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L-FUZZIFYING PROXIMITY, L-FUZZIFYING UNIFORM SPACE AND
L-FUZZIFYING STRONG UNIFORM SPACE

MOHAMMED M. KHALAF

ABSTRACT. In this paper the concept of proximity in L-fuzzifying topology is estab-
lished and some of its properties are discussed. Furthermore we introduce and
study the concepts ofL-fuzzifying uniform space and L-fuzzifying strong uni-
form space.

1. PRELIMINARIES

In 1993, M. Ying [11] introduced and studied the uniformity in [0, 1]−fuzzifying topol-
ogy as a fuzzy concept, i.e., as a fuzzy subset of P (X×X) for an ordinary set X. In 2003,
H. F. Kheder [5], introduced and studied concepts of proximity and strong uniformity in
fuzzifying topology as fuzzy concepts. In this paper we introduce and study the concept of
proximity, uniformity and strong uniformity in L-fuzzifying topology. In section 2, we ex-
tend the concept of fuzzifying proximity due to (Kheder, et al (2003)[5]) into L-fuzzifying
setting. Some of basic properties of this extenstion are studied.

Section 3, is devoted to extend and study the concept of uniformity in the sense of (Ying
(1993)[10])in L–fuzzifying topology. Finally, the notion of fuzzifying strong uniform
space (Kheder, et al (2003)[5]) is generalized by introducing the concept of L-fuzzifying
strong uniform spaces. Some results concerning this concept are obtained. In the present
paper L is assumed to be a completely residuated lattice such that the following conditions
are satisfied:

(1) L is totally ordered as a poset.( i.e. for each a, b ∈ L, a < b, or b < a. )
(2) L satisfies that ,∧, is disributive over arbitrary joins.

Definition 1.2. [9]. A structure (L,∨,∧,∗,→,⊥,⊤) is called a complete residuated lattice
iff

(1) (L,∨,∧,⊥,⊤) is a complete lattice whose greatest and least element are ⊤,⊥ re-
spectively,

(2) (L,∗,⊤) is a commutative monoid, i.e.,
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(a) ∗ is a commutative and associative binary operation on L, and
(b) ∀ a ∈ L, a ∗ ⊤ = ⊤ ∗ a = a,
(3)(a) ∗ is isotone,
(b) → is a binary operation on L which is antitone in the first and isotone in the second

variable,
(c) → is couple with ∗ as: a ∗ b ≤ c iff a ≤ b → c ∀ a, b, c ∈ L. The basic operations

on the family LX of all L-sets on a non-empty set X was defined as follows:

Definition 1.3. [1]. A complete lattice L is called completely distributive if the following
law is satisfied:
∀{Aj |j ∈ J } ⊆ P (L), where P (L) is the power subset of L we have,∧
j∈J

∨
Aj =

∨
f∈

∏
j∈J

Aj

(
∧
j∈J

f(j)).

Definition 1.4.(Csa′sza′r (1978)[2]). A binary relation δ on P (X) × P (X) is called a
proximity on a set X if it satisfies the following conditions:

(P1) If (A,B) ∈ δ, then A ̸= ϕ and B ̸= ϕ and δ(ϕ,X) = 0,
(P2) If A ∩B ̸= ϕ, then (A,B) ∈ δ
(P3) If (A1 ∪A2, C) ∈ δ, then (A1, C) ∈ δ or (A2, C) ∈ δ
(P4) If (A,B) ∈ δ, then (B,A) ∈ δ
(P4) If (A,B) /∈ δ, then there exists D such that (A,D) /∈ δ and (X −D,B) /∈ δ
The pair (X, δ) is said to be a proximity space.

The following concepts are given in (Kheder, et. al. ( 2003)[5]).

Definition 1.5. Let X be a set and let δ ∈ I(P (X)×P (X)), i.e., δ : P (X) × P (X) →
[0, 1]. Assume that for any A,B,C ∈ P (X) the following axioms are satisfied:

(FP1) |= ¬(X,ϕ) ∈ δ,
(FP2) |= (A,B) ∈ δ ↔ (B,A) ∈ δ,
(FP3) |= (A,B ∪ C) ∈ δ ↔ (A,B) ∈ δ ∨ (A,C) ∈ δ,
(FP4) for every A,B ⊆ X , there exists C ⊆ X such that
|= ((A,C) ∈ δ ∨ (B,X − C) ∈ δ) → (A,B) ∈ δ,
(FP5) |= {x} ≡ {y} ↔ ({x}, {y}) ∈ δ. Then δ is called a fuzzifying proximity on

X and (X, δ) is called a fuzzifying proximity space.

Theorem 1.1. Let (X, δ) be a fuzzifying proximity space. Then we have
(1) |= (A,B) ∈ δ ∧B ⊆ C → (A,C) ∈ δ,
(2) |= (A ∩B) ̸= ϕ → (A,B) ∈ δ,
(3) |= ¬δ(A, ϕ).

Proposition 1.1. For every α ∈ (0, 1], δα is a proximity on X, where δα is the α-level of
δ, i.e., δα = {(A,B) : δ(A,B) ≥ α}.

Definition 1.6. Let (X, δ) be a fuzzifying proximity space. For each α ∈ (0, 1], we define
the interior operation induced by δα, denoted by
intδα : P (X) → P (X), as follows: intδα(A) =

⋃
B∈P (X),(B,X−A)/∈δα

B ∀A ∈ P (X).

Proposition 1.2. For every α ∈ (0, 1], the family τδα = {A : A ⊆ X and intδα(A) = A}
is a topology on X.
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Theorem 1.2. Let (X, δ) be a fuzzifying proximity space. The mapping τδ : P (X) →
[0, 1] defined by: τδ(A) =

∨
α∈(0,1) ,A∈τδα

α is a fuzzifying topology and is called the

fuzzifying topology induced by the fuzzifying proximity δ.

Definition 1.7. (Csa′sza′r (1978)[2]). A uniform structure U on a set X is a family of
subsets of
X ×X, called entourage, which satisfies the following properties:

(U1) If u ∈ U, then △ ⊆ u, where △ is the diagonal:
△ = {(x, x) |x ∈ X }

(U2) If v ⊆ u, and v ∈ U then u ∈ U,
(U3) for every u, v ∈ U, u ∩ v ∈ U,
(U4) If u ∈ U, then u−1 ∈ U, where u−1 = {(x, y) |(y, x) ∈ u}.
(U3) for every u ∈ U, there exists v ⊆ U such that v ◦ v ⊆ u, where v ◦ v ⊆ u, where

v ◦ u is defined by:
v ◦ u = {(x, y)| ∃z ∈ X such that (x, z) ∈ u and (z, y) ∈ u}, ∀x, y ∈ X. The pair

(X,U) is said to be a uniform space.

The following results are given in [Ying (1992)[11]).

Definition 1.8. Let X be a set and U ∈ IP (X×X). If for any U, V ⊆ X ×X,
(U1) |= (U ∈ U) →(△ ⊆ U),
(U2) |= (U ∈ U) →(U−1 ∈ U),
(U3) |= (U ∈ U) →(∃V )(V ∈ U) ∧ (V ◦ V ⊆ U ),
(U4) |= (U ∈ U)∧(V ∈ U) → (U ∩ V ⊆ U ),
(U5) |= (U ∈ U)∧(U ⊆ V ) → (V ∈ U ). Then, U is called Fuzzifying uniformity and

(X,U) is called fuzzifying uniform space.

Lemma 1.1. Let (X,U) be a fuzzifying uniform space and ℑ ∈ IP (X) defined by:
T ∈ ℑ := (∀x)(x ∈ T ) → (∃U)((U ∈ U) ∧ (U [x] ⊆ T ))), T ⊆ X i.e.,
ℑ(T ) :=

∧
x∈T

∨
U [x]⊆T

U(U), T ⊆ X. where U [x] = {y ∈ X : (x, y) ∈ U}. Then ℑ is a

fuzzifying topology on X and called the fuzzifying (uniform) topology of U .

The following concepts are given in (Kheder, et. al. ( 2003)[5]).

Definition 1.9. Let X be a set and let U : P (X × X) → I. Assume that U is normal,
i.e. ∃ U ⊆ X ×X s.t. U [U ] = 1. If for any U, V ⊆ X ×X,

(FU1) |= (U ∈ U) →(△ ⊆ U),
(FU2) |= (U ∈ U) →(U−1 ∈ U),
(FU3)∗ There exists H < P (X × X) s.t. |= (U ∈ U) →(∃V )(V ∈ H) ∧ (V ∈

U) ∧ (V ◦ V ⊆ U),where < stands for ,,a finite subset of,,,
(FU4) |= (U ∈ U)∧(V ∈ U) → (U ∩ V ⊆ U ),
(FU5) |= (U ∈ U)∧(U ⊆ V ) → (V ∈ U ). Then, U is called a strong fuzzifying

uniformity and (X,U) is called a strong fuzzifying uniform space.
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Theorem 1.3. Let (X,U) be a strong fuzzifying uniform space. Then for each α ∈ (0, 1),
the α level of U denoted by Uα is a classical uniformity on X. where Uα = {U ∈ P (X ×
X) s.t. U(U) ≥ α}.

Theorem 1.4. Let (X,U) be a strong fuzzifying uniform space. The fuzzy set τU ∈
(F(P (X)), defined by: τU (A) =

∨
α∈(0,1],A∈τUα

α, is a fuzzifying topology. It is called the

fuzzifying topology induced by the strong fuzzifying uniformity U

Theorem 1.5 Let δUα
be the proximity induced by the uniformity Uα. Then the mapping

δU : P (X × X) → [0, 1], defined by δU (A,B) =
∨

α∈(0,1],(A,B)∈δUα

α, is a fuzzifying

proximity. It is called the fuzzifying proximity induced by the strong fuzzifying uniformity
U .

2. L-fuzzifying proximity space

Definition 2.1. The binary crisp predicate CE ∈ {⊥,⊤}P (X)×P (X) , called crisp equality,
is given as follows:

CE(A,B) =

{
⊤ if A = B
⊥ if A ̸= B

Definition 2.2. Let X be a set and let δ ∈ LP (X)×P (X), i.e.,
δ : P (X) × P (X) → L. Assume that for every A,B,C ∈ P (X), the following axioms
are satisfied:

(LFP1) δ(X,ϕ) = ⊥,
(LFP2) δ(B,A) = δ(A,B),
(LFP3) δ(A,B ∪ C) = δ(A,B) ∨ δ(A,C),
(LFP4) For every A,B ∈ P (X), ∃C ∈ P (X)

s.t. δ(A,B) ≥ δ(A,C) ∨ δ(B,X − C),
(LFP5) δ({x}, {y}) = CE({x}, {y}). Then δ is called an L-fuzzifying proximity on

X and (X, δ) is called an L-fuzzifying proximity space.

Definition 2.3. The binary crisp predicate ⊆∈ {⊥,⊤}P (X)×P (X),called crisp inclusion,
is defined as follows:

⊆ (A,B) =

{
⊤ if A ⊆ B,
⊥ if A ⊈ B.

Definition 2.4. The binary crisp predicate ∩ ∈ {⊥,⊤}P (X)×P (X), called crisp intersec-
tion, is defined as follows:

∩(A,B) =

{
⊤ if A ∩B ̸= ϕ
⊥ if A ∩B = ϕ

Lemma 2.1. If ⊆ (B,C) = ⊤, then δ(A,B) ≤ δ(A,C) ∀A ∈ P (X).

Proof. δ(A,C) = δ(A,B ∪ C) = δ(A,B) ∨ δ(A,C) ≥ δ(A,B).
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Theorem 2.1. Let (X, δ) be an L-fuzzifying proximity space. For every A,B,C ∈
P (X),then we have

(1) δ(A,C) ≥ δ(A,B)∧ ⊆ (B,C),
(2) δ(B,A) ≥ ∩(A,B),
(3) δ(A, ϕ) → ⊥ = ⊤.

Proof. (1) If ⊆ (B,C) = ⊥, then δ(A,C) ≥ δ(A,B) ∧ ⊥
and if ⊆ (B,C) = ⊤, from Lemma 2.1 we have
δ(A,C) ≥ δ(A,B) ∧ ⊤. Then δ(A,C) ≥ δ(A,B)∧ ⊆ (B,C).

(2) If ∩(A,B) = ⊥, the result hold. Let ∩(A,B) = ⊤, i.e., ∃x ∈ A ∩B.
From (LFP5), δ({x}, {x}) = ⊤. Applying Lemma 2.1 and (LFP2),
δ(A,B) ≥ δ(A, {x}) = δ({x}, A) ≥ δ({x}, {x}) = ⊤. Hence δ(A,B) ≥ ∩(A,B).

(3) From Lemma 2.1, δ(A, ϕ) ≤ δ(X,ϕ).
Then δ(A, ϕ) → ⊥ ≥ δ(X,ϕ) → ⊥ = ⊥ → ⊥ = ⊤.

Theorem 2.2. For every α ∈ L-{⊥}, δα is a proximity on X, where δα is the α-cut of an
L-fuzzifying proximity δ, i.e., δα = {(A,B) : δ(A,B) ≥ α}.

Proof. Let α ∈ L− {⊥}.

(P1) From (LFP1) we have δ(X,ϕ) = ⊥. Then δ(X,ϕ) < α. So, (X,ϕ) /∈ δα.

(P2) Suppose (A,B) ∈ δα. Then δ(A,B) ≥ α.
From (LFP2), δ(B,A) = δ(A,B) ≥ α. Hence (B,A) ∈ δα.

(P3) Let (A,B ∪ C) ∈ δα then δ(A,B ∪ C) ≥ α.
From (LFP3) we have δ(A,B) ≥ α or δ(A,C) ≥ α
and hence (A,B) ∈ δα or (A,C) ∈ δα.

(P4) Let (A,B) /∈ δα.since L is totally ordered
then we have δ(A,B) < α. From (LFP4) there exists C ∈ P (X) such that
δ(A,B) ≥ δ(A,C)∨ δ(B,X −C). Then δ(A,C)∨ δ(B,X −C) < α which implies that
δ(A,C) < α and δ(B,X−C) < α which implies that (A,C) /∈ δα and (B,X−C) /∈ δα.

(P5) Suppose x = y. Then CE({x}, {y}) = ⊤ so that from (LFP5),
δ({x}, {y}) = ⊤ ≥ α. Hence ({x}, {y}) ∈ δα.

Definition 2.5. Let (X, δ) be an L- fuzzifying proximity space. For each α ∈ L-{⊥},
the interior operation induced by δα, denoted by intδα : P (X) → P (X), is defined as
follows: intδα(A) =

⋃
B∈P (X),(B,X−A)/∈δα

B ∀A ∈ P (X).

Theorem 2.3. For every α ∈ L-{⊥}, the family τδα = {A : A ⊆ X and intδα(A) = A}
is a classical topology on X.

Proof. Let α ∈ L-{⊥}. Then:



68 MOHAMMED M. KHALAF

(1)since intδα(X) =
⋃

B∈P (X),(B,ϕ)/∈δα

B = X and intδα(ϕ) =
⋃

B∈P (X),(B,X)/∈δα

B

= ϕ, then X, ϕ ∈ τδα .

(2) Let A, C ∈ τδα s.t. intδα(A) = A and intδα(C) = C.

Then intδα(A ∩ C) =
⋃

B∈P (X),(B,X−(A∩C))/∈δα

B

=
⋃

B∈P (X),(B,(X−A)∪(X−C))/∈δα

B =

( ⋃
B∈P (X),(B,X−A)/∈δα

B

)
∩

( ⋃
B∈P (X),(B,X−C)/∈δα

B

)

= A ∩ C. So, A ∩ C ∈ τ δα .

(3) Let {Aλ : λ ∈ Λ} ⊆ τ δα . Now
⋃

λ∈Λ

Aλ =
⋃

λ∈Λ

int δα(Aλ) ⊆ int δα(
⋃

λ∈Λ

Aλ),

because int δα is monotone (indeed, If A ⊆ C, then int δα(A) =
⋃

B∈P (X),(B,X−A)/∈δα

B

⊆
⋃

B∈P (X),(B,X−C)/∈δα

B = int δα(C).). Also, int δα(
⋃

λ∈Λ

Aλ) ⊆
⋃

λ∈Λ

Aλ

because int δα(A) =
⋃

B∈P (X),(B,X−A)/∈δα

B ⊆
⋃

B ∈P (X), ∩(B, X−A)=⊥
B

=
⋃

B∈P (X),B ⊆A

B = A for any A ∈ P (X)

Then int δα(
⋃

λ∈Λ

Aλ) =
⋃

λ∈Λ

Aλ. Hence
⋃

λ∈Λ

Aλ ∈ τ δα .

Theorem 2.4. Let (X, δ) be an L- fuzzifying proximity space and let X satisfies the com-
pletely distributive law. The mapping τδ : P (X) → L defined by: τδ(A) =

∨
α∈L−{⊥},A∈τ δα

α is

an L- fuzzifying topology and is called the L-fuzzifying topology induced by the L-
fuzzifying proximity δ.

Proof. (1) τδ(X) =
∨

α∈L−{⊥}, X∈τ δα

α = ⊤, τδ(ϕ) =
∨

α∈L−{⊥},ϕ∈τ δα

α = ⊤.

(2) τδ(A ∩B) =
∨

α∈L−{⊥},A∩B∈τ δα

α ≥
∨

α∈L−{⊥},A∈τ δα∧B∈τ δα

α

=

( ∨
α∈L−{⊥},A∈τ δα

α

)
∧

( ∨
α∈L−{⊥},B∈τ δα

α

)
= τδ(A) ∧ τδ(B).
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(3) Let {Aλ : λ ∈ Λ} ⊆ P (X). Then we have, τδ(
⋃

λ∈Λ

Aλ) =
∨

α∈L−{⊥},
⋃

λ∈Λ

Aλ∈τ δα

α

≥
∨

α∈L−{⊥},Aλ∈τ δα ,λ∈Λ

α =
∧

λ∈Λ

∨
α∈L−{⊥},Aλ∈τ δα

α =
∧

λ∈Λ

τδ(Aλ).

3. L-fuzzifying uniformity and L-fuzzifying strong uniformity

Definition 3.1. Let X be a nonempty set and let U ∈ LP (X×X). Assume that the following
statments are satisfied:

(LFU0) There exists U ∈ P (X ×X) s.t. U(U ) = ⊤,
(LFU1) For any U ∈ P (X ×X), U(U ) > 0, [[△, U [[= ⊤,
(LFU2) For any U ∈ P (X ×X), U(U ) = U(U−1 ),
(LFU3) For any U ∈ P (X ×X),

∨
V⊆X×X

U(V )∧ ⊆ (V ◦ V,U) ≥ U(U ),

(LFU4) For any U, V ∈ P (X ×X), U(U ∩ V ) ≥ U(U) ∧ U(V ),
(LFU5) For any U, V ∈ P (X ×X), U(V ) ≥ U(U )∧ ⊆ (U, V ). Then U is called

an L-fuzzifying uniformity and (X,U) is called an L-fuzzifying uniform space.

Theorem 3.1. Let (X,U) be an L-fuzzifying uniform space . Then τ ∈ LP (X) defined
by τ(A) =

∧
x∈A

∨
U [x]⊆A

U(U) ∀A ∈ P (X). is an L-fuzzifying topology on X and is called

the L-fuzzifying topology on X induced by U .

Proof. It is clear from (LFU0) that τ(X) = ⊤. Let A1, A2 ⊆ X. From (LFU4) we
have,

τ(A1) ∧ τ(A2) = (
∧

x1∈A1

∨
U1[x1]⊆A1

U(U1)) ∧ (
∧

x2∈A2

∨
U2[x2]⊆A2

U(U2))

=
∧

x1∈A1,x2∈A2

∨
U1[x1]⊆A1, U2[x2]⊆A2

(U(U1) ∧ U(U2))

≤
∧

x1∈A1,x2∈A2

∨
U1[x1]⊆A1, U2[x2]⊆A2

U(U1 ∩ U2)

≤
∧

x∈A1∩A2

∨
U1∩ U2[x]⊆A1∩A2

U(U1 ∩ U2)

≤
∧

x∈A1∩A2

∨
U [x]⊆A1∩A2

U(U) = τ(A1 ∩A2).Finally, for any Ai ⊆ X (i ∈ I),

we have τ(
⋃
i∈I

Ai) =
∧

x∈
⋃
i∈I

Ai

∨
U [x]⊆

⋃
i∈I

Ai

U(U) =
∧
i∈I

(
∧

x∈Ai

∨
U [x]⊆

⋃
i∈I

Ai

U(U))

≥
∧
i∈I

(
∧

x∈Ai

∨
U [x]⊆Ai

U(U)) =
∧
i∈I

τ(Ai).

In [5], the authers introduced a counterexample in [0, 1]-fuzzifying setting to illustrate
that there exists some α-cut of the [0, 1]-fuzzifying uniformity in the sense of M. S. Ying
[11], which not a uniformity. In the following we introduce the concept of an L-fuzzifying
strong uniform space as a generalization of the concept of fuzzifying strong uniform space
[5].
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Definition 3.3. Let X be a nonempty set and let U ∈ LP (X×X). If the following statments
are satisfied:

(LFSU0) There exists U ∈ P (X ×X) s.t. U(U ) = ⊤
(LFSU1) For any U ∈ P (X ×X), [[△, U [[= ⊤,
(LFSU2) For any U ∈ P (X ×X), U(U ) ≤ U(U−1 ),
(LFSU3) For any U ∈ P (X × X), ∃ V ∈ P (X × X) s.t. V ◦ V ⊆ U and

U(V ) ≥ U(U ),
(LFSU4) For every U, V ∈ P (X ×X), U(U ∩ V ) ≥ U(U) ∧ U(V ), and
(LFSU5) For every U, V ∈ P (X×X), U(V ) ≥ U(U )∧ ⊆ (U, V ), then U is called

an L-fuzzifying strong uniform and (X,U) is called an L-fuzzifying strong uniformity
space.

Remark 3.1. If L = [0, 1], the condition (LFSU3) implies the condition (FU3)∗ in
Definition 1.9.

Theorem 3.2. Let (X,U) be an L-fuzzifying strong uniformity space. Then for each
α ∈ L− {⊥}, then the α-cut of U denoted by Uα is a uniformity .

Proof. Let α ∈ L− {⊥}.

(U0) From (LFSU0) ∃U ∈ P (X ×X) s.t. U(U ) = ⊤ ≥ α so that Uα ̸= ϕ.

(U1) Let U ∈ Uα. So from condition (LFSU1), [[△, U [[= ⊤ so that △ ⊆ U.

(U2) Let U ∈ Uα. So from (LFSU2), U(U−1 ) ≥ U(U ) ≥ α.
Then U−1 ∈ Uα.

(U3) Let U ∈ Uα. Then from (LFSU3), ∃ V ∈ P (X ×X) s.t.
V ◦ V ⊆ U and U(V ) ≥ U(U ) ≥ α. Hence V ∈ Uα.

(U4) Let U, V ∈ Uα. Then from (LFSU4), U(U ∩ V ) ≥ U(U) ∧ U(V ) ≥ α
so that U ∩ V ∈ Uα.

(U5) Let U ∈ Uα and U ⊆ V. Then from (LFSU5),
U(V ) ≥ U(U )∧ ⊆ (U, V ) = U(U ) ≥ α. Hence V ∈ Uα.

Theorem 3.3. Let (X,U) be an L-fuzzifying strong uniformity space and let X satis-
fies the completely distributive law. The L-fuzzy set τU ∈ LP (X), defined by: τU (A) =∨
α∈L−{⊥}, A∈τUα

α is an L-fuzzifying topology. It is called the L-fuzzifying topology in-

duced by the L-fuzzifying strong uniformity U .

Proof. (1) Since X,ϕ ∈ τU⊤ , then we have that τU (X) =
∨

α∈L−{⊥}, X∈τUα

α = ⊤. and

τU (ϕ) =
∨

α∈L−{⊥}, ϕ∈τUα

α = ⊤.

(2) τU (A ∩B) =
∨

α∈L−{⊥}, A∩B∈τUα

α ≥
∨

(α1∧α2)∈L−{⊥}, A∈τUα1
,B∈τUα2

(α1 ∧ α2)
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=
∨

α∈L−{⊥}, A∈τUα1

α1 ∧
∨

α∈L−{⊥}, B∈τUα2

α2 = τU (A) ∧ τU (B).

(3) τU (
⋃

λ∈Λ

Aλ) =
∨

α∈L−{⊥},
⋃

λ∈Λ

Aλ∈τUα

α ≥
∨

α∈L−{⊥}, Aλ∈τUα ,λ∈Λ

α =
∨

f∈
∏

λ∈Λ

Mλ

∧
λ∈Λ

f(λ)

=
∧

λ∈Λ

∨
Mλ =

∧
λ∈Λ

∨
α∈Mλ

α =
∧

λ∈Λ

∨
Aλ∈τUα

α =
∧

λ∈Λ

τU (Aλ).

Where Mλ = {α ∈ L− {⊥} : Aλ ∈ τUα ∀ λ ∈ Λ} .

Theorem 3.4. Let δUα
be the proximity induced by the uniformity Uα α ∈ L−{⊥}. Then

the mapping δU ∈ LP (X)×P (X) defined by δU (A,B) =
∨

α∈L−{⊥}, (A,B)∈δUα

α is an L-

fuzzifying proximity. It is called the L-fuzzifying proximity induced by the L-fuzzifying
strong uniformity U .

Proof. (LFP1) δU (X,ϕ) =
∨

α∈L−{⊥}, (X,ϕ)∈δUα

α = ⊥.

(LFP2) δU (A,B) =
∨

α∈L−{⊥}, (A,B)∈δUα

α =
∨

α∈L−{⊥}, (B,A)∈δUα

α = δU (B,A).

(LFP3) δU (A,B ∪ C) =
∨

α∈L−{⊥}, (A,B∪C)∈δUα

α

=

( ∨
α∈L−{⊥}, (A,B)∈δUα

α

)
∨

( ∨
α∈L−{⊥}, (A,C)∈δUα

α

)
= δU (A,B) ∨ δU (A,C).

(LFP4) (A,B) /∈ δUα
⇒ ∃C ∈ P (X) s.t. (A,C) /∈ δUα

and (B,X − C) /∈ δUα
. Therefore δU (A,B) =

∨
α∈L−{⊥}, (A,B)∈δUα

α

≥
∨

α∈L−{⊥}, (A,C)∈δUα or α∈L−{⊥}, (B,X−C)∈δUα

α

= (
∨

α∈L−{⊥}, (A,C)∈δUα

α) ∨ (
∨

α∈L−{⊥}, (B,X−C)∈δUα

α ) = δU (A,C)∨ δU (B,X−

C).

(LFP5) Frist suppose that CE({x}, {y}) = ⊤. Then {x} = {y}. So,
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({x}, {y}) ∈ δUα
, for any α ∈ L− {⊥}, Therefore

δU ({x}, {y}) =
∨

α∈L−{⊥}, ({x},{y})∈δUα

α = ⊤. Second if CE({x}, {y}) = ⊥,

then x /∈ {y}. So, ({x}, {y}) /∈ δUα
, for any α ∈ L− {⊥}.

Hence δU ({x}, {y}) =
∨

α∈L−{⊥}, ({x},{y})/∈δUα

α = ⊥.

4. Conclusions

in this paper, the notion of fuzzifying strong uniform space (Kheder, et al (2003)[5])
is generalized by introducing the concept of L-fuzzifying strong uniform spaces. Some
results concerning this concept are obtained. In the present paper L is assumed to be a
completely residuated lattice such that the following conditions are satisfied:

(1) L is totally ordered as a poset.( i.e. for each a, b ∈ L, a < b, or b < a. )
(2) L satisfies that ,∧, is disributive over arbitrary joins.

In the future, we will study topological notions defined by means of regular open
sets when these are planted into the framework of Ying’s fuzzifying topological spaces
(in Lukasiewicz fuzzy logic). We used fuzzy logic to introduce almost separation axioms
(almost Hausdorff)-, (almost-regular)-and (almost-normal). we gave the relations of these
axioms with each other as well as the relations with other fuzzifying separation axioms.
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