p)] + 2f5[−(1 + 2p)2 + (1 + 2p)]

+ f7[2(1 + 2p)− 2(1 + 2p)]− 3f5[(1 + 2p)2 − (1 + 2p)]

= −f1(1 + 2p)2

=
p

(1 + 2p)3
∗ (1 + 2p)2

=
p

(1 + 2p)

= L.H.S of (3.10)
Hence it satisfies the condition of generalized super quasi-constant curvature.
Thus we can state the following theorem:

Theorem 3.1. Let (R4, g) be a manifold endowed with the metric given by

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2]

where x1, x2, x3 and x4 are non-zero finite, then (R4, g) is a generalized super quasi-
constant curvature.

4. SUFFICIENT CONDITION FOR SUPER QUASI-EINSTEIN MANIFOLDS

In this section, we introduce a sufficient condition for the existence of super quasi-
Einstein manifold.

Theorem 4.1. The Ricci tensorRic will be of the form in order for a Riemannian manifold
to be a super quasi-Einstein manifold

Ric(Y, Z)Ric(X,W ) = f1[Ric(Y,W )g(X,Z) +Ric(X,Z)g(Y,W )]

+ f2[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+ f3[Ric(X,W )E(Y, Z)]

(4.1)

for a symmetric tensor of type (0, 2).

Proof. Putting X =W = ρ in (4.1), we have
Ric(Y, Z)Ric(ρ, ρ) = f1[Ric(Y, ρ)g(ρ, Z) +Ric(ρ, Z)g(Y, ρ)]

+ f2[g(Y,Z)g(ρ, ρ)− g(ρ, Z)g(Y, ρ)]
+ f3[Ric(ρ, ρ)E(Y,Z)],

(4.2)

since we know that Ric(Y, ρ) = g(QY, ρ), one gets

Ric(Y,Z)Ric(ρ, ρ) = f1[g(QY, ρ)g(ρ, Z) + g(QZ, ρ)g(Y, ρ)]

+ f2[g(Y,Z)g(ρ, ρ)− g(ρ, Z)g(Y, ρ)]
+ f3[Ric(ρ, ρ)E(Y, Z)]

= f1[A(QY )A(Z) +A(QZ)A(Y )]

+ f2[g(Y,Z)g(ρ, ρ)− g(Z, ρ)g(Y, ρ)]
+ f3[Ric(ρ, ρ)E(Y, Z)].

(4.3)
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If we take A(QY ) = B(Y ), then

Ric(Y, Z)Ric(ρ, ρ) = f1[B(Y )A(Z) +B(Z)A(Y )]

+ f2[g(Y, Z)g(ρ, ρ)− g(Z, ρ)g(Y, ρ)]
+ f3[Ric(ρ, ρ)E(Y,Z)].

(4.4)

On simplifying, one gets

Ric(Y,Z) =
f1

Ric(ρ, ρ)
[B(Y )A(Z) +B(Z)A(Y )] +

f2g(ρ, ρ)

Ric(ρ, ρ)
g(Y, Z)

− f2
Ric(ρ, ρ)

A(Y )A(Z) +
f3

Ric(ρ, ρ)
E(Y, Z).

(4.5)

Hence we get
Ric(Y, Z) = ag(Y,Z) + bA(Y )A(Z)

+ c[A(Y )B(Z) +A(Z)B(Y )] + dE(Y,Z),
(4.6)

where a =
f2g(ρ, ρ)

Ric(ρ, ρ)
, b = − f2

Ric(ρ, ρ)
, c =

f1
Ric(ρ, ρ)

, d = f3

Hence, a Riemannian manifold satisfying (4.1) is a super quasi-Einstein manifold. �

We will also construct an example of a super quasi-Einstein manifold in general form
in the same sequence:

5. EXAMPLE OF SUPER QUASI-EINSTEIN MANIFOLD

Example 5.1. We define a Riemannian metric g in 4-dimensional space R4 by the relation

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2], (5.1)

where x1, x2 ,x3, x4 are non-zero finite and p = ex
1

k−2. Then the covariant and con-
travariant components of the metric tensor are

g11 = g22 = g33 = g44 = (1 + 2p), gij = 0 ∀ i 6= j (5.2)

and
g11 = g22 = g33 = g44 =

1

1 + 2p
, gij = 0 ∀ i 6= j. (5.3)

The only non-vanishing components of the Christoffel symbols are{
1
11

}
=

{
2
12

}
=

{
3
13

}
=

{
4
14

}
=

p

1 + 2p
(5.4){

1
22

}
=

{
1
33

}
=

{
1
44

}
=
−p

1 + 2p
. (5.5)

The non-zero derivatives of (5.4), we have
∂

∂x1

{
1
11

}
=

∂

∂x1

{
2
12

}
=

∂

∂x1

{
3
13

}
=

∂

∂x1

{
4
14

}
=

p

(1 + 2p)2
(5.6)

∂

∂x1

{
1
22

}
=

∂

∂x1

{
1
33

}
=

∂

∂x1

{
1
44

}
=

−p
(1 + 2p)2

. (5.7)
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For the Riemannian curvature tensor,

Rl
ijk =

∣∣∣∣∣∣∣∣
∂

∂xj
∂

∂xk{
l
ij

} {
l
ik

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=I

+

∣∣∣∣∣∣∣∣
{
m
ik

} {
m
ij

}
{

l
mk

} {
l
mj

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=II

.

The non-zero components of (I) are:

R1
221 = − ∂

∂x1

{
1
22

}
=

p

(1 + 2p)2
,

R1
331 = − ∂

∂x1

{
1
33

}
=

p

(1 + 2p)2
,

R1
441 = − ∂

∂x1

{
1
44

}
=

p

(1 + 2p)2

and the non-zero components of (II) are:

R2
332 =

{
m
32

}{
2
m3

}
−
{
m
33

}{
2
m2

}
= −

{
1
33

}{
2
12

}
=

p2

(1 + 2p)2
,

R2
442 =

{
m
42

}{
2
m4

}
−
{
m
44

}{
2
m2

}
= −

{
1
44

}{
2
12

}
=

p2

(1 + 2p)2
,

R3
443 =

{
m
43

}{
3
m4

}
−
{
m
44

}{
3
m3

}
= −

{
1
44

}{
3
13

}
=

p2

(1 + 2p)2
.

Adding components corresponding (I) and (II), we have

R1
221 = R1

331 = R1
441 =

p

(1 + 2p)2
(5.8)

and

R2
332 = R2

442 = R3
443 =

p2

(1 + 2p)2
. (5.9)

In view of Rhijk = ghlR
l
ijk and (5.8), (5.9) we can show that

R1221 = R1331 = R1441 =
p

1 + 2p
,

R2332 = R2442 = R3443 =
p2

1 + 2p
and the Ricci tensor

R11 = gjhR1j1h = g22R1212 + g33R1313 + g44R1414 =
3p

(1 + 2p)2
,

R22 = gjhR2j2h = g11R2121 + g33R2323 + g44R2424 =
p

(1 + 2p)
,

R33 = gjhR3j3h = g11R3131 + g22R3232 + g44R3434 =
p

(1 + 2p)
,

R44 = gjhR4j4h = g11R4141 + g22R4242 + g33R4343 =
p

(1 + 2p)
.

Let us consider the associated scalars a, b, c, d and the associated tensor E are defined by

a = − p

(1 + 2p)3
, b = 2p, c =

2
√
p

(1 + 2p)
, d =

−2
(1 + 2p)2
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and

Eij =


p, if i=j=1
−p, if i=j=3
0, otherwise

the 1-form

Ai(x) =

{
1

1+2p , if i=1
0, otherwise

and Bi(x) =


√
p, if i=1
−√p, if i=2
0, otherwise

where generators are unit vector fields, then from (1.5), we have

R11 = ag11 + bA1A1 + 2cA1B1 + dE11, (5.10)

R22 = ag22 + bA2A2 + 2cA2B2 + dE22, (5.11)
R33 = ag33 + bA3A3 + 2cA3B3 + dE33, (5.12)
R44 = ag44 + bA4A4 + 2cA4B4 + dE44, (5.13)

R.H.S. of (5.10) = ag11 + bA1A1 + 2cA1B1 + dE11

= − p

(1 + 2p)2
+

2p

(1 + 2p)2
+

4p

(1 + 2p)2
− 2p

(1 + 2p)2

=
3p

(1 + 2p)2

= L.H.S. of (5.10)
By similar argument it can be shown that (5.11) to (5.13) are also true.
Hence (R4, g) is a S(QE)4.

Example 5.2. Let (R4, g) be a Lorentzian manifold endowed with the metric given by

ds2 = gijdx
idxj = −(1 + 2p)(dx1)2 + (1 + 2p)[(dx2)2 + (dx3)2 + (dx4)2]

where x1, x2, x3 and x4 are non-zero finite, then (R4, g) is a S(QE)4.
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