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NEUTROSOPHIC REGULAR SEMI COMPACTNESS AND CONNECTEDNESS

R. VIJAYALAKSHMI AND R. R. PRAVEENA∗

ABSTRACT. In this paper, we introduce the concept of neutrosophic regular semi com-
pactness, neutrosophic regular semi connectedness, neutrosophic regular semi strongly
connectedness and neutrosophic regular semi-C5-connectedness in neutrosophic topolog-
ical spaces. Some interesting properties of these notions are studied. In this connection,
interrelations are discussed. Example are provided wherever necessary.

1. INTRODUCTION

Zadeh [16] introduced the notion of fuzzy sets in the year 1965. The concept of fuzzy
topological spaces have been introduced and developed by Chang [3]. In 1983, Atanassov
[1] introduced the concept of intuitionistic fuzzy set which was generalization of fuzzy
set, where besides the degree of membership and the degree of non-membership of each
element. Later, Coker [4] introduced the concept of intuitionistic fuzzy topological spaces,
by using the notion of the intuitionitic fuzzy set. Smarandache [6, 7, 8] introduced the
concept of Neutrosophic set. Neutrosophic set is classified into three independent func-
tions namely, membership function, indeterminancy and non membership function that are
independently related. In 2012, Salama and Alblowi [12, 13, 14] introduced the concept of
Neutrosophic topology. Neutrosophic topological spaces are very natural generalizations
of fuzzy topological spaces allow more general functions to be members of fuzzy topology.
In 2014, Salama et. al., [13] introduced the concept of Neutrosophic closed sets and Neu-
trosophic continuous functions. In general topology, the concept of regular semiopen set
was introduced by Cameron [2] in 1978. Elavarasan [5] introduced the concept of fuzzy
regular semi compactness and connectedness in the sense of Sostak’s. Recently Vijay-
alakshmi and Praveena [9, 10] introduced the concept of neutrosophic regular semiopen,
neutrosophic regular semiclosed, neutrosophic regular semi continuous, neutrosophic reg-
ular semi irresolute, neutrosophic regular semi homeomorphisms and neutrosophic regular
semi C-homeomorphisms in neutrosophic topological spaces. In this paper, we introduce
the concepts of neutrosophic regular semi compactness, neutrosophic regular semi con-
nectedness, neutrosophic regular semi strongly connectedness and neutrosophic regular
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semi-C5-connectedness in neutrosophic topological spaces. Some interesting properties
of these notions are studied. In this connection, interrelations are discussed. Example are
provided wherever necessary.

2. PRELIMINARIES

Definition 2.1. [12] Let X be a non-empty fixed set. A Neutrosophic set [for short,
Ns] A is an object having the form A = {〈x,BA(x), σA(x), γA(x)〉 : x ∈ X} where
BA(x), σA(x) and γA(x) which represents the degree of membership function, the de-
gree of indeterminancy and the degree of non-membership function respectively of each
element x ∈ X to the set A.

Remark. [12] A Ns A = {〈x,BA(x), σA(x), γA(x)〉 : x ∈ X} can be identified to an
ordered triple A = 〈BA(x), σA(x), γA(x)〉 in ]−0, 1+[ on X .

Remark. [12] For the sake of simplicity, we shall use the symbol A = 〈BA, σA, γA〉 for
the Ns A = {〈x,BA(x), σA(x), γA(x)〉 : x ∈ X}.

Example 2.2. [12] Every intuitionsistic fuzzy set A is a non-empty set in X is obviously
on Ns having the form A = {〈x,BA(x), 1−BA(x) + γA(x)〉 : x ∈ X}. Since our
main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic
topology, we must introduce the Neutrosophic sets 0N and 1N in X as follows:
0N = {〈x, 0, 0, 1〉 : x ∈ X} 1N = {〈x, 1, 1, 0〉 : x ∈ X} .

Definition 2.3. [12] LetA = 〈(BA, σA, γA)〉 be a Ns onX , then the complement of the set
A(Ac orC(A) for short) may be defined asC(A) = {〈x, γA(x), 1− σA(x), BA(x)〉 : x ∈ X} .

Definition 2.4. [12] Let X be a non-empty set and Ns’s A and B in the form A =
{〈x,BA, σA, γA〉 : x ∈ X} and B = {〈x,BB , σB , γB〉 : x ∈ X}. Then (A ⊆ B)
may defined as: (A ⊆ B)⇔ BA(x) ≤ BB(x), σA(x) ≤ σB(x), γA(x) ≥ γB(x)∀x ∈ X.

Definition 2.5. [12] Let X be a non-empty set and A = {〈x,BA(x), σA(x), γA(x)〉 : x ∈
X}, B = {〈x,BB(x), σB(x), γB(x)〉 : x ∈ X} are Ns’s. Then A ∩B and A ∪ B may
defined as:

(i) A ∩B = 〈x,BA(x) ∧BB(x), σA(x) ∧ σB(x), γA(x) ∨ γB(x)〉
(ii) A ∪B = 〈x,BA(x) ∨BB(x), σA(x) ∨ σB(x), γA(x) ∧ γB(x)〉

Definition 2.6. [12] A Neutrosophic topology (for short, NT or nt) is a non-empty set X
is a family τN of neutrosophic subsets in X satisfying the following axioms:

(i) 0N , 1N ∈ τN ,
(ii) G1 ∩G2 ∈ τN for any G1, G2 ∈ τN ,

(iii) ∪Gi ∈ τN for every {Gi : i ∈ J} ⊆ τN .

Throughout this paper, the pair of (X, τN ) is called a neutrosophic topological space
(for short, nts). The elements of τN or τ are called neutrosophic open set (for short, nos).
A neutrosophic set F is neutrosophic closed set (for short, ncs)if and only if F c is nos.

Definition 2.7. [12] Let (X, τN ) be nts and A = 〈x,BA, σA, γA〉 be a Ns in X . Then the
neutrosophic closure and neutrosophic interior of A are defined by NCl(A) = ∩{K : K
is a ncs in X and A ⊆ K}, NInt(A) = {G : G is a nos in X and G ⊆ A}. It can
be also shown that NCl(A) is ncs and NInt(A) is a nos in X . A is nos if and only if
A = NInt(A), A is ncs if and only if A = NCl(A).

Definition 2.8. [15] Let A = {〈x,BA(x), σA(x), γA(x)〉 : x ∈ X} be a Ns on a nts
(X, τN ) then A is called:
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(i) neutrosophic regular open (for short, nro) iff A = NInt(NCl(A)).
(ii) neutrosophic regular closed (for short, nrc) iff A = NCl(NInt(A)).

Definition 2.9. [15] Let A = {〈x,BA(x), σA(x), γA(x)〉 : x ∈ X} be a Ns and B =
{〈x,BB(x), σB(x), γB(x)〉 : x ∈ X} be a Ns on a nts (X, τN ) then A is called neutro-
sophic semi-open (for short, nso) iff A ⊆ NInt(NCl(A)).

Definition 2.10. [9] Let (X, τ) be a nts. Then A is called
(i) neutrosophic regular semiopen (for short, nrso) if there exists an nro set B in X

such that B ⊆ A ⊆ NCl(B).
(ii) neutrosophic regular semiclosed (for short, nrsc) if there exists an nrc set B in X

and NInt(B) ⊆ A ⊆ B.

Definition 2.11. [9] Let (X, τ) be a nts. Then
(i) the neutrosophic regular semiclosure of A defined by nrscl(A) =

⋂
{B | A ⊆

B and B ∈ NRSCS(X, τ)} is a neutrosophic set.
(ii) the neutrosophic regular semiinterior of A defined by nrsint(A) =

⋃
{B | B ⊆

A and B ∈ NRSOS(X, τ)} is a neutrosophic set.

Definition 2.12. [14] Let (X, τ) and (Y, σ) be any two nts’s. A map f : (X, τ)→ (Y, σ) is
neutrosophic continuous (for short, NC) if the inverse image of every neutrosophic closed
set in (Y, σ) is neutrosophic closed set in (X, τ).

Definition 2.13. [10]Let (X, τ) and (Y, σ) be two nts’s. A Neutrosophic function f :
X → Y is said to be

(i) neutrosophic regular semi continuous (for short, NRSC) if for each nos A of Y ,
the inverse image f−1(A) is a nrso set of X .

(ii) neutrosophic regular semi irresolute (for short, NRSI) if for each nrso set A of
Y , the inverse image f−1(A) is a nrso set of X .

(iii) neutrosophic regular semiopen function (for short, NRS-O) if for each nos B of
X , the image f(B) is a nrso set of Y .

(iv) neutrosophic regular semiclosed function (for short, NRS-C) if for each ncs set
B of X , the image f(B) is a nrsc set of Y .

Proposition 2.1. [9] If R is nrso set in (X, τ), then Rc is also nrso set.

Theorem 2.2. [11] Let (X, τ) and (Y, σ) be two nts’s and let f : (X, τ) → (Y, σ) is
neutrosophic weakly regular open and neutrosophic weakly regular continuous function,
then f−1(A) is nro (resp. nrc) set for every nro set A in Y.

3. NEUTROSOPHIC REGULAR SEMI COMPACTNESS

Definition 3.1. A nts (X, τ) is called
(1) neutrosophic regular semi compact (for short,NRS-compact) if for everyNRSO-

cover {Ai : i ∈ J} of X , there exists a finite subset J0 of J such that
⋃
i∈J0 Ai =

1N .
(2) Neutrosophic weakly regular semi compact (for short, NWRS-compact) if for

every NRSO-cover {Ai : i ∈ J} of X , there exists a finite subset J0 of J such
that

⋃
i∈J0 NInt(Ai) = 1N .

(3) neutrosophic almost regular semi compact (for short, NARS-compact) if for ev-
ery NRSO-cover {Ai : i ∈ J} of X , there exists a finite subset J0 of J such that⋃
i∈J0 NCl(Ai) = 1N .
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Remark. (1) Every NWRS-compact is NRS-compact.
(2) Every NRS-compact is NARS-compact.

Theorem 3.1. A nts (X, τ) is NRS-compact if and only if for each family {Ai|i ∈ J}
of nrso sets of X such that

⋂
i∈J Ai = 0N , there exists a finite subset J0 of J such that⋂

i∈J0 Ai = 0N .

Theorem 3.2. A nts (X, τ) is NWRS-compact if and only if for each family {Ai|i ∈ J}
of nrso sets of X such that

⋂
i∈J Ai = 0N , there exists a finite subset J0 of J such that⋂

i∈J0 NCl(Ai) = 0N .

Proof. Suppose that (X, τ) is NWRS-compact. Let {Ai|i ∈ J} be a family of nrso sets
of X such that

⋂
i∈J Ai = 0N . Then by Theorem 2.1, {1 − Ai|i ∈ J} is a family of

nrso sets of X such that
⋃
i∈J 1 − Ai = 1 −

⋂
i∈J Ai = 1N . Since (X, τ) is NWRS-

compact, there exists a finite subset J0 of J such that
⋃
i∈J0 NInt(1− Ai) = 1N . Hence⋂

i∈J0 NCl(Ai) = 1− (
⋃
i∈J0 NInt(1−Ai) = 0N . �

Converse follows by reversing the previous arguments.

Theorem 3.3. Let (X, τ) be a nts. Then the following are equivalent:
(1) (X, τ) is NWRS-compact.
(2) For each family {Ai|i ∈ J} of nrso sets of X such that

⋂
i∈J Ai = 0N , there

exists a finite subset J0 of J such that
⋂
i∈J0 NCl(Ai) = 0N .

(3) For each neutrosophic regular closed cover {Ai|i ∈ J} of X , there exists a finite
subset J0 of J such that

⋃
i∈J0 NInt(Ai) = 1N .

Proof. (1)⇒(2): Trivial.
(2)⇒(1): Let {Ai|i ∈ J} be a family of nrso sets of X such that

⋂
i∈J Ai = 0N . Since

Ai is an nrso set for each i ∈ J , NCl(Ai) = NCl(NInt(Ai)) for each i ∈ J . Since
{NInt(Ai)|i ∈ J} is a family of nro sets of X such that

⋂
i∈J NInt(Ai) = 0N , by (2)

there exists a finite subset J0 of J such that
⋂
i∈J0 NCl(Ai) =

⋂
i∈J0 NCl(NInt(Ai)) =

0N . Thus (X, τ) is NWRS-compact.
(2)⇔(3): It is obvious. �

Definition 3.2. Let (X, τ) and (Y, σ) be a nts’s. Let f : (X, τ) → (Y, σ) be a function.
Then f is called

(1) Neutrosophic weakly continuous if for each nosB of Y , f−1(B) ⊆ NInt(f−1(NCl(B))).
(2) Neutrosophic weakly open if for each nos B of X , f(B) ⊆ NInt(f(NCl(B))).

Theorem 3.4. Let (X, τ) and (Y, σ) be two nts’s and let f : (X, τ) → (Y, σ) be surjec-
tive, neutrosophic weakly open and neutrosophic weakly continuous function. If (X, τ) is
NWRS-compact, then so is (Y, σ).

Proof. Let {Bi|i ∈ J} be an neutrosophic regular closed cover of Y . By Theorem 2.2,
{f−1(Bi)|i ∈ J} is an neutrosophic regular closed cover of X . Since X is NWRS-
compact, by Theorem 3.2, there exists a finite subset J0 of J such that

⋃
i∈J0 NInt(f

−1(Bi)) =
1N . From the surjectivity and neutrosophic weakly openness of f , we have

1N = f(
⋂
i∈J0(NInt(f

−1(Bi))))

=
⋃
i∈J0 f(NInt(f

−1(Bi)))

≤
⋃
i∈J0 NInt(f(NCl(NInt(f

−1(Bi)))))

=
⋃
i∈J0(NInt(f(f

−1(Bi)))

=
⋃
i∈J0 NInt(Bi).

Hence
⋃
i∈J0 NInt(Bi) = 1N , and thus (Y, σ) is NWRS-compact. �
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Theorem 3.5. A nts (X, τ) is NARS-compact if and only if for each family {Ai|i ∈ J}
of nrso sets of X such that

⋂
i∈J Ai = 0N , there exists a finite subset J0 of J such that⋂

i∈J0 NInt(Ai) = 0N .

Proof. Let (X, τ) be NARS-compact and let {Ai|i ∈ J} be a family of nrso sets of X
such that

⋂
i∈J Ai = 0N . Then {1 − Ai|i ∈ J} is a family of nrso sets of X such that⋃

i∈J 1 − Ai = 1 − (
⋂
i∈J Ai) = 1N . Since (X, τ) is NARS-compact, there exists a

finite subset J0 of J such that
⋃
i∈J0 NCl(1 − Ai) = 1N . Hence

⋂
i∈J0 NInt(Ai) =

1−
⋃
i∈J0 NCl(1−Ai) = 0N .

The converse can be proved similarly. �

Theorem 3.6. Let (X, τ) be a nts. Then the following statements are equivalent:
(1) (X, τ) is NARS-compact.
(2) For each family {Ai|i ∈ J} of nro sets of X such that

⋂
i∈J Ai = 0N , there exists

a finite subset J0 of J such that
⋂
i∈J0 Ai = 0N .

(3) For each neutrosophic regular closed cover {Ai|i ∈ J} of X , there exists a finite
subset J0 of J such that

⋃
i∈J0 Ai = 1N .

Proof. Straightforward. �

Definition 3.3. A nts (X, τ) is called an neutrosophic S-closed if and only if for every
neutrosophic semiopen cover {Ai|i ∈ J} of X , there exists a finite subset J0 of J such
that

⋃
i∈J0 NCl(Ai) = 1N .

Theorem 3.7. A nts (X, τ) is NARS-compact if and only if (X, τ) is neutrosophic S-
closed.

Proof. Let (X, τ) be neutrosophic S-closed. Since every nrso set is neutrosophic semiopen,
(X, τ) is NARS-compact.

Conversely, suppose that (X, τ) is NARS-compact and let {Ai|i ∈ J} be an neutro-
sophic semiopen cover of X . Then there exists Bi in X with Bi is nos, such that Bi ≤
Ai ≤ NCl(Bi), for each i ∈ J . We can easily show thatNCl(Bi) is an nrc for each i ∈ J .
Since Bi ≤ Ai ≤ NCl(Ai), for each i ∈ J , NCl(Bi) ≤ NCl(Ai) ≤ NCl(NCl(Bi))
for each i ∈ J . Thus NCl(Ai) = NCl(Bi) for each i ∈ J . Thus {NCl(Ai)|i ∈ J} is
an neutrosophic regular closed cover of X . Since (X, τ) is NARS-compact, there exists
a finite subset J0 of J such that

⋃
i∈J0 NCl(Ai) = 1N . Hence (X, τ) is neutrosophic

S-closed. �

Theorem 3.8. A nts (X, τ) is an NWRS-compact if and only if for every an neutro-
sophic semiopen cover {Ai|i ∈ J} of X, there exists a finite subset J0 of J such that⋃
i∈J0 NInt(NCl(Ai)) = 1N .

Proof. Similar to Theorem 3.7. �

Theorem 3.9. Let (X, τ) and (Y, σ) be two nts’s and let f : (X, τ) → (Y, σ) be a
surjective, neutrosophic weakly open and neutrosophic weakly continuous function. If
(X, τ) is NARS-compact, then so is (Y, σ).

Proof. Let {Bi|i ∈ J} be an neutrosophic regular closed cover of Y. By Theorem 2.2,
{f−1(Bi)|i ∈ J} is an neutrosophic regular closed cover of X . Since (X, τ) is NARS-
compact, by Theorem 2.2, there exists a finite subset J0 of J such that

⋃
i∈J0 f

−1(Bi) =
1N . From the surjectivity of f we have

1N = f(
⋃
i∈J0 f

−1(Bi)) =
⋃
i∈J0 f(f

−1(Bi)) =
⋃
i∈J0 Bi.

Hence
⋃
i∈J0 Bi = 1N . Thus (Y, σ) is NARS-compact. �
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Definition 3.4. A nts (X, τ) is called neutrosophic extremally disconnected (for short,
NED) if NCl(A) is nos and A is nos.

Theorem 3.10. Let (X, τ) and (Y, σ) be two nts, and let f : (X, τ) → (Y, σ) be a
surjective, neutrosophic weakly open and neutrosophic weakly continuous function. If
(X, τ) is NED, then so is (Y, σ).

Proof. Let A be nro (nos) set in Y . Then A = NInt(A). Hence NCl(A) is nrc set. By
Theorem 2.2, f−1(NCl(A)) is nrc, i.e., f−1(NCl(A)) = NCl(NInt(f−1(NCl(A)))).
Since (X, τ) isNED andNInt(f−1(NCl(A))) is nos andNCl(NInt(f−1(NCl(A))))
is nos. From the surjectivity and neutrosophic weakly openness of f we have
NCl(A) = f(f−1(NCl(A)))

= f(NCl(NInt(f−1(NCl(A)))))
≤ NInt(f(NCl(NInt(f−1(NCl(A))))))
= NInt(f(NCl(f−1(NCl(A)))))
= NInt(f(f−1(NCl(A))))
= NInt(NCl(A)).

Hence NCl(A) = NInt(NCl(A)) and so NCl(A) is nos in Y . Thus (Y, σ) is NED.
�

Theorem 3.11. Let a nts (X, τ) be NED. If A of X is nrso, then NInt(A) = A =
NCl(A).

Proof. Let A be an nrso set. Then there exists an nro set B such that B ≤ A ≤ NCl(B).
Since X is NED, B = NCl(B). And we get B = NInt(B), since B is an nro set. Thus
we have the following, B = NInt(B) ≤ NInt(A) ≤ A ≤ NCl(A) ≤ NCl(B) = B.
Hence NInt(A) = A = NCl(A). �

From the above theorem, we get the following:

Theorem 3.12. Let a nts (X, τ) be NED. Then the following are equivalent:
(1) (X, τ) is NWRS-compact.
(2) (X, τ) is NRS-compact.
(3) (X, τ) is NARS-compact.

Theorem 3.13. For an NED nts (X, τ), the following are true:
(1) neutrosophic compactness implies NWRS-compactness.
(2) neutrosophic nearly compactness implies NRS-compactness.
(3) neutrosophic almost compactness implies NARS-compactness.

Proof. (2) Let (X, τ) be an NED and neutrosophic nearly compact space, let {Ai|i ∈ J}
be an NRSO cover of X. Then there exists an nro set Bi such that Bi ≤ Ai ≤ NCl(Bi)
for each i ∈ J . Since (X, τ) is NED and Bi = NInt(NCl(Bi)) for each i ∈ J,
Ai = NInt(Ai) for each i ∈ J. Thus we get Ai = NInt(NCl(Ai)) for each i ∈ J from
Proposition 2.1. Hence (X, τ) is NRS-compact since X is neutrosophic nearly compact.

(1) and (3) are similar to (2). �

Corollary 3.14. If a nts (X, τ) is NED, then the following are equivalent:
(1) neutrosophic nearly compactness.
(2) neutrosophic almost compactness.
(3) neutrosophic S-closeness.

Proof. We get the results from Theorems 3.7, 3.12 and 3.13. �
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4. NEUTROSOPHIC REGULAR SEMI CONNECTEDNESS

Definition 4.1. Let (X, τ) be a nts and A, B ∈ X. A NRS-separation on 1N is a pair of
non null proper nrso sets A and B such that A ∩B = 0N and A ∪B = 1N .

Definition 4.2. A nts (X, τ) is said to be neutrosophic regular semi connected (for short,
NRS-connected) if and only if there is no NRS-separation of 1N . Otherwise, (X, τ) is
said to be neutrosophic regular semi disconnected space.

Example 4.3. Let X = {a, b, c} and τ = {0N , 1N , A} where A,B,C are Ns’s of X
defined as follows:
A =

〈
( µa

0.2 ,
µb

0.3 ,
µc

0.4 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
,

B =
〈
( µa

0.6 ,
µb

0.3 ,
µc

0.4 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
,

C =
〈
( µa

0.7 ,
µb

0.4 ,
µc

0.5 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
.

ClearlyB and C are nrso sets in (X, τ),B 6= 0N , C 6= 0N ,B∪C 6= 1N andB∩C 6= 0N .
Hence (X, τ) is NRS-connected.

Proposition 4.1. A nts (X, τ) is a NRS-connected if and only if there exists no non-null
nrso sets A, B ∈ X such that A = 1−B.

Proof. Necessity: Let A and B be two nrso sets in (X, τ) such that A 6= 0N , 1−B 6= 0N
and A = 1−B. Therefore 1−B is a nrsc set. Since A 6= 0N , B 6= 1N . This implies that
B is a proper neutrosophic set which is both nrso and nrsc in (X, τ). Hence (X, τ) is not a
NRS-connected space. But this is a contradiction to our hypothesis. Thus there exists no
non-null nrso sets A and B in (X, τ) such that A = 1−B.

Sufficiency: Let A be both nrso and nrsc in (X, τ) such that A 6= 0N , A 6= 1N . Let
1 − A = B. Then B is a nrso set and 1 − B 6= 1N . This implies that B = 1 − A 6= 0N ,
which is a contradiction to our hypothesis. Hence (X, τ) is a NRS-connected space. �

Proposition 4.2. A nts (X, τ) is a NRS-connected space if and only if there exists no
non-null nrso sets A, B ∈ X such that A = 1 − B, B = 1 − NRSCl(A) and A =
1−NRSCl(B).

Proof. Necessity: Assume that there exists a Ns’sA andB such thatA 6= 0N , 1−B 6= 0N ,
A = 1 − B, B = 1 − NRSCl(A) and A = 1 − NRSCl(B). Since 1 − NRSCl(A)
and 1−NRSCl(B) are nrso sets in (X, τ), A and B are nrso sets in (X, τ). This implies
(X, τ) is not a NRS-connected space, which is a contradiction. Thus there exists no
non-null nrso sets A and B in (X, τ) such that A = 1 − B, B = 1 − NRSCl(A) and
A = 1−NRSCl(B).

Sufficiency: Let A be both nrso and nrsc in (X, τ) such that A 6= 0N , A 6= 1N . Now
by taking 1 − A = B, we obtain a contradiction to our hypothesis. Hence (X, τ) is a
NRS-connected space. �

Definition 4.4. A nts (X, τ) is said to be neutrosophic C5-disconnected if there exists Ns
A ∈ X , which is both nos and ncs such that A 6= 0N and A 6= 1N . If (X, τ) is not
neutrosophic C5-disconnected then it is said to be neutrosophic C5-connected.

Proposition 4.3. Let (X, τ) and (Y, σ) be two nts’s. Let f : (X, τ)→ (Y, σ) is a NRSC
and surjective function. If (X, τ) is NRS-connected, then (Y, σ) is a neutrosophic C5-
connected.

Proof. Let (X, τ) is NRS-connected. Suppose (Y, σ) is not a neutrosophic C5-connected
space, then there exists a proper NsA ∈ Y, which is both nos and ncs. Since f is aNRSC
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function, f−1(A) is both nrso and nrsc in (X, τ). But this is a contradiction to hypothesis.
Hence (Y, σ) is a neutrosophic C5-connected space. �

Definition 4.5. A Ns in a nts (X, τ) is said to be nrsco set, which is both nrso and nrsc set.

Definition 4.6. A nts (X, τ) is said to be NRS-C5-disconnected if there exists nrsco set
A ∈ X, such that A 6= 0N and A 6= 1N . If (X, τ) is not NRS-C5- disconnected then it is
said to be NRS-C5-connected.

Proposition 4.4. A nts (X, τ) is NRS-C5 connected, then it is NRS-connected.

Proof. Suppose that there exists non-null nrso sets A and B such that A ∪ B = 1N and
A∩B = 0N (NRS-disconnected), then A = A∪B and A = A∩B. In other words, A =
1−B. Hence A is a nrsco set which implies that (X, τ) is NRS-C5-disconnected. �

Remark. The converse of the above Proposition need not be true as shown by the following
example.

Example 4.7. LetX = {a, b, c} and τ = {0N , 1N , A1, A2, A3, A4, A5}whereA1, A2, A3,
A4, A5, B,C are Ns’s of X defined as follows:
A1 =

〈
( µa

0.4 ,
µb

0.5 ,
µc

0.6 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
,

A2 =
〈
( µa

0.4 ,
µb

0.5 ,
µc

0.4 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
,

A3 =
〈
( µa

0.5 ,
µb

0.5 ,
µc

0.5 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
,

A4 =
〈
( µa

0.5 ,
µb

0.5 ,
µc

0.6 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
,

A5 =
〈
( µa

0.4 ,
µb

0.5 ,
µc

0.5 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
,

B =
〈
( µa

0.5 ,
µb

0.5 ,
µc

0.4 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
,

C =
〈
( µa

0.6 ,
µb

0.5 ,
µc

0.6 ), (
σa

0.5 ,
σb

0.5 ,
σc

0.5 ), (
γa
0.5 ,

γb
0.5 ,

γc
0.5 )
〉
.

Clearly B and C are nrso sets in (X, τ). Also, B 6= 0N , C 6= 0N , B ∪ C 6= 1N and
B∩C 6= 0N . Hence (X, τ) is NRS-connected, but it is NRS-C5-disconnected, since A3

is both nrso and nrsc set.

Proposition 4.5. Let (X, τ) and (Y, σ) be nts’s. Let f : (X, τ)→ (Y, σ) be a NRSI and
surjective function. If (X, τ) is NRS-connected, then (Y, σ) is NRS-connected.

Proof. Assume that (Y, σ) is not NRS-connected. Thus there exists non-null nrso sets
A,B ∈ Y, such that A ∪ B = 1N and A ∩ B = 0N . Since f is NRSI function, C =
f−1(A), D = f−1(B) are nrso sets in (X, τ). From A 6= 0N , we get C = f−1(A) 6= 0N .
(If f−1(A) 6= 0N , then A = f(f−1(A)) = f(0N ) = 0N , which is a contradiction.)
Similarly we obtain D = 0N . Now, A ∪ B = 1N f−1(A) ∪ f−1(B) = f−1(1N ),
C ∪D = 1N , A∩B = 0N f−1(A)∩f−1(B) = f−1(0N ) C ∩D = 0N . This implies that
C ∪D = 1N and C ∩D = 0N . Thus (X, τ) is NRS-connected, which is a contradiction
to our hypothesis. Hence (Y, σ) is NRS-connected. �

Proposition 4.6. A nts (X, τ) isNRS-C5-connected if and only if there exists no non-null
nrso sets A,B ∈ X such that A = 1N −B.

Proof. Suppose that A and B are nrso sets in X such that A 6= 0N , B 6= 0N , A = 1−B.
Since A = 1− B, 1− B is a nrso set and B is a nrsc set. And A 6= 0N implies B 6= 1N .
But this is a contradiction to the fact that (X, τ) is NRS-C5-connected.

Conversely, let A be both nrso and nrsc in X such that A 6= 0N , A 6= 1N . Now take
B = 1−A. In this caseB is a nrso set andA 6= 1N . Which implies thatB = 1−A = 0N ,
which is a contradiction. �
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Proposition 4.7. A nts (X, τ) isNRS-C5-connected if and only if there exists no non-null
Ns A, B in X such that 1N −A = B, B = 1N −NRSCl(A), A = 1N −NRSCl(B).

Proof. Assume that there exists a Ns sets A and B such that A 6= 0N , B 6= 0N , 1N −
A = B, B = 1N − NRSCl(A) and A = 1N − NRSCl(B). Since 1N − NRSCl(A)
and 1N − NRSCl(B) are nrso sets over X , A and B are nrso sets in X , which is a
contradiction.

Conversely, let A be both nrso and nrsc in X such that A 6= 0N , A 6= 1N . Taking
B = 1N −A, we obtain a contradiction. �

Definition 4.8. A nts (X, τ) is said to be NRS-strongly connected if there exists no non-
null nrsc sets A, B in X such that A+B ≤ 1N .

In otherwords, a nts (X, τ) is said to be NRS-strongly connected if there exists no
non-null nrsc sets A, B in X such that A ∩B = 1N .

Proposition 4.8. A nts (X, τ) is NRS-strongly connected if and only if there exists no
non-null nrso sets A, B in X such that A 6= 1N , B 6= 1N and A+B ≥ 1N .

Proof. Necessity: Let A and B are nrso sets in (X, τ) such that A 6= 1N , B 6= 1N and
A+B ≥ 1N . If we take C = 1N −A and D = 1N −B, then C and D become nrsc sets
in X and C 6= 0N , D 6= 0N and C +D ≤ 1N . Which is a contradiction. Hence (X, τ) is
NRS-strongly connected.

Sufficiency: Let A and B be non-null nrsc sets in (X, τ) such that A + B ≤ 1N . If
C = 1N − A and D = 1N − B, then C and D become nrso sets in (X, τ) and C 6= 1N ,
D 6= 1N and C +D ≥ 1N . Which is a contradiction. Thus there exists no non-null nrso
sets A and B in (X, τ) such that A 6= 1N , B 6= 1N and A+B ≥ 1N . �

Proposition 4.9. Let (X, τ) and (Y, σ) be nts’s. Let f : (X, τ)→ (Y, σ) be a NRSI and
surjective function. If (X, τ) is NRS-strongly connected, then (Y, σ) is NRS-strongly
connected.

Proof. Suppose that (Y, σ) is not NRS-strongly connected. Then there exists non-null
nrsc sets C1 and C2 in (Y, σ) such that C1 6= 0N , C2 6= 0N , C1 + C2 ≤ 0N . Since f is
NRSI function, f−1(C1), f−1(C2) are nrsc sets in (X, τ) and f−1(C1)∩f−1(C2) = 0N ,
f−1(C1) 6= 0N , f−1(C2) 6= 0N . (If f−1(C1) = 0N , then f(f−1(C1)) = C1 which
implies f(0N ) = C1. So 0N = C1 a contradiction.) Hence (X, τ) is NRS-strongly
connected, a contradiction to our hypothesis. Thus (Y, σ) isNRS-strongly connected. �

Remark. NRS-strongly connected does not imply NRS-C5-connected.

Example 4.9. In Example 4.7, (X, τ) is NRS-strongly connected, since there is no nrsc
sets A1, A2, A1 +A2 ≤ 1N . But (X, τ) is NRS-C5-disconnected.

Remark. NRS-C5-connected does not imply NRS-strongly connected.

Example 4.10. In Example 4.3, (X, τ) is NRS-C5-strongly connected, since there is no
Ns set A is both nrso and nrsc set. But (X, τ) is not NRS-strongly connected, since there
is the nrsc sets A and B, A+B ≤ 1N .

Definition 4.11. Let (X, τ) be nts, A, B in X . The non-null Ns sets A and B are said to
be

(1) NRS-weakly separated if NRSCl(A) ≤ 1N −B and NRSCl(B) ≤ 1N −A.
(2) NRS-q-separated if NRSCl(A) ∩B = 0N = A ∩NRSCl(B).
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Definition 4.12. A nts (X, τ) is said to be NRS-CW -disconnected if there exists NRS-
weakly separated non-null Ns sets A and B in X such that A ∪B = 1N .

Example 4.13. Let X = {a, b, c} and τ = {0N , 1N , A,B} where A,B are Ns’s of X
defined as follows:
A =

〈
( µa

0.0 ,
µb

1.0 ,
µc

0.0 ), (
σa

0.0 ,
σb

1.0 ,
σc

0.0 ), (
γa
0.0 ,

γb
1.0 ,

γc
0.0 )
〉
,

B =
〈
( µa

1.0 ,
µb

0.0 ,
µc

1.0 ), (
σa

1.0 ,
σb

0.0 ,
σc

1.0 ), (
γa
1.0 ,

γb
0.0 ,

γc
1.0 )
〉
,

Clearly A and B are nrso sets in (X, τ), NRSCl(A) ≤ 1N −B, NRSCl(B) ≤ 1N −A.
Hence A and B are NRS-weakly separated and A ∪ B = 1N . Hence (X, τ) is NRS-
CW -disconnected.

Definition 4.14. A nts (X, τ) is said to be NRS-CQ-disconnected if there exists NRS-q-
separated non-null Ns sets A and B in X such that A ∪B = 1N .

Example 4.15. In Example 4.13, the Ns sets A and B are nrso sets, NRSCl(A) = (1N −
B) ∩ B = 0N and NRSCl(B) = (1N − A) ∩ A = 0N . Hence A and B are NRS-q-
separated and A ∪B = 1N . Thus (X, τ) is NRS-CQ-disconnected.

Remark. A nts (X, τ) is said to be NRS-CW -connected if and only if (X, τ) is NRS-
CQ-connected.

Definition 4.16. Let (X, τ) be a nts and Y ⊆ X . Let AY is defined as follows AY (x) ={
1N if x ∈ Y
0N if x /∈ Y

. Let τY = {AY ∩ B : B is nos}, then the NT τY on Y is called neutro-

sophic subspace topology and (Y, τY ) is called neutrosophic subspace of (X, τ).

Definition 4.17. A neutrosophic subspace (Y, τY ) of nts (X, τ) is said to be NRS-open
(resp. NRS-closed, NRS-connected) subspace if AY ∈ NRSO(X) (resp. AY ∈
NRSC(X), AY is NRS-connected).

Theorem 4.10. Let (Y, τY ) be a NRS-connected subspace of nts (X, τ) such that CY ∩
B ∈ NRSO(X). If 1N has a NRS-separations A and B, then either CY ≤ A or
CY ≤ B.

Proof. Let A, B be NRS-separation on 1N . By hypothesis, A ∩ CY ∈ NRSO(X),
B ∩ CY ∈ NRSO(X) and [A ∩ CY ] ∪ [B ∩ CY ] = CY . Since CY is NRS-connected.
Then either A∩CY = 0N or B ∩CY = 0N . Therefore, either CY ≤ A or CY ≤ B. �

Theorem 4.11. If (X, τ2) is aNRS-connected space and τ1 is Neutrosophic coarser than
τ2, then (X, τ1) is also a NRS-connected.

Proof. Let A, B in X be NRS-separation on (X, τ1). Then A, B are nrso sets. Since
τ1 ≤ τ2. Then A, B in (X, τ2) such that A, B is NRS-separation on (X, τ2), which
is a contradiction with the NRS-connectedness of (X, τ2). Hence, (X, τ1) is NRS-
connected. �

Theorem 4.12. A neutrosophic subspace (Y, τY ) of a NRS-disconnected space (X, τ) is
NRS-disconnected if CY ∩B ∈ NRSO(X), ∀B ∈ NRSO(X).

Proof. Let (Y, τY ) be NRS-connected. Since (X, τ) is NRS-disconnected. Then there
exists NRS-separation A, B on (X, τ). By hypothesis, A ∩ CY ∈ NRSOS(X), B ∩
CY ∈ NRSOS(X) and [A ∩ CY ] ∪ [B ∩ CY ] = CY , which is a contradiction with the
NRS-connectedness of (Y, τY ). Therefore (Y, τY ) is NRS-disconnected. �
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5. CONCLUSIONS

In this paper, we have introduced neutrosophic regular semi compactness and gave basic
definition and theorems of the concept. Also, we introduce neutrosophic regular semi
connectedness, neutrosophic regular semi strongly connectedness and neutrosophic regular
semi-C5-connectedness. Some interesting properties of these notions are studied.
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