

DIFFERENT TYPES OF PRIME BI-IDEALS IN TERNARY SEMIRINGS

M. PALANIKUMAR* AND K. ARULMOZHI

Abstract

To interact three different types of prime bi-ideals are introduce and the relation between them is obtain. Also we have define three different m^{b}-systems. The bi-ideal P of a ternary semiring \mathbb{R} is 2-prime if and only if $R M L \subseteq P$, where R is a right ideal, M is a lateral ideal and L is a left ideal of \mathbb{R}, implies $R \subseteq P$ or $M \subseteq P$ or $L \subseteq P$. If B is a bi-ideal of \mathbb{R}, then H_{B} is the unique largest two-sided ideal of \mathbb{R} contained B. Let M be a m_{3}^{b} system and bi-ideal B of \mathbb{R} with $B \cap M=\phi$. Then there exists a 3-prime P of \mathbb{R} containing B with $P \cap M=\phi$.

1. Introduction

D. H. Lehmer initiated the concept of ternary algebraic systems called triplexes in 1932 [9]. He investigated certain ternary algebraic systems called triplexes which turn out to be commutative ternary groups. The notion of semiring was introduced by Vandiver in 1934 [6]. In 1962, Hestenes [7] studied the notion of ternary algebra with application to matrices and linear transformation. In 1971, Lister characterized those additive subgroups of rings which are closed under the triple ring product and he called this algebraic system a ternary ring. Non-commutative ternary semirings have been an object of systematic study only quite recently, during the 20th century. Other natural non-commutative objects that arise are matrices. Algebraic structures play with applications in many area such as control engineering, combinatorics, functional analysis, graph theory, Euclidean geometry, optimization theory, discrete event dynamical systems, automata theory. Ternary semiring is a generalization of semirings. The results in ordinary semirings may be extended to n-ary semirings for arbitrary n but the transition from $n=3$ to arbitrary n entails a great degree of complexity that makes it undesirable for exposition. The ring of integers \mathbb{Z} which plays a role in the ring theory. The subset \mathbb{Z}^{+}of \mathbb{Z} is an additive semigroup which is closed under the ring product, that is \mathbb{Z}^{+}is a semiring. Now, if we consider the subset \mathbb{Z}^{-}of \mathbb{Z}, then we see that \mathbb{Z}^{-}is an additive semigroup which is closed under the triple ring product, that is \mathbb{Z}^{-}forms a ternary semiring. Arulmozhi et. al was introduced by new type of ideals in semirings and ternary semirings [1, 2, 13, 14, 15]. Let B be any bi-ideal of a semiring S and $L_{B}=\{x \in B \mid S x \subseteq B\}$ and $H_{B}=\left\{y \in L_{B} \mid y S \subseteq L_{B}\right\}$ [16, 17].

[^0]
2. Preliminaries

Throughout this paper, \mathbb{R} denote a ternary semiring unless otherwise specified.
Definition 2.1. [5] A non-empty set \mathbb{R} together with a binary operation, called addition and a ternary multiplication, denoted by juxtaposition is said to be a ternary semiring if $(\mathbb{R},+)$ is a commutative semigroup and ternary multiplication satisfies the following:
(i) $(a b c) d e=a(b c d) e=a b(c d e)$,
(ii) $(a+b) c d=a c d+b c d$,
(iii) $a(b+c) d=a b d+a c d$,
(iv) $a b(c+d)=a b c+a b d$ for all $a, b, c, d, e \in \mathbb{R}$

Definition 2.2. [5] A ternary semiring \mathbb{R} is said to commutative if $a b c=a c b=c a b=c b a$ for all $a, b, c \in \mathbb{R}$.

Definition 2.3. [5] An additive subsemigroup I of \mathbb{R} is called a
(i) ternary subsemiring if $i_{1} i_{2} i_{3} \in I$ for all $i_{1}, i_{2}, i_{3} \in I$.
(ii) right (lateral, left) ideal if $i r_{1} r_{2} \in I\left(r_{1} i r_{2} \in I, r_{1} r_{2} i \in I\right)$ for all $r_{1}, r_{2} \in \mathbb{R}$ and $i \in I$.

Lemma 2.1. Let $a \in \mathbb{R}$. Then the principal
(i) right ideal generated by " a " is given by $\langle a\rangle_{r}=\left\{n a+a \mathbb{R} \mathbb{R} \mid n \in \mathbb{Z}_{0}^{+}\right\}$,
(ii) left ideal generated by " a " is given by $\langle a\rangle_{l}=\left\{n a+\mathbb{R} \mathbb{R} a \mid n \in \mathbb{Z}_{0}^{+}\right\}$,
(iii) lateral ideal generated by " a " is given by $\langle a\rangle_{\text {lat }}=\left\{n a+\mathbb{R} a \mathbb{R}+\mathbb{R} \mathbb{R} a \mathbb{R} \mathbb{R} \mid n \in \mathbb{Z}_{0}^{+}\right\}$,
(iv) two sided ideal generated by " a " is given by $\langle a\rangle_{t}=\{n a+\mathbb{R} \mathbb{R} a+a \mathbb{R} \mathbb{R}+\mathbb{R} \mathbb{R} a \mathbb{R} \mathbb{R} \mid n \in$ $\left.\mathbb{Z}_{0}^{+}\right\}$,
(v) ideal generated by " a " is given by $\langle a\rangle=\left\{n a+a \mathbb{R} \mathbb{R}+\mathbb{R} a \mathbb{R}+\mathbb{R} \mathbb{R} a \mathbb{R} \mathbb{R}+\mathbb{R} \mathbb{R} a \mid n \in \mathbb{Z}_{0}^{+}\right\}$,
(vi) bi-ideal generated by " a " is given by $\langle a\rangle_{b}=\left\{n a+m a^{3}+a \mathbb{R} a \mathbb{R} a \mid n, m \in \mathbb{Z}_{0}^{+}\right\}$.

Theorem 2.2. [5] If P is an ideal of \mathbb{R}, then the following are equivalent.
(i) P is a prime ideal.
(ii) $a \mathbb{R} b \mathbb{R} c \subseteq P, a \mathbb{R} \mathbb{R} b \mathbb{R} \mathbb{R} c \subseteq P, a \mathbb{R} \mathbb{R} b \mathbb{R} c \mathbb{R} \subseteq P, \mathbb{R} a \mathbb{R} b \mathbb{R} \mathbb{R} c \subseteq P$ implies $a \in P$ or $b \in P$ or $c \in P$.
(iii) $\langle a\rangle\langle b\rangle\langle c\rangle \subseteq P$ implies $a \in P$ or $b \in P$ or $c \in P$.

3. Types of Prime bi-Ideals

By Theorem 2.2, if we replace the ideal P by bi-ideal P then we find that all the three conditions are different.

Definition 3.1. A bi-ideal P of \mathbb{R} is called a
(i) 1-prime if $\mathscr{B}_{1} \mathscr{B}_{2} \mathscr{B}_{3} \subseteq P$ implies $\mathscr{B}_{1} \subseteq P$ or $\mathscr{B}_{2} \subseteq P$ or $\mathscr{B}_{3} \subseteq P$ for any bi-ideals $\mathscr{B}_{1}, \mathscr{B}_{2}$ and \mathscr{B}_{3} of \mathbb{R}.
(ii) 2-prime if $a \mathbb{R} b \mathbb{R} c \subseteq P$ implies $a \in P$ or $b \in P$ or $c \in P$.
(iii) 3-prime if $\mathscr{I}_{1} \mathscr{I}_{2} \mathscr{I}_{3} \subseteq P$ implies $\mathscr{I}_{1} \subseteq P$ or $\mathscr{I}_{2} \subseteq P$ or $\mathscr{I}_{3} \subseteq P$ for any ideals $\mathscr{I}_{1}, \mathscr{I}_{2}$ and \mathscr{I}_{3} of \mathbb{R}.
Theorem 3.1. The bi-ideal P of \mathbb{R} is 2-prime if and only if $R M L \subseteq P$, with R is a right ideal, M is a lateral ideal and L is a left ideal of \mathbb{R}, implies $R \subseteq P$ or $M \subseteq P$ or $L \subseteq P$.

Proof. Let P be an 2-prime of \mathbb{R} and $R M L \subseteq P$. To prove that $R \subseteq P$ or $M \subseteq P$ or $L \subseteq P$. Suppose that $R \nsubseteq P$ and $M \nsubseteq P$ implies that $a \in R$ but $a \notin P$ and $b \in M$ but $b \notin P$. To prove that $L \subseteq P$. For $c \in L, a \mathbb{R} b \mathbb{R} c \subseteq R M L \subseteq P$. Since P be a 2-prime of \mathbb{R} and $a \notin P$ and $b \notin P$, implies that $c \in P$. Thus, $L \subseteq P$.

Conversely, Suppose that $a \mathbb{R} b \mathbb{R} c \subseteq P$. Now, $(a \mathbb{R} \mathbb{R})(\mathbb{R} b \mathbb{R})(\mathbb{R} \mathbb{R} c) \subseteq a \mathbb{R} b \mathbb{R} c \subseteq P$ implies $a \mathbb{R} \mathbb{R} \subseteq P$ or $\mathbb{R} b \mathbb{R} \subseteq P$ or $\mathbb{R} \mathbb{R} c \subseteq P$. If $a \mathbb{R} \mathbb{R} \subseteq P$, then

$$
\begin{aligned}
\langle a\rangle_{r} \cdot\langle b\rangle_{l a t} \cdot\langle c\rangle_{l}= & {\left[\left\{n a \mid n \in \mathbb{Z}^{+}\right\}+a \mathbb{R} \mathbb{R}\right] \cdot\left[\left\{m b \mid m \in \mathbb{Z}^{+}\right\}+[\mathbb{R} b \mathbb{R}+\right.} \\
& \mathbb{R} \mathbb{R} b \mathbb{R} \mathbb{R}]] \cdot\left[\left\{m^{\prime} c \mid m^{\prime} \in \mathbb{Z}^{+}\right\}+\mathbb{R} \mathbb{R} c\right] \\
\subseteq & \left\{n^{\prime} a b c \mid n^{\prime} \in \mathbb{Z}^{+}\right\}+a \mathbb{R} b \mathbb{R} c \\
\subseteq & a \mathbb{R} \mathbb{R} \subseteq P .
\end{aligned}
$$

Thus, $a \in P$ or $b \in P$ or $c \in P$.
Similarly, if $\mathbb{R} b \mathbb{R} \subseteq P$ then $\langle a\rangle_{r} \cdot\langle b\rangle_{\text {lat }} \cdot\langle c\rangle_{l} \subseteq[\mathbb{R} b \mathbb{R} \cup \mathbb{R} \mathbb{R} b \mathbb{R} \mathbb{R}] \subseteq P$.
If $\mathbb{R} \mathbb{R} c \subseteq P$, then $\langle a\rangle_{r} \cdot\langle b\rangle_{l a t} \cdot\langle c\rangle_{l} \subseteq \mathbb{R} \mathbb{R} c \subseteq P$ implies $a \in P$ or $b \in P$ or $c \in P$.
Theorem 3.2. Every 1-prime is a 2 -prime of \mathbb{R}.
Proof. Let P be 1-prime of \mathbb{R}. For the bi-ideals $\mathscr{B}_{1}, \mathscr{B}_{2}$ and \mathscr{B}_{3} of \mathbb{R} such that $\mathscr{B}_{1} \mathscr{B}_{2} \mathscr{B}_{3} \subseteq P$ implies $\mathscr{B}_{1} \subseteq P$ or $\mathscr{B}_{2} \subseteq P$ or $\mathscr{B}_{3} \subseteq P$. To prove P is a 2-prime of \mathbb{R}. Let $a \mathbb{R} b \mathbb{R} c \subseteq P$, for $a, b, c \in \mathbb{R}$. Now, $(a \mathbb{R} \mathbb{R}) \cdot(\mathbb{R} b \mathbb{R}) \cdot(\mathbb{R} \mathbb{R} c) \subseteq a \mathbb{R} b \mathbb{R} c \subseteq P$, since $a \mathbb{R} \mathbb{R}$ and $\mathbb{R} b \mathbb{R}$ and and $\mathbb{R} \mathbb{R} c$ are bi-ideals. Hence $a \mathbb{R} \mathbb{R} \subseteq P$ or $\mathbb{R} b \mathbb{R} \subseteq P$ or or $\mathbb{R} \mathbb{R} c \subseteq P$. Suppose that $a \mathbb{R} \mathbb{R} \subseteq P$. Consider $\langle a\rangle_{b} \cdot\langle a\rangle_{b} \cdot\langle a\rangle_{b} \subseteq a \mathbb{R} \mathbb{R} \subseteq P$. Then $a \in P$. Similarly if $\mathbb{R} b \mathbb{R} \subseteq P$ and $\mathbb{R} \mathbb{R} c \subseteq P$, then $b \in P$ and $c \in P$ respectively. Thus P is a 2-prime of \mathbb{R}. Converse of the Theorem 3.2 need not be true as the following Example.

Example 3.2. Consider the set $\mathbb{R}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p\}$ with the following compositions:

+	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p
a	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p
b	b	a	f	g	k	c	d	p	o	l	e	j	n	m	i	h
c	c	f	a	n	h	b	m	e	l	o	p	i	g	d	j	k
d	d	g	n	a	i	m	b	l	e	p	o	h	f	c	k	j
e	e	k	h	i	a	p	o	c	d	m	b	n	j	l	g	f
f	f	c	b	m	p	a	n	k	j	i	h	o	d	g	l	e
g	g	d	m	b	o	n	a	j	k	h	i	p	c	f	e	l
h	h	p	e	l	c	k	j	a	n	g	f	d	o	i	m	b
i	i	o	l	e	d	j	k	n	a	f	g	c	p	h	b	m
j	j	l	o	p	m	i	h	g	f	a	n	b	e	k	c	d
k	k	e	p	o	b	h	i	f	g	n	a	m	l	j	d	c
l	l	j	i	h	n	o	p	d	c	b	m	a	k	e	f	g
m	m	n	g	f	j	d	c	o	p	e	l	k	a	b	h	i
n	n	m	d	c	l	g	f	i	h	k	j	e	b	a	p	o
o	o	i	j	k	g	l	e	m	b	c	d	f	h	p	a	n
p	p	h	k	j	f	e	l	b	m	d	c	g	i	o	n	a

.	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p
a	b_{1}															
b	b_{1}	b_{2}	b_{3}	b_{1}	b_{1}	b_{6}	b_{2}	b_{3}	b_{1}	b_{6}	b_{2}	b_{3}	b_{6}	b_{3}	b_{2}	b_{6}
c	b_{1}	b_{1}	b_{1}	b_{2}	b_{3}	b_{1}	b_{2}	b_{3}	b_{6}	b_{6}	b_{3}	b_{6}	b_{2}	b_{2}	b_{6}	b_{3}
d	b_{1}	b_{4}	b_{5}	b_{1}	b_{1}	b_{9}	b_{4}	b_{5}	b_{1}	b_{9}	b_{4}	b_{5}	b_{9}	b_{5}	b_{4}	b_{9}
e	b_{1}	b_{1}	b_{1}	b_{4}	b_{5}	b_{1}	b_{4}	b_{5}	b_{9}	b_{9}	b_{5}	b_{9}	b_{4}	b_{4}	b_{9}	b_{5}
f	b_{1}	b_{2}	b_{3}	b_{2}	b_{3}	b_{6}	b_{1}	b_{1}	b_{6}	b_{1}	b_{6}	b_{2}	b_{3}	b_{6}	b_{3}	b_{2}
g	b_{1}	b_{7}	b_{8}	b_{1}	b_{1}	b_{10}	b_{7}	b_{8}	b_{1}	b_{10}	b_{7}	b_{8}	b_{10}	b_{8}	b_{7}	b_{10}
h	b_{1}	b_{1}	b_{1}	b_{7}	b_{8}	b_{1}	b_{7}	b_{8}	b_{10}	b_{10}	b_{8}	b_{10}	b_{7}	b_{7}	b_{10}	b_{8}
i	b_{1}	b_{4}	b_{5}	b_{4}	b_{5}	b_{9}	b_{1}	b_{1}	b_{9}	b_{1}	b_{9}	b_{4}	b_{5}	b_{9}	b_{5}	b_{4}
j	b_{1}	b_{7}	b_{8}	b_{7}	b_{8}	b_{10}	b_{1}	b_{1}	b_{10}	b_{1}	b_{10}	b_{7}	b_{8}	b_{10}	b_{8}	b_{7}
k	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}	b_{9}	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}	b_{15}	b_{16}
l	b_{1}	b_{4}	b_{5}	b_{7}	b_{8}	b_{9}	b_{2}	b_{3}	b_{10}	b_{6}	b_{12}	b_{13}	b_{11}	b_{15}	b_{16}	b_{14}
m	b_{1}	b_{7}	b_{8}	b_{2}	b_{3}	b_{10}	b_{4}	b_{5}	b_{6}	b_{9}	b_{13}	b_{11}	b_{12}	b_{16}	b_{14}	b_{15}
n	b_{1}	b_{4}	b_{5}	b_{2}	b_{3}	b_{9}	b_{7}	b_{8}	b_{6}	b_{10}	b_{14}	b_{16}	b_{15}	b_{11}	b_{13}	b_{12}
o	b_{1}	b_{7}	b_{8}	b_{4}	b_{5}	b_{10}	b_{2}	b_{3}	b_{9}	b_{6}	b_{15}	b_{14}	b_{16}	b_{12}	b_{11}	b_{13}
p	b_{1}	b_{2}	b_{3}	b_{7}	b_{8}	b_{6}	b_{4}	b_{5}	b_{10}	b_{9}	b_{16}	b_{15}	b_{14}	b_{13}	b_{12}	b_{11}

\cdot	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p
b_{1}	a															
b_{2}	a	b	c	a	a	f	b	c	a	f	b	c	f	c	b	f
b_{3}	a	a	a	b	c	a	b	c	f	f	c	f	b	b	f	c
b_{4}	a	d	e	a	a	i	d	e	a	i	d	e	i	e	d	i
b_{5}	a	a	a	d	e	a	d	e	i	i	e	i	d	d	i	e
b_{6}	a	b	c	b	c	f	a	a	f	a	f	b	c	f	c	b
b_{7}	a	g	h	a	a	j	g	h	a	j	g	h	j	h	g	j
b_{8}	a	a	a	g	h	a	g	h	j	j	h	j	g	g	j	h
b_{9}	a	d	e	d	e	i	a	a	i	a	i	d	e	i	e	d
b_{10}	a	g	h	g	h	j	a	a	j	a	j	g	h	j	h	g
b_{11}	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p
b_{12}	a	d	e	g	h	i	b	c	j	f	l	m	k	o	p	n
b_{13}	a	g	h	b	c	j	d	e	f	i	m	k	l	p	n	o
b_{14}	a	d	e	b	c	i	g	h	f	j	n	p	o	k	m	l
b_{15}	a	g	h	d	e	j	b	c	i	f	o	n	p	l	k	m
b_{16}	a	b	c	g	h	f	d	e	j	i	p	o	n	m	l	k

Clearly $P=\{a, d, e, i\}$ is a 2-prime. Now, $\{a, g\} \cdot\{a, h\} \cdot\{a, f\}=\{a\} \subseteq P$ with $\{a, g\} \nsubseteq P$ and $\{a, h\} \nsubseteq P$ and $\{a, f\} \nsubseteq P$. This implies that P is not a 1-prime.
Theorem 3.3. Every 2-prime is a 3-prime of \mathbb{R}.
Proof. For ideals $\mathscr{I}_{1}, \mathscr{I}_{2}$ and \mathscr{I}_{3} of \mathbb{R} such that $\mathscr{I}_{1} \cdot \mathscr{I}_{2} \cdot \mathscr{I}_{3} \subseteq P$. If $\mathscr{I}_{2} \nsubseteq P$ and $\mathscr{I}_{3} \nsubseteq P$, let $b \in \mathscr{I}_{2} \backslash P$ and $c \in \mathscr{I}_{3} \backslash P$. For any $a \in \mathscr{I}_{1}, a \mathbb{R} b \mathbb{R} c \subseteq\langle a\rangle \cdot\langle b\rangle \cdot\langle c\rangle \subseteq$ $\mathscr{I}_{1} \cdot \mathscr{I}_{2} \cdot \mathscr{I}_{3} \subseteq P$. Hence $a \in P$. Then $\mathscr{I}_{1} \subseteq P$. Thus P is a 3-prime of \mathbb{R}.

Converse of the above theorem not true as shown by the Example.
Example 3.3. In Example 3.2. Clearly $P=\{a, h\}$ is a 3-prime of \mathbb{R}. Now, $g \mathbb{R} b \mathbb{R} c=$ $\{a, h\} \subseteq P$ but $g \notin P, b \notin P$ and $c \notin P$. This means that P is not a 2-prime of \mathbb{R}.

Definition 3.4. A subset M of \mathbb{R} is called a
(i) m_{1}^{b}-system if for any $a, b, c \in M$, there exists $a_{1} \in\langle a\rangle_{b}, b_{1} \in\langle b\rangle_{b}$ and $c_{1} \in\langle c\rangle_{b}$ such that $a_{1} \cdot b_{1} \cdot c_{1} \in M$.
(ii) m_{2}^{b}-system if for any $a, b, c \in M$, there exists $a_{1} \in\langle a\rangle_{r}, b_{1} \in\langle b\rangle_{l a t}$ and $c_{1} \in\langle c\rangle_{l}$ such that $a_{1} \cdot b_{1} \cdot c_{1} \in M$.
(iii) m_{3}^{b}-system if for any $a, b, c \in M$, there exists $a_{1} \in\langle a\rangle, b_{1} \in\langle b\rangle$ and $c_{1} \in\langle c\rangle$ such that $a_{1} \cdot b_{1} \cdot c_{1} \in M$.

Theorem 3.4. If P is a bi-ideal of \mathbb{R}, then P is a 1-prime (2-prime, 3-prime) if and only if $\mathbb{R} \backslash P$ is an m_{1}^{b}-system (m_{2}^{b}-system, m_{3}^{b}-system) of \mathbb{R}.

Proof. Let P be an 1-prime of \mathbb{R} and let $a, b, c \in \mathbb{R} \backslash P$. Hence $a, b, c \in \mathbb{R}$ but $a \notin P, b \notin P$ and $c \notin P$. Then $\langle a\rangle_{b} \cdot\langle b\rangle_{b} \cdot\langle c\rangle_{b} \nsubseteq P$ implies there exists $a_{1} \in\langle a\rangle_{b}$, $b_{1} \in\langle b\rangle_{b}$ and $c_{1} \in\langle c\rangle_{b}$ such that $a_{1} \cdot b_{1} \cdot c_{1} \in \mathbb{R} \backslash P$. Thus $\mathbb{R} \backslash P$ is a m_{1}^{b}-system.

Conversely, Let $\mathbb{R} \backslash P$ be an m_{1}^{b}-system. let $\mathscr{B}_{1} \cdot \mathscr{B}_{2} \cdot \mathscr{B}_{3} \subseteq P$ for the bi-ideals $\mathscr{B}_{1}, \mathscr{B}_{2}$ and \mathscr{B}_{3} of \mathbb{R}. To prove that $\mathscr{B}_{1} \subseteq P$ or $\mathscr{B}_{2} \subseteq P$ or $\mathscr{B}_{3} \subseteq P$. Let us arrive at a contradiction. If $\mathscr{B}_{1} \nsubseteq P, \mathscr{B}_{2} \nsubseteq P$ and $\mathscr{B}_{3} \nsubseteq P$, let $b_{1} \in \mathscr{B}_{1} \backslash P, b_{2} \in \mathscr{B}_{2} \backslash P$ and $b_{3} \in \mathscr{B}_{3} \backslash P$. Thus $b_{1}, b_{2}, b_{3} \in \mathbb{R} \backslash P$ implies $\left\langle b_{1}\right\rangle_{b} \cdot\left\langle b_{2}\right\rangle_{b} \cdot\left\langle b_{3}\right\rangle_{b} \nsubseteq P$, which is a contradiction. Thus $\mathscr{B}_{1} \subseteq P$ or $\mathscr{B}_{2} \subseteq P$ or $\mathscr{B}_{3} \subseteq P$. Hence P is a 1-prime of \mathbb{R}. Similarly we can prove other two cases.

Lemma 3.5. The following statements are true.
(i) Every m_{1}^{b}-system is an m_{2}^{b}-system.
(ii) Every m_{2}^{b}-system is an m_{3}^{b}-system.

Converse of the above lemma not true by the following Example.
Example 3.5. By the Example 3.2. Clearly, (i) $M=\{b, c, f, g, h, j, k, l, m, n, o, p\}$ is an m_{2}^{b}-system, but not m_{1}^{b}-system. For $b, f, g \in M$, but there is no $x_{1} \in\langle b\rangle_{b}$ and $y_{1} \in\langle f\rangle_{b}$ and $z_{1} \in\langle g\rangle_{b}$ such that $x_{1} \cdot y_{1} \cdot z_{1} \in M$. Since $\langle b\rangle_{b} \cdot\langle f\rangle_{b} \cdot\langle g\rangle_{b}=\{a, b\} \cdot\{a, f\} \cdot\{a, g\}=$
$\{a\} \notin M$.
(ii) Clearly, $M=\{b, c, d, e, f, g, i, j, k, l, m, n, o, p\}$ is a m_{3}^{b}-system, but not a m_{2}^{b}-system by $j \mathbb{R} d \mathbb{R} c=\{a, h\}$.

Lemma 3.6. Every m_{2}^{b}-system is an m-system and vice versa.
Proof. Let M be an m_{2}^{b}-system. Let $a, b, c \in M$, then there exist $a_{1} \in\langle a\rangle_{r}, b_{1} \in\langle b\rangle_{l a t}$ and $c_{1} \in\langle c\rangle_{l}$ such that $a_{1} \cdot b_{1} \cdot c_{1} \in M$. Now,

$$
\begin{aligned}
a_{1} \cdot b_{1} \cdot c_{1}= & {\left[n_{1} a+a r_{1} r_{2}\right] \cdot\left[n_{2} b+r_{3} b r_{4}+r_{5} r_{6} b r_{7} r_{8}\right] \cdot\left[n_{3} c+r_{9} r_{10} c\right] } \\
= & {\left[n_{1} n_{2} a b+\left(n_{1} a\right) r_{3} b r_{4}+\left(n_{1} a\right) r_{5} r_{6} b r_{7} r_{8}+a r_{1} r_{2} a\left(n_{2} b\right)+\right.} \\
& \left.a r_{1} r_{2} r_{3} b r_{4}+a r_{1} r_{2} r_{5} r_{6} b r_{7} r_{8}\right] \cdot\left[n_{3} c+r_{9} r_{10} c\right] \\
= & {\left[n_{1} n_{2} n_{3} a b c+\left(n_{1} a\right) r_{3} b r_{4}\left(n_{3} c\right)+\left(n_{1} a\right) r_{5} r_{6} b r_{7} r_{8}\left(n_{3} c\right)+a r_{1} r_{2} a\right.} \\
& \left(n_{2} n_{3} b c\right)+a r_{1} r_{2} r_{3} b r_{4}\left(n_{3} c\right)+a r_{1} r_{2} r_{5} r_{6} b r_{7} r_{8}\left(n_{3} c\right)+n_{1} n_{2} a b r_{9} r_{10} c \\
& +\left(n_{1} a\right) r_{3} b r_{4} r_{9} r_{10} c+\left(n_{1} a\right) r_{5} r_{6} b r_{7} r_{8} r_{9} r_{10} c+a r_{1} r_{2} a\left(n_{2} b\right) r_{9} r_{10} c+ \\
& \left.a r_{1} r_{2} r_{3} b r_{4} r_{9} r_{10} c+a r_{1} r_{2} r_{5} r_{6} b r_{7} r_{8} r_{9} r_{10} c\right] \\
= & n_{1} n_{2} n_{3} a b c+a r^{\prime} b r^{\prime \prime} c+n_{1} n_{2} a b r^{\prime \prime \prime} c \in M .
\end{aligned}
$$

Again $a, b, n_{1} n_{2} n_{3} a b c+a r^{\prime} b r^{\prime \prime} c+n_{1} n_{2} a b r^{\prime \prime \prime} c \in M$, then there exist $a_{2} \in\langle a\rangle_{r}, b_{2} \in$ $\langle b\rangle_{l a t}$ and $c_{2} \in\left\langle n_{1} n_{2} n_{3} a b c+a r^{\prime} b r^{\prime \prime} c+n_{1} n_{2} a b r^{\prime \prime \prime} c\right\rangle_{l}$ such that $a_{2} \cdot b_{2} \cdot c_{2} \in M$. Now, $a_{2} \cdot b_{2} \cdot c_{2}=a r_{11} b r_{12} c \in a \mathbb{R} b \mathbb{R} c$. Thus, $a r_{11} b r_{12} c=a_{2} \cdot b_{2} \cdot c_{2} \in M$. Therefore M is a m-system.

Conversely, let M be an m-system and $a, b, c \in M$. Then there exist $r_{1}, r_{2} \in \mathbb{R}$ such that $a r_{1} b r_{2} c \in M$. Let $a r_{1}=a_{1}$ and $r_{2} c=c_{1}$, then there exists $a_{1} \in\langle a\rangle_{r}, b \in$ $\langle b\rangle_{l a t}$ and $c_{1} \in\langle c\rangle_{l}$ such that $a_{1} \cdot b \cdot c_{1} \in M$. Therefore M is a m_{2}^{b}-system.

Definition 3.6. Let B be any bi-ideal of \mathbb{R}.
(i) let $L_{B}=\{x \in B \mid \mathbb{R} \mathbb{R} x \subseteq B\}$ and relative to $H_{B}=\left\{y \in L_{B} \mid y \mathbb{R} \mathbb{R} \subseteq L_{B}\right\}$.
(ii) $R_{B}=\{x \in B \mid x \mathbb{R} \mathbb{R} \subseteq B\}$ and relative to $H_{B}=\left\{y \in R_{B} \mid \mathbb{R} \mathbb{R} y \subseteq R_{B}\right\}$.

Lemma 3.7. If B is a bi-ideal of \mathbb{R}, then H_{B} is the unique largest two-sided ideal of \mathbb{R} contained B.

Proof. Let B is any bi-ideal of \mathbb{R}. To prove that H_{B} is a two-sided ideal of \mathbb{R}. Since $L_{B} \subseteq B$ and $H_{B} \subseteq L_{B}$. Therefore $H_{B} \subseteq L_{B} \subseteq B$. Let $x \in H_{B}$ and $y_{1}, y_{2} \in \mathbb{R}$. Then $x \in H_{B} \subseteq B$ implies that $x \in B$. Since x is an element of L_{B}. We have $\mathbb{R} \mathbb{R} x \subseteq B$ and $x \mathbb{R} \mathbb{R} \subseteq L_{B}$. Then $y_{1} y_{2} x \in \mathbb{R} \mathbb{R} x \subseteq B$ implies $y_{1} y_{2} x \in B$ and $\mathbb{R} \mathbb{R} y_{1} y_{2} x \subseteq \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} x \subseteq$ $\mathbb{R} \mathbb{R} x \subseteq B$ implies that $y_{1} y_{2} x \in L_{B}$. Now, $x y_{1} y_{2} \in x \mathbb{R} \mathbb{R} \subseteq L_{B}$. Hence $x y_{1} y_{2} \in L_{B}$ and $y_{1} y_{2} x \in L_{B}$. Hence L_{B} is a two-sided ideal of \mathbb{R}. To prove that H_{B} is a two-sided ideal of \mathbb{R}, that is $x y_{1} y_{2} \in H_{B}$ and $y_{1} y_{2} x \in H_{B}$. Now, $x y_{1} y_{2} \mathbb{R} \mathbb{R} \subseteq x \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \subseteq x \mathbb{R} \mathbb{R} \subseteq L_{B}$. Hence $x y_{1} y_{2} \mathbb{R} \mathbb{R} \subseteq L_{B}$ implies $x y_{1} y_{2} \in H_{B}$. Now, $y_{1} y_{2} x \mathbb{R} \mathbb{R} \subseteq \mathbb{R} \mathbb{R} x \mathbb{R} \mathbb{R} \subseteq \mathbb{R} \mathbb{R} L_{B} \subseteq$ L_{B}. Since L_{B} is a left ideal of $\mathbb{R}, y_{1} y_{2} x \in H_{B}$. Hence H_{B} is a two-sided ideal of \mathbb{R}. It enough to prove H_{B} is a largest two sided ideal of \mathbb{R}. Let I be any ideal of \mathbb{R} and $I \subseteq B$. Let $i \in I$, then $i \in B$ and $\mathbb{R} \mathbb{R} i \subseteq I \subseteq B$. Hence $\mathbb{R} \mathbb{R} i \subseteq B$ implies $i \in L_{B}$. Hence $I \subseteq L_{B}$. Next, $i \in L_{B}$ and $i \mathbb{R} \mathbb{R} \subseteq I \subseteq L_{B}$. Therefore $i \mathbb{R} \mathbb{R} \subseteq L_{B}$. Thus, $i \in H_{B}$. Hence $I \subseteq H_{B}$.

Corollary 3.8. If B is a 1-prime (2-prime) of \mathbb{R}, then H_{B} is a prime ideal of \mathbb{R}.

Proof. Straightforward.
The following Example shows that the converse of the Corollary 3.8 need not be true.
Example 3.7. (i) By the Example 3.2, $B=\{a, j\}$ is a bi-ideal and $H_{B}=\{a\}$ is a prime ideal, but B is not a 1-prime of \mathbb{R}. For the bi-ideals $\mathscr{B}_{1}=\{a, d\}$ and $\mathscr{B}_{2}=\{a, b\}$ and $\mathscr{B}_{3}=\{a, i\}$. Now, $\mathscr{B}_{1} \cdot \mathscr{B}_{2} \cdot \mathscr{B}_{3}=\{a\} \subseteq B$ but $\mathscr{B}_{1} \nsubseteq B$ and $\mathscr{B}_{2} \nsubseteq B$ and $\mathscr{B}_{3} \nsubseteq B$.
(ii) Clearly, $B=\{a, f\}$ is a bi-ideal and $H_{B}=\{a\}$ is a prime ideal, but B is not a 2-prime of \mathbb{R}. For $c, e, i \in \mathbb{R}$ and $c \mathbb{R} e \mathbb{R} i=\{a, f\} \subseteq B$ but $c \notin B, e \notin B$ and $i \notin B$.

Theorem 3.9. The bi-ideal B is a 3-prime of \mathbb{R} if and only if H_{B} is a prime ideal of \mathbb{R}.
Proof. Let B be any bi-ideal of \mathbb{R} and B be a 3-prime of \mathbb{R}. Let us show that H_{B} is a prime ideal of \mathbb{R}. Suppose that $\mathscr{I}_{1}, \mathscr{I}_{2}$ and \mathscr{I}_{3} be the ideals of \mathbb{R} such that $\mathscr{I}_{1} \cdot \mathscr{I}_{2} \cdot \mathscr{I}_{3} \subseteq$ H_{B}. By Lemma 3.7, H_{B} is the largest two sided ideal of \mathbb{R} such that $H_{B} \subseteq B$. Thus $\mathscr{I}_{1} \subseteq H_{B}$ or $\mathscr{I}_{2} \subseteq H_{B}$ or $\mathscr{I}_{3} \subseteq H_{B}$.

Conversely, Suppose that H_{B} is a prime ideal of \mathbb{R}. To show that B is a 3-prime of \mathbb{R}. For the ideals $\mathscr{I}_{1}, \mathscr{I}_{2}$ and \mathscr{I}_{2} of \mathbb{R} such that $\mathscr{I}_{1} \cdot \mathscr{I}_{2} \cdot \mathscr{I}_{3} \subseteq B$. To show that $\mathscr{I}_{1} \subseteq B$ or $\mathscr{I}_{2} \subseteq B$ or $\mathscr{I}_{3} \subseteq B$. Now, $\mathscr{I}_{1} \cdot \mathscr{I}_{2} \cdot \mathscr{I}_{3} \subseteq \mathscr{I}_{1} \cdot \mathscr{I}_{2} \cdot \mathscr{I}_{3} \subseteq H_{B}$, since H_{B} is a prime ideal of \mathbb{R}. This implies $\mathscr{I}_{1} \subseteq H_{B} \subseteq B$ or $\mathscr{I}_{2} \subseteq H_{B} \subseteq B$ or $\mathscr{I}_{3} \subseteq H_{B} \subseteq B$. Hence B is a 3 -prime of \mathbb{R}.

Theorem 3.10. Let M be a m_{3}^{b} system and B be a bi-ideal of \mathbb{R} with $B \cap M=\phi$. Then there exists a 3-prime P of \mathbb{R} containing B with $P \cap M=\phi$.

Proof. Let $X=\{J \mid J$ is a bi-ideal with $B \subseteq J$ and $J \cap M=\phi\}$. Clearly X is non-empty. By Zorn's lemma, there exist a maximal element P in X. Let us show that P is a 3-prime of \mathbb{R}. By Theorem 3.9, it is enough to prove that H_{P} is a prime ideal in \mathbb{R}. Since $H_{P} \subseteq P$ and $P \cap M=\phi$ implies that $H_{P} \cap M=\phi$. Then H_{P} is a largest ideal in \mathbb{R} such that $H_{P} \cap M=\phi$. We claim that $\langle a\rangle\langle b\rangle\langle c\rangle \subseteq H_{P}$. Then $\langle a\rangle \subseteq H_{P}$ or $\langle b\rangle \subseteq H_{P}$ or $\langle c\rangle \subseteq H_{P}$. By proving at a contriduction, If $\langle a\rangle \nsubseteq H_{P},\langle b\rangle \nsubseteq H_{P}$ and $\langle c\rangle \nsubseteq H_{P}$, then $x \in\langle a\rangle \backslash H_{P}, y \in\langle b\rangle \backslash H_{P}$ and $z \in\langle c\rangle \backslash H_{P}$. Then $\langle x\rangle \subseteq$ $\langle a\rangle,\langle y\rangle \subseteq\langle b\rangle$ and $\langle z\rangle \subseteq\langle c\rangle$. If $\langle a\rangle\langle b\rangle\langle c\rangle \subseteq H_{P}$ then $\langle x\rangle\langle y\rangle\langle z\rangle \subseteq\langle a\rangle\langle b\rangle\langle c\rangle \subseteq H_{P}$. Then $\left(H_{P}+\langle x\rangle\right) \cap M \neq \phi$ and $\left(H_{P}+\langle y\rangle\right) \cap M \neq \phi$ and $\left(H_{P}+\langle z\rangle\right) \cap M \neq \phi$. Thus $\left(H_{P}+\langle x\rangle\right)\left(H_{P}+\langle y\rangle\right)\left(H_{P}+\langle z\rangle\right) \subseteq H_{P}$. Then there exist $m_{1} \in\left(H_{P}+\langle x\rangle\right) \cap M$ and $m_{2} \in\left(H_{P}+\langle y\rangle\right) \cap M$ and $m_{3} \in\left(H_{P}+\langle z\rangle\right) \cap M$ such that $m_{1}{ }^{\prime} m_{2}{ }^{\prime} m_{3}{ }^{\prime} \in M$ for some $m_{1}{ }^{\prime} \in\left\langle m_{1}\right\rangle \subseteq\left(H_{P}+\langle x\rangle\right)$ and $m_{2}{ }^{\prime} \in\left\langle m_{2}\right\rangle \subseteq\left(H_{P}+\langle y\rangle\right)$ and $m_{3}{ }^{\prime} \in\left\langle m_{3}\right\rangle \subseteq\left(H_{P}+\langle z\rangle\right)$. Hence $m_{1}{ }^{\prime} m_{2}{ }^{\prime} m_{3}{ }^{\prime} \in\left(H_{P}+\langle x\rangle\right)\left(H_{P}+\langle y\rangle\right)\left(H_{P}+\langle z\rangle\right) \subseteq H_{P}$. Which is a contradiction. Thus $\langle a\rangle\langle b\rangle\langle c\rangle \nsubseteq H_{P}$. Hence H_{P} is a prime ideal of \mathbb{R}. By Theorem 3.9, P is a 3-prime of \mathbb{R}. If H_{P} is not a largest element in X, then there is a maximal ideal P^{\prime} in \mathbb{R} such that $H_{P} \subseteq P^{\prime}$ and $P^{\prime} \cap M=\phi$. Thus $H_{P^{\prime}}$ is a prime ideal and P^{\prime} is the required bi-ideal of \mathbb{R}.

4. Types of Semiprime bi-ideals

Definition 4.1. A bi-ideal P of \mathbb{R} is called a
(i) 1-semiprime if $\mathscr{B}^{3} \subseteq P$ implies $\mathscr{B} \subseteq P$ for any bi-ideal \mathscr{B} of \mathbb{R}.
(ii) 2-semiprime if $a \mathbb{R} a \mathbb{R} a \subseteq P$ implies $a \in P$.
(iii) 3-semiprime if $\mathscr{I}^{3} \subseteq P$ implies $\mathscr{I} \subseteq P$ for any ideal \mathscr{I} of \mathbb{R}.

Theorem 4.1. A bi-ideal P of \mathbb{R} is 2-semiprime if and only if $\mathscr{R}^{3} \subseteq P\left(\mathscr{M}^{3} \subseteq P, \mathscr{L}^{3} \subseteq\right.$ $P)$, with \mathscr{R} is a right ideal (\mathscr{M} is a lateral ideal and \mathscr{L} is a left ideal) of \mathbb{R}, implies $\mathscr{R} \subseteq P(\mathscr{M} \subseteq P, \mathscr{L} \subseteq P)$.

Theorem 4.2. If P is a 1-semiprime of \mathbb{R}, then P is a 2 -semiprime of \mathbb{R}.
The following Example shows that the converse of the Theorem4.2 need not be true.
Example 4.2. By the Example $3.2 \mathbb{R}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p\}$. Clearly, $P=\{a, b\}$ is a 2 -semiprime, but not a 1-semiprime. For the bi-ideal $\mathscr{B}=\{a, c\}$ and $\mathscr{B}^{3} \subseteq P$ but $\mathscr{B} \nsubseteq P$.

Theorem 4.3. If P is a 2-semiprime of \mathbb{R}, then P is a 3-semiprime of \mathbb{R}.
Converse of the Theorem 4.3 need not be true as the following Example shows.
Example 4.3. Consider the ternary semiring $\mathbb{R}=\{a, b, c, d, e, f\}$ with the following compositions:

+	a	b	c	d	e	f
a	a	b	c	d	e	f
b	b	b	c	d	e	f
c	c	c	c	f	e	f
d	d	d	f	d	e	f
e						
f	f	f	f	f	e	f
:---:	:---:	:---:	:---:	:---:	:---:	:---:
a	u	u	u	u	u	u
b	u	v	w	v	w	w
c	u	v	w	v	w	w
d	u	x	y	x	y	y
e	u	x	y	x	y	y
f	u	x	y	x	y	y

\cdot	a	b	c	d	e	f
u	a	a	a	a	a	a
v	a	b	c	b	c	c
w	a	b	c	b	c	c
x	a	d	e	d	e	e
y	a	d	e	d	e	e
z	a	d	e	d	e	e

By routine calculation, $P=\{a, e\}$ is a 3-semiprime of \mathbb{R}. Now, $f \mathbb{R} f \mathbb{R} f=\{a, e\} \subseteq P$ but $f \notin P$ implies P is not a 2 -semiprime of \mathbb{R}.

Definition 4.4. A subset N of \mathbb{R} is called a
(i) n_{1}^{b}-system if for any $a \in N$, there exist $a_{1}, a_{2}, a_{3} \in\langle a\rangle_{b}$ such that $a_{1} \cdot a_{2} \cdot a_{3} \in N$.
(ii) n_{2}^{b}-system if for any $a \in N$, there exist $a_{1}, a_{2}, a_{3} \in\langle a\rangle_{r}$ or $a_{1}, a_{2}, a_{3} \in\langle a\rangle_{\text {lat }}$ or $\left.a_{1}, a_{2}, a_{3} \in\langle a\rangle_{l}\right)$ such that $a_{1} \cdot a_{2} \cdot a_{3} \in N$.
(iii) n_{3}^{b}-system if for any $a \in N$, there exist $a_{1}, a_{2}, a_{3} \in\langle a\rangle$ such that $a_{1} \cdot a_{2} \cdot a_{3} \in N$.

Theorem 4.4. If P is a bi-ideal of \mathbb{R}, then P is a 1-semiprime (2-semiprime, 3-semiprime) if and only if $\mathbb{R} \backslash P$ is an n_{1}^{b}-system $\left(n_{2}^{b}\right.$-system, n_{3}^{b}-system).

Lemma 4.5. Every n_{1}^{b}-system is a n_{2}^{b}-system.
Converse need not be true as the following Example.
Example 4.5. By the Example $3.2, N=\{c, d, e, f, g, h, i, j, k, l, m, n, o, p\}$ is a n_{2}^{b} system, but not a n_{1}^{b} system. For $j \in N$, there is no $x_{1}, x_{2}, x_{3} \in\langle j\rangle_{b}$ such that $x_{1} \cdot x_{2} \cdot x_{3} \in N$. Since $\langle j\rangle_{b} \cdot\langle j\rangle_{b} \cdot\langle j\rangle_{b}=\{a\} \notin N$.

Lemma 4.6. Every n_{2}^{b}-system is a n_{3}^{b}-system.
Converse need not be true as the following Example.
Example 4.6. By the Example 4.3. $N=\{b, c, d, f\}$ is a n_{3}^{b}-system but not a n_{2}^{b}-system of \mathbb{R}. For $f \in N$ and $f \mathbb{R} f \mathbb{R} f=e \notin N$.

Corollary 4.7. If B is a l-semiprime (2-semiprime) of \mathbb{R}, then H_{B} is a semiprime ideal of \mathbb{R}.

Converse of the above Corollary need not be true as the following Example.

Example 4.7. (i) By the Example 3.2, By routine computation, $H_{B}=\{a, j\}, B=$ $\{a, g, h, j\}$ and $\mathscr{B}_{1}=\{a, d\}$. Clearly, H_{B} is a semiprime ideal, but B is not a 1-semiprime of \mathbb{R} by $\mathscr{B}_{1}{ }^{3}=\{a\} \subseteq B$ but $\mathscr{B}_{1} \nsubseteq B$.
(ii) By the Example 4.3. Taking $H_{B}=\{a\}$ is a semiprime ideal of \mathbb{R}. For the bi-ideal $B=\{a, d, e\}$ and $f \mathbb{R} f \mathbb{R} f=\{a, e\} \subseteq B$ but $f \notin B$ implies that B is not a 2-semiprime of \mathbb{R}.

Theorem 4.8. The bi-ideal B is a 3-semiprime of \mathbb{R} if and only if H_{B} is a semiprime ideal of \mathbb{R}.

5. Acknowledgements

The author is obliged the thankful to the reviewer for the numerous and significant suggestions that raised the consistency of the ideas presented in this paper.

References

[1] K. Arulmozhi. New approach of various ideals in Ternary Semirings, Journal of Xidian University, 14(3) (2020), 22-29.
[2] K. Arulmozhi. The algebraic theory of Semigroups and Semirings, LAP LAMBERT Academic Publishing, Mauritius, (2019), 1-102.
[3] K. Arulmozhi. Some Fuzzy ideals of Algebraic Structures, LAP LAMBERT Academic Publishing, Mauritius, (2019), 1-88.
[4] K. Arulmozhi and M. Palanikumar. New Ways to Q-Fuzzy ideals in Ordered Semigroups, Journal of Xidian University, 14(3) (2020), 36-48.
[5] T.K. Dutta and S. Kar. On Prime ideals and Prime radical of ternary Semirings, Bulletin of the Calcutta Mathematical Society, 97(5) (2005), 445-454.
[6] S.J. Golan. Semirings and their Applications, Kluwer Academic Publishers, London, 1999.
[7] M.R. Hestenes. A ternary algebra with applications to matrices and linear transformations, Archive for Rational Mechanics and Analysis, 11 (1962), 138-194.
[8] S. Lajos and F. Szasz. Bi-ideals in associative ring, Acta Scientiarum Mathematicarum, 32 (1971), 185-193.
[9] D.H. Lehmer. A ternary analogue of abelian groups, American Journal of Mathematics, (1932), 329-338.
[10] N.H. McCoy. The Theory of Rings, Chelsea Publishing Company, Bronx New York (1973).
[11] M. Palanikumar and K. Arulmozhi. On Various ideals and its Applications of Bisemirings, Gedrag And Organisatie Review, 33(2) (2020), 522-533.
[12] M. Palanikumar and K. Arulmozhi. On New Approach of Various fuzzy ideals in Ordered gamma semigroups, Gedrag And Organisatie Review, 33(2) (2020), 331-342.
[13] M. Palanikumar and K. Arulmozhi. On Various Tri-ideals in Ternary Semirings, Bulletin of the Mathematical Virtual Institute, 11(1) (2021), 79-90.
[14] M. Palanikumar and K. Arulmozhi. On new ways of various ideals in ternary semigroups, Matrix Science Mathematic, 4(1) (2020), 06-09.
[15] M. Palanikumar and K. Arulmozhi. On various almost ideals of semirings, Annals of Communications in Mathematics, 4(1) (2021), 17-25.
[16] H.J.le. Roux. A note on Prime and Semiprime Bi-ideals, Kyungpook Mathematical Journal, 35 (1995), 243-247.
[17] A.P.J. Van der Walt. Prime and Semiprime Bi-ideals, Quaestiones Mathematicae, 5 (1983), 341-345.
M. Palanikumar

Kings Engineering College, Department of Mathematics, Chennai, 602117, India
E-mail address: palanimaths86@gmail.com
K. Arulmozhi

Bharath Institute of Higher Education and Research, Department of Mathematics, ChenNAI, 600073, INDIA

E-mail address: arulmozhiems@gmail.com

[^0]: 2010 Mathematics Subject Classification. 16Y60, 16D25.
 Key words and phrases. 1-prime; 2-prime; 3-prime; m_{1}^{b}-system; m_{2}^{b}-system; m_{3}^{b}-system.
 Received: April 21, 2021. Accepted: July 15, 2021. Published: September 30, 2021.
 *Corresponding author.

