
ANNALS OF COMMUNICATIONS IN MATHEMATICS

Volume 4, Number 1 (2021), 45-62
ISSN: 2582-0818
c© http://www.technoskypub.com

REGULAR SEMIOPEN SOFT SETS AND THEIR APPLICATIONS

E. ELAVARASAN∗ AND A. VADIVEL

ABSTRACT. The purpose of this paper is to introduce the notion of soft regular semi
compactness, connectedness, and separation axioms using regular semiopen soft sets in
soft topological spaces. Moreover, we investigate soft RS-regular space and soft RS-
normal space are soft topological properties under bijection, soft regular semi irresolute
and soft regular semi irresolute open functions. Also, we show that the properties of being
soft regular semi Ti-spaces (i = 1, 2, 3, 4) are hereditary properties.

1. INTRODUCTION

The concept of soft sets was first introduced by Molodtsov [17] in 1999 as a general
mathematical tool for dealing with uncertain objects. In [17, 18], Molodtsov successfully
applied the soft theory in several directions, such as smoothness of functions, game theory,
operations research, Riemann integration, Perron integration, probability, theory of mea-
surement, and so on. After presentation of the operations of soft sets [12], the properties
and applications of soft set theory have been studied increasingly [3, 11, 17, 20]. In recent
years, many interesting applications of soft set theory have been expanded by embedding
the ideas of fuzzy sets [1, 4, 5, 7, 12, 13, 14, 15, 18, 19, 22, 26]. To develop soft set the-
ory, the operations of the soft sets are redefined and a uni-int decision making method was
constructed by using these new operations [8]. Recently, in 2011, Shabir and Naz [23]
initiated the study of soft topological spaces. They defined basic notions of soft topolog-
ical spaces such as open soft and closed soft sets, soft subspace, soft closure, soft nbd of
a point, soft separation axioms, soft regular spaces and soft normal spaces and established
their several properties. Min in [16] investigate some properties of these soft separation
axioms mentioned in [23]. Banu and Halis in [6] studied some properties of soft Hausdorff
space. Recently Vadivel and Elavarasan [24] introduced the concept of regular semiopen
soft set.

The main purpose of this paper is to introduce the notion of soft regular semi com-
pactness, connectedness, and separation axioms using regular semiopen soft sets in soft
topological spaces. In particular we study the properties of the soft RS-regular spaces
and soft RS-normal spaces. We show that if (x,E) is regular semiclosed soft set for all
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x ∈ X in a soft topological space (X, τ,E), then (X, τ,E) is soft regular semi T1-space.
Also, we show that if a soft topological space (X, τ,E) is soft regular semi T3-space, then
∀ x ∈ X , (x,E) is regular semiclosed soft set. This paper, not only can form the theoreti-
cal basis for further applications of topology on soft sets, but also lead to the development
of information systems.

2. PRELIMINARIES

In this section, we recall some definition and concepts discussed in [9, 16, 23, 25].
Throughout this studyX and Y denote universal sets,E,E

′
denote two sets of parameters,

A,B,C,D,B
′
, D

′ ⊆ E or E
′
. Let X be an initial universe and E be a set of parameters.

Let P(X) denote the power set ofX andA be a nonempty subset set ofE. A pair (F,A) is
called a soft set over X , where F is a mapping given by F : A→ P(X). For two soft sets
(F,A) and (G,B) over common universe X , we say that (F,A) is a soft subset (G,B) if
A ⊆ B and F (e) ⊆ G(e), for all e ∈ A. In this case, we write (F,A)⊆̃(G,B) and (G,B)
is said to be a soft super set of (F,A). Two soft sets (F,A) and (G,B) over a common
universe X are said to be soft equal if (F,A)⊆̃(G,B) and (G,B)⊆̃(F,A). The soft set
(F,A) over X such that F (e) = {x} ∀ e ∈ E is called singleton soft point and denoted
by xE or (x,E). A soft set (F,A) over X is called null soft set, denoted by (Φ, A), if for
each e ∈ A, F (e) = Φ. Similarly, it is called absolute soft set, denoted by X̃ , if for each
e ∈ A, F (e) = X .

The union of two soft sets (F,A) and (G,B) over the common universe X is the soft
set (H,C), where C = A ∪B and for each e ∈ C,

H(e) =


F (e) e ∈ A−B
G(e) e ∈ B −A
F (e) ∪G(e) e ∈ A ∩B

We write (F,A) ∪ (G,B) = (H,C). Moreover, the intersection (H,C) of two soft sets
(F,A) and (G,B) over a common universe X , denoted by (F,A) ∩ (G,B), is defined as
C = A∩B andH(e) = F (e)∩G(e) for each e ∈ C. The difference (H,E) of two soft sets
(F,E) and (G,E) overX , denoted by (F,E)−(G,E), is defined asH(e) = F (e)−G(e),
for each e ∈ E. Let Y be nonempty subset of X . Then Ỹ denotes the soft set (Y,E) over
X where Y (e) = Y for each e ∈ E. In particular, (X,E) will be denoted by X̃ . Let
(F,E) be a soft set over X and x ∈ X . We say that x ∈ (F,E), whenever x ∈ F (e), for
each e ∈ E [21].

The relative complement of a soft set (F,A) is denoted by (F,A)
′

and is defined by
(F,A)

′
= (F,A) where F

′
: A→ P(X) is defined by following

F
′
(e) = X − F (e), ∀e ∈ A

In this paper, for convenience, let SS(X,E) be the family of soft sets over X with set
of parameters E. We will apply two next propositions so much in the proofs.

Proposition 2.1. [21] Let (F,E), (G,E), (H,E) and (I, E) be soft sets (X,E). Then
the following holds:

(1) (F,E)⊆̃(G,E) if and only if (F,E) ∩ (G,E) = (F,E);
(ii) (F,E)⊆̃(G,E), (H,E) if and only if (F,E)⊆̃(G,E) ∩ (H,E);

(iii) If (F,E)⊆̃(H,E) and (G,E)⊆̃(I, E), then (F,E) ∪ (G,E)⊆̃(H,E) ∪ (I, E);
(iv) (F,E) ∩ (F,E)′ = (Φ, E);
(v) (F,E) ∩ (G,E) = (Φ, E) if and only if (F,E)⊆̃(G,E)′;
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(vi) (F,E)⊆̃(G,E) if and only if (G,E)′⊆̃(F,E)′.

Also we can obtain the following easily.

Proposition 2.2. [21] Let (F,E), (G,E) and (H,E) be soft sets and {(Fi, E)|i ∈ I} be
a family of soft sets in (X,E). Then the following holds.

(i) (F,E) ∩ (F,E)′ = (Φ, E);
(ii) (F,E) ∪ (Φ, E) = (F,E);

(iii) (F,E) ∩ (
⋃
i∈I

(Fi, E)) =
⋃
i∈I

((F,E) ∩ (Fi, E));

(iv) If (F,E)⊆̃(G,E) and (G,E)∩(H,E) = (Φ, E), then (F,E)∩(H,E) = (Φ, E);
(v) (Φ, E)′ = X̃;

(vi) X̃ ′ = (Φ, E).

Let τ be the collection of soft sets over X . Then τ is called a soft topology [23] on X
if τ satisfies the following axioms:

(i) (Φ, E) and X̃ belongs to τ .
(ii) The union of any number of soft sets in τ belongs to τ .

(iii) The intersection of any two soft sets in τ belongs to τ .
The triple (X, τ,E) is called soft topological space (briefly, sts) over X . The members
of τ are said to be soft open in X , and the soft set (F,E) is called soft closed in X if its
relative complement (F,E)′ belongs to τ . Let (X, τ,E) be a soft topological space and
(F,A) be a soft set over X . Soft closure of a soft set (F,A) in X is denoted by cl(F,A) =⋂̃
{(F,E)⊇̃(F,A) : (F,E) is a soft closed set of X}. Soft interior of a soft set (F,A) in

X is denoted by int(F,A) =
⋃̃
{(O,A)⊆̃(F,A) : (O,A) is a soft open set of X}.

The proof of the following proposition is an easy application of De Morgan’s laws with
the definition of a soft topology on X (see Proposition 3.3 of [25]).

Proposition 2.3. Let (X, τ,E) be a soft space over X . Then

(i) (Φ, E) and X̃ are closed soft sets over X .
(ii) The intersection of any number of soft closed sets is a soft closed set over X .

(iii) The union of any two soft closed sets is a soft closed set over X .

Theorem 2.4. [23] Let (Y, τY , E) be a soft subspace of a sts (X, τ,E) and (F,E) ∈
SS(X,E). Then

(1) If (F,E) is open soft set in Y and Ỹ ∈ τ , then (F,E) ∈ τ .
(2) (F,E) is open soft set in Y if and only if (F,E) = Ỹ ∩̃(G,E) for some (G,E) ∈

τ .
(3) (F,E) is closed soft set in Y if and only if (F,E) = Ỹ ∩̃(H,E) for some (H,E)

is τ -closed soft set.

Definition 2.1. [2] Let (X, τ, E) be a sts and (F,E) ∈ SS(X,E). Then (F,E) is
called a (i) regular closed soft set if (F,E) = cl(int(F,E)) and (ii) regular open soft set
if (F,E) = int(cl(F,E)).

Definition 2.2. [24] In a sts (X, τ,E), a soft set
(1) (G,C) is said to be regular semiopen soft (briefly, RSO soft) set if ∃ an regular

open soft set (H,B) such that (H,B)⊆̃(G,C)⊆̃cl(H,B).
(2) (L,A) is said to be regular semiclosed soft (briefly, RSC soft) set if ∃ an regular

closed soft set (K,D) such that int(K,D)⊆̃(L,A)⊆̃(K,D).
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We shall denote the family of all regular semiopen soft sets (regular semiclosed soft
sets) of a sts (X, τ,E) by RSOSS(X,E), (RSCSS(X,E)).

Definition 2.3. [24] Let (X, τ, E) be a sts and (G,C) be a soft set over X . Then

(1) the soft regular semiclosure of (G,C), rsscl(G,C) =
⋂̃
{(S, F )|(G,C)⊆̃

(S, F ) and (S, F ) ∈ RSCSS(X,E)} is a soft set.
(2) the soft regular semiinterior of (G,C), rssint(G,C) =

⋃̃
{(S, F )|(S, F )

⊆̃(G,C) and (S, F ) ∈ RSOSS(X,E)} is a soft set.

Thus rsscl(G,C) is the smallest rscs set containing (G,C) and rssint(G,C) is the
largest RSO soft set contained in (G,C).

Theorem 2.5. [10] Let SS(X,A) and SS(Y,B) be families of soft sets. For the soft
function fpu : SS(X,A)→ SS(Y,B), the following statements hold,

(a) f−1pu ((G,B)′) = (f−1pu (G,B))′ ∀(G,B) ∈ SS(Y,B).
(b) fpu(f−1pu ((G,B)))⊆̃(G,B) ∀ (G,B) ∈ SS(Y,B). If fpu is surjective, then the

equality holds.
(c) (F,A)⊆̃f−1pu (fpu((F,A))) ∀ (F,A) ∈ SS(X,A). If fpu is injective, then the

equality holds.
(d) fpu(X̃)⊆̃Ỹ . If fpu is surjective, then the equality holds.
(e) f−1pu (Ỹ ) = X̃ and fpu(Φ, A) = (Φ, B).
(f) If (F,A)⊆̃(G,A), then fpu(F,A)⊆̃fpu(G,A).
(g) If (F,B)⊆̃(G,B), then f−1pu (F,B)∪̃f−1pu (G,B) ∀ (F,B), (G,B) ∈ SS(Y,B).
(h) f−1pu [(F,B)∪̃(G,B)] = f−1pu (F,B)∪̃f−1pu (G,B) and f−1pu [(F,B)∩̃(G,B)]

= f−1pu (F,B)∩̃f−1pu (G,B) ∀ (F,B), (G,B) ∈ SS(Y,B).
(i) fpu[(F,A)∪̃(G,A)] = fpu(F,A)∪̃fpu(G,A) and fpu[(F,A)∩̃(G,A)]⊆̃ fpu(F,A)
∩̃fpu(G,A) ∀ (F,A), (G,A) ∈ SS(X,A). If fpu is injective, then the equality
holds.

Definition 2.4. [24] Let (X, τ, E) and (Y, τ ′, E
′
) be two sts’s. A soft function f :

SS(X,E)→ SS(Y,E
′
) is said to be

(i) Soft regular semi continuous (briefly, SRS-continuous) if for each open soft set
(G,C) of (Y,E

′
), the inverse image f−1(G,C) is a RSO soft set of (X,E).

(ii) Soft regular semi irresolute (briefly, SRS-irresolute) if for each RSO soft set
(G,C) of (Y,E

′
), the inverse image f−1(G,C) is a RSO soft set of (X,E).

(ii) Soft regular semi irresolute open (briefly, SRSI-open) if for each RSO soft set
(G,C) of (X,E), the image f(G,C) is a RSO soft set of (Y,E

′
).

3. SOFT REGULAR SEMI COMPACTNESS

The study on compactness (which depends on open sets) for a soft topological space
was initiated by Zorlutuna et al. in [25]. This section is devoted to introduce regular semi
compactness in sts along with its characterization.

Definition 3.1. A cover of a soft set is said to be a soft RSO-cover if every member of the
cover is a RSO soft set.

Definition 3.2. A sts (X, τ,E) is said to be soft RS-compact if each soft RSO-cover of
(X,E) has a finite subcover.

Remark. Every soft RS-compact soft topological space is also soft semi compact.
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Theorem 3.1. A sts (X, τ,E) is soft RS-compact ⇔ each family of RSC soft sets in
(X,E) with the FIP has a nonempty intersection.

Proof. Let {(Li, A)|i ∈ I} be a collection of RSC soft sets with the FIP. If possible, as-
sume

⋂̃
i∈I

(Li, A) = (Φ, E) ⇒
⋃̃
i∈I

(Li, A)′ = (X,E). So, the collection {((Li, A))′ | i ∈

I} forms a soft RSO-cover of (X,E), which is soft RS-compact. So, ∃ a finite subcollec-
tion I0 of I which also covers (X,E). i.e.,

⋃̃
i∈I

(Li, A)′ = (X,E)⇒
⋂̃
i∈I

(Li, A) = (Φ, E),

a contradiction.
For the converse, if possible, let (X, τ,E) be not softRS-compact. Then ∃ a softRSO-

cover {(Gi, C) | i ∈ I} of (X,U), such that for every finite sub collection I0 of I we have⋃̃
i∈I0

(Gi, C) 6= (X,E) ⇒
⋂̃

i∈I0
(Gi, C)′ 6= (Φ, E). Hence {(Gi, C)′ | i ∈ I} has the FIP.

So, by hypothesis
⋂̃

i∈I0
(Gi, C)′ 6= (Φ, E)⇒

⋃̃
i∈I0

(Gi, C) 6= (X,E) a contradiction. �

Theorem 3.2. A sts (X, τ,E) is soft RS-compact iff for every family A of soft sets with
FIP,

⋂̃
(G,C)∈A

rsscl(G,C) 6= (Φ, E).

Proof. Let (X, τ,E) be softRS-compact and if possible, let
⋂̃

(G,C)∈A
rsscl(G,C) = (Φ, E)

for some family A of soft sets with the FIP. So,
⋃̃

(G,C)∈A
(rsscl(G,C))′ = (X,E) ⇒

B = {(rsscl(G,C))′ | (G,C) ∈ A} is a soft RSO-cover of (X,E). Then by soft
RS-compactness of (X,E), ∃ a finite subcover B0 of B. i.e.,

⋃̃
(G,C)∈B0

(rsscl(G,C))′ =

(X,E) ⇒
⋃̃

(G,C)∈B0

(G,C)′ = (X,E) ⇒
⋂̃

(G,C)∈B0

(G,C) = (Φ, E), a contradiction.

Hence
⋂̃

(G,C)∈A
rsscl(G,C) 6= (Φ, E).

Conversely, we have
⋂̃

(G,C)∈A
rsscl(G,C) 6= (Φ, E), for every family A of soft sets

with FIP. Assume (X, τ,E) is not soft RS-compact. Then ∃ a family B of RSO soft
sets covering X without a finite subcover. So, for every finite subfamily B0 of B we have⋃̃
(G,C)∈B0

(G,C) 6= (X,E) ⇒
⋂̃

(G,C)∈B0

(G,C)′ 6= (Φ, E) ⇒ {(G,C)′|(G,C) ∈ B is a

family of soft sets with FIP. Now
⋃̃

(G,C)∈B
(G,C) = (X,E)⇒

⋂̃
(G,C)∈B

(G,C)′ = (Φ, E)

⇒
⋂̃

(G,C)∈B
rss(G,C)′ = (Φ, E), a contradiction. �

Theorem 3.3. SRS-continuous image of a soft RS-compact space is soft compact.

Proof. Let f : SS(X,E)→ SS(Y,E′) be a SRS-continuous function where (X, τ,E) is
a softRS-compact sts and (Y, δ, E′) is another sts. Take a soft open cover {(Gi, C) | i ∈ I}
of (Y,E′) ⇒ {f−1((Gi, C)) | i ∈ I} forms a soft RSO-cover of (X,E) ⇒ ∃ a finite
subset I0 of I such that {f−1((Gi, C)) | i ∈ I0} forms a soft RSO-cover of (X,E) ⇒
{(Gi, C)) | i ∈ I0} forms a finite soft open cover of (Y,E′). �

Theorem 3.4. Soft RSC subspace of a soft RS-compact sts is soft RS-compact.
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Proof. Let (Y,B) be a softRSC subspace of a softRS-compact sts (X, τ,A) and {(Gi, C) | i ∈
I} be a soft RSO-cover of (Y,B). Then the family {(Gi, C) | i ∈ I}

⋃̃
((X,A)− (Y,B))

is a soft RSO-cover of (X,A), which has a finite subcover, as (X,A) is soft RS-compact.
So, {(Gi, C) | i ∈ I} has a finite subfamily to cover (Y,B). Hence (Y,B) is soft RS-
compact. �

Let (X, τ1, E) and (X, τ2, E) be soft topological spaces. If τ1 ⊆ τ2, then τ2 is soft finer
than τ1. If τ1 ⊆ τ2 or τ2 ⊆ τ1, then τ1 is soft comparable with τ2. Then, we have the
following.

Proposition 3.5. Let (X, τ2, E) be a softRS-compact space and τ1 ⊆ τ2. Then (X, τ1, E)
is soft RS-compact.

Proof. Let {(Fi, E)|i ∈ I} be a soft RSO-cover of X̃ by RSO soft sets of (X, τ1, E).
Since τ1 ⊆ τ2, then {(Fi, E)|i ∈ I} is a soft RSO-cover of X̃ by RSO soft sets of
(X, τ2, E). But (X, τ2, E) is softRS-compact. Therefore (X,E)⊆̃(Fi1 , E)∪̃, . . . , (Fin , E),
for some i1, . . . , in ∈ I . Hence (X, τ1, E) is soft RS-compact. �

Let (F,E) be a soft set over X and Y be a nonempty subset of X . Then the sub-soft set
of (F,E) over Y denoted by (Y F,E) is defined as follows Y F (e) = Y ∩ F (e), for each
e ∈ E. In other words (Y F,E) = Ỹ ∩ (F,E). Now, suppose that (X, τ,E) is a sts over
X and Y is a nonempty subset of X . Then τY = {(Y F,E) | (F,E) ∈ τ}, is said to be
soft relative topology on Y and (Y, τY , E) is called a soft subspace of (X, τ,E). Here, we
exhibit a criterion that implies Ỹ is soft RS-compact by soft RSO covers of Ỹ , that all of
members are RSO soft sets in X .

Theorem 3.6. Let (Y, τY , E) be a soft subspace of a soft space (X, τ,E). Then (Y, τY , E)

is soft RS-compact if and only if every cover of Ỹ by RSO soft sets in X contains a finite
subcover.

Proof. Let (Y, τY , E) be soft RS-compact and {(Fi, E)|i ∈ I} be a cover of Ỹ by RSO
soft sets in X . By Propositions 2.1 and 2.2, we can see that {(Y Fi, E)|i ∈ I} is a soft
RSO cover of Ỹ . Therefore

(Y,E)⊆̃(Y Fi1 , E)∪, . . . ,∪(Y Fin , E),

for some i1, . . . , in ∈ I . This implies that {(Fik , E)}nk=1 is a subcover of Ỹ by RSO soft
sets in X .

Conversely, let {(Y Fi, E)|i ∈ I} be a soft RSO cover of Ỹ . It is easy to see that
{(Fi, E)|i ∈ I} is a cover of Ỹ by RSO soft sets in X . Then we can write

Y ⊆̃(Fi1 , E)∪, . . . ,∪(Fin , E),

for some i1, . . . , in ∈ I . Therefore {(Y Fik , E)}nk=1 is a subcover of Ỹ . Hence (Y, τY , E)
is soft RS-compact. �

Definition 3.3. A soft space (X, τ,E) is said to be softRS-Hausdorff if for each pair x, y
of distinct points of X , there exist disjoint RSO soft sets containing x and y, respectively.

Theorem 3.7. Every soft RS-compact subspace of a soft RS-Hausdorff space is soft
RSC.
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Proof. Let (Y, τY , E) be a softRS-compact subspace of softRS-Hausdorff space (X, τ,E).
Let x ∈ (X,E)−(Y,E). Then for all y ∈ (Y,E), x 6= y. Therefore, there existRSO soft
sets (Uy, E) and (Uxy, E) containing x and y, respectively such that (Uy, E)∩(Uxy, E) =

Φ. Obviously, {(Uxy, E)|y ∈ Y } is a cover of Ỹ by RSO soft sets in X . By Theorem
3.6, we have (Y,E)⊆̃(Uxy1

, E)∪, . . . ,∪(Uxyn
, E) for some y1, . . . , yn ∈ Y . Now, x ∈

(Uy1 , E)∩ · · · ∩ (Uyn , E) = (Ux, E) and Proposition 2.2 implies that (Ux, E)∩ (Y,E) =

(Φ, E). Hence x ∈ (Ux, E)⊆̃(X,E)− (Y,E). Then (X,E)− (Y,E) =
⋃

x∈X−Y
(Ux, E).

Therefore (X,E)− (Y,E) is soft RSO. Hence (Y,E) is soft RSC. �

Now, we consider the countably soft RS-compact spaces in soft topology. A soft topo-
logical space (X, τ,E) is said to be countably soft RS-compact if every countable soft
RSO cover of X̃ contains a finite subcover of X̃ . Obviously, every soft RS-compact
space is countably soft RS-compact.

There is a criterion for a soft space to be countable soft RS-compact in terms of soft
RSC sets rather than soft RSO sets. First we have a definition.

A collection A of soft set is said to have the FIP if for every finite sub-collection
{(A1, E), . . . , (An, E)} of A, the intersection (A1, E) ∩ . . . ∩ (An, E) is non-null.

Theorem 3.8. A sts is countably soft RS-compact if and only if every countable family of
soft RSC sets with the FIP has a non-null intersection.

Proof. Let the soft space (X, τ,E) be countably softRS-compact. Let the family {(Fi, E)}∞i=1

of RSC soft sets have the FIP. If
∞⋂
i=1

(Fi, E) = (Φ, E) by Proposition 2.2, {(Fi, E)′}∞i=1

is a countable soft RSO cover of X̃ . Therefore X̃ = (Fi1 , E)′ ∪ . . .∪ (Fik , E)′, for some
i1, . . . , ik ∈ N . Now, De Morgan laws and Proposition 2.2 imply that (Fi1 , E) ∩ . . . ∩
(Fik , E) = (Φ, E). This is a contradiction.

Conversely, Let {(Fi, E)}∞i=1 be a countable soft RSO-cover of X̃ without any sub-

cover. Then {(Fi, E)′}∞i=1 is a family of RSC soft sets over X such that
∞⋂
i=1

(Fi, E)′ =

(Φ, E). Let i1, . . . , ik be arbitrary positive integers. If (Fi1 , E)′∩ . . .∩(Fik , E)′ = (Φ, E)

then X̃ = (Fi1 , E) ∪ . . . ∪ (Fik , E), that is impossible. Therefore (Fi1 , E)′ ∩ . . .∩
(Fik , E)′ 6= (Φ, E) for each i1, . . . , ik ∈ N . This shows that {(Fi, E)′}∞i=1 have the

FIP. Therefore
∞⋂
i=1

(Fi, E)′ 6= (Φ, E). This is a contradiction. �

An immediate result of previous theorem is the following.

Corollary 3.9. A soft space (X, τ,E) is countably soft RS-compact if and only if every
nested sequence (F1, E)⊇̃(F2, E)⊇̃ . . . of nonnull RSC soft sets over X has a non-null
intersection.

Proof. Let (X, τ,E) is countably soft RS-compact. The collection {(Fi, E)}∞i=1 have the

FIP. Therefore
∞⋂
i=1

(Fi, E)′ 6= (Φ, E). Conversely, let {(Ci, E)}∞i=1 be a collection ofRSC

soft sets with the FIP. By Proposition 2.2, we construct nested sequence (F1, E)⊇̃(F2, E)⊇̃ . . .
of non-null RSC soft sets by setting (Fi, E) = (C1, E) ∩ ∩ · · · ∩ (Ci, E), for each pos-

itive integer i. By the hypothesis
∞⋂
i=1

(Fi, E) =
∞⋂
i=1

(Ci, E) 6= (Φ, E). Now, Theorem 3.8

implies that (X, τ,E) is countably soft RS-compact. �
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4. SOFT REGULAR SEMI CONNECTEDNESS

Definition 4.1. Two soft sets (L,A) and (H,B) are said to be disjoint if (L,A)(x) ∩
(H,B)(y) = Φ ∀ x ∈ A, y ∈ B.

Definition 4.2. A soft RS-separation of sts (X, τ,E) is a pair (L,A), (H,B) of disjoint
nonnull RSO soft sets whose union is (X,E).

If there doesn exist a soft RS-separation of (X,E), then the sts is said to be soft RS-
connected, otherwise soft RS-disconnected.

Example 4.3. Let X = {h1, h2}, E = {e1, e2}, and τ = {Φ, X̃, (F1, E), (F2, E)},
where (F1, E), (F2, E) are soft sets over X defined as follows:
F1(e1) = {h1}, F1(e2) = {h2}
F2(e1) = {h2}, F2(e2) = {h1}
Then τ defines a soft topology on X . So (F1, E), (F2, E) are RSO soft sets in (X,E) but
(F1, E)∩̃(F2, E) = (Φ, E), so there is a soft RS-separation of (X,E) and hence is soft
RS-disconnected.

Theorem 4.1. If the soft sets (L,A) and (G,C) form a soft RS-separation of (X,E), and
if (Y,B) is a softRS-connected subspace of (X,E), then (Y,B)⊆̃(L,A) or (Y,B)⊆̃(G,C).

Proof. Since (L,A) and (G,C) are disjoint RSO soft sets, so are (L,A)∩̃(Y,B) and
(G,C)∩̃(Y,B) and their soft union gives (Y,B), i.e., they would constitute a soft RS-
separation of (Y,B), a contradiction. Hence, one of (L,A)∩̃(Y,B) and (G,C)∩̃(Y,B) is
empty and so (Y,B) is entirely contained in one of them. �

Theorem 4.2. Let (Y,B) be a softRS-connected subspace of (X,E) and (K,D) be a soft
set in (X,E) such that (Y,B)⊆̃(K,D)⊆̃cl(Y,B), then (K,D) is also soft RS-connected.

Proof. Let the soft set (K,D) satisfies the hypothesis. If possible, let (F,A) and (G,C)

form a softRS-separation of (K,D). Then, by Theorem 4.1, (Y,B)⊆̃(F,A) or (Y,B)⊆̃(G,C).
Let (Y,B)⊆̃(F,A) ⇒ rsscl(Y,B)⊆̃rsscl(F,A); since rsscl(F,A) and (G,C) are dis-
joint, (Y,B) cannot intersect (G,C). This contradicts the fact that (G,C) is a nonempty
subset of (Y,B)⇒ @ a softRS-separation of (K,D) and hence is softRS-connected. �

Theorem 4.3. A sts (X, τ,E) is soft RS-disconnected⇔ ∃ a nonnull proper soft subset
of (X,E) which is both RSO and RSC soft sets.

Proof. Let (K,D) be a nonnull proper soft subset of (X,E) which is bothRSO andRSC
soft sets. Now (H,C) = (K,D)′ is nonnull proper subset of (X,E) which is also both
RSO andRSC soft sets⇒ rsscl(K,D) = (K,D) and rsscl(H,C) = (H,C)⇒ (X,E)
can be expressed as the soft union of two RS-separated soft sets (K,D), (H,C) and so,
is soft RS-disconnected.

Conversely, let (X,E) be soft RS-disconnected⇒ ∃ nonnull soft subsets (K,D) and
(H,C) such that rsscl(K,D)∩̃(H,C) = (Φ, E), (K,D)∩̃rsscl(H,C) = (Φ, E) and
(K,D)∪̃(H,C) = (X,E). Now (K,D)⊆̃rsscl(K,D) and rsscl(K,D)∩̃(H,C) =
(Φ, E)⇒ (K,D)∩̃(H,C) = (Φ, E)⇒ (H,C) = (K,D)′. Then (K,D)∪̃rsscl(H,C) =
(X,E) and (K,D)∩̃rsscl(H,C) = (Φ, E) ⇒ (K,D) = (rsscl(H,C))′ and similarly
(H,C) = (rsscl(K,D))′ ⇒ (K,D), (H,C) are RSO soft sets being the complements
of RSC soft sets. Also (H,C) = (K,D)′ ⇒ they are also soft RSC. �

Theorem 4.4. SRS-continuous image of a soft RS-connected sts is soft connected.
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Proof. Let f : SS(X,E) → SS(Y,E) be a SRS-continuous function where (X, τ,E) a
soft RS-connected sts and (Y, δ, E) is a sts. We wish to show f(X,E) is soft connected.
Suppose f(X,E) = (K,D)∪̃(H,C) be a soft separation. i.e., (K,D) and (H,C) are
disjoint soft open sets whose union is f(X,E)⇒ f−1(K,D) and f−1(H,C) are disjoint
RSO soft sets whose union is (X,E). So, f−1(K,D) and f−1(H,C) form a soft RS-
separation of (X,E), a contradiction. �

Theorem 4.5. SRS-irresolute image of a soft RS-connected sts is soft RS-connected.

Proof. Similar to that of Theorem 4.4 �

5. SOFT REGULAR SEMI SEPARATION AXIOMS

Soft separation axioms for sts were studied by Shabir et al. [23]. Here we consider
separation axioms for sts’s using RSO and RSC soft sets.

Definition 5.1. Two soft sets (G,C) and (H,B) are said to be distinct if G(e) ∩H(e) =
Φ, ∀ e ∈ B ∩ C.

Definition 5.2. A sts (X, τ,E) is said to be a soft RS-T0 space if for two disjoint soft
points G(e) and F (e), ∃ a RSO soft set containing one but not the other.

Example 5.3. Let X = {x1, x2}, E = {e1, e2}, and τ = {Φ, X̃, (F1, E), (F2, E)},
where (F1, E), (F2, E) are soft sets over X defined as follows:
F1(e1) = {x1}, F1(e2) = {x1}
F2(e1) = {x2}, F2(e2) = {x2}
Then τ defines a soft topology on X . Also (X, τ,E) is soft RS-T0 space, since x1, x2 ∈
X , x1 6= x2, ∃ aRSO soft sets (F1, E), (F2, E) such that x1 ∈ (F1, E) and x2 /∈ (F1, E)
or x1 /∈ (F2, E) and x2 ∈ (F1, E).

Theorem 5.1. Let (X, τ,E) be a sts and the soft points F (e), G(e) of (X,E) such that
F (e) 6= G(e). If there existsRSO soft sets (G,C) and (H,D) such that F (e)∈̃(G,C) and
G(e) /̃∈(H,D) or G(e)∈̃(H,D) and F (e) /̃∈(G,C). Then (X, τ,E) is soft RS-T0 space.

Proof. Let F (e) and G(e) be two distinct soft points in a sts (X, τ,E). Let (G,C) and
(H,D) beRSO soft sets such that eitherF (e)∈̃(G,C) andG(e)∈̃(G,C)′ orG(e)∈̃(H,D)
and F (e)∈̃(G,C)′. If F (e)∈̃(G,C) andG(e)∈̃(G,C)′. ThenG(e)∈̃(G,C)′ for all e ∈ C,
this implies that G(e) /̃∈(G,C) for all e ∈ C. Therefore, G(e) /̃∈(G,C). Similarly, if
G(e)∈̃(H,D) and F (e)∈̃(H,D)′, then F (e) /̃∈(H,D). Hence (X, τ,E) is soft RS-T0
space. �

Theorem 5.2. A sts is a soft RS-T0 space if the soft regular semiclosures of distinct soft
points are distinct.

Proof. Let F (e) andH(e) be two distinct soft points with distinct soft regular semiclosures
in a sts (X, τ,E). If possible, suppose we hadF (e)∈̃rsscl(H(e)), then rsscl(F (e))⊆̃rsscl(H(e)),
a contradiction. So F (e) /̃∈rsscl(H(e)) ⇒ (rsscl(H(e)))′ is a RSO soft set containing
F (e) but not H(e). Hence (X, τ,E) is a soft RS-T0 space. �

Theorem 5.3. A soft subspace of a soft RS-T0 space is soft RS-T0.

Proof. Let (Y,B) be a soft subspace of a soft RS-T0 space (X,E) and let F (e), G(e)
be two distinct soft points of (Y,B). Then these soft points are also in (X,E) ⇒ ∃
a RSO soft set (H,D) containing one of these soft points, say F (e), but not the other
⇒ (H,D)∩̃(Y,B) is a RSO soft set containing F (e) but not the other. �



54 E. ELAVARASAN AND A. VADIVEL

Definition 5.4. A sts (X, τ,E) is said to be a soft RS-T1-space if for two distinct soft
points F (e), G(e) of (X,E), ∃ RSO soft sets (H,D) and (G,C) such that
F (e)∈̃(H,D) and G(e) /̃∈(H,D);
G(e)∈̃(G,C) and F (e) /̃∈(G,C).

Example 5.5. Let X = {x1, x2, x3}, E = {e1, e2} and τ = {Φ, X, (F1, E), (F2, E),
(F3, E), (F4, E), (F5, E), (F6, E)} where
F1(e1) = {x1, x2}, F1(e2) = {x1, x3}
F2(e1) = {x2, x3}, F2(e2) = {x1, x2}
F3(e1) = {x1, x3}, F3(e2) = {x2, x3}
F4(e1) = {x2}, F4(e2) = {x1}
F5(e1) = {x3}, F5(e2) = {x2}
F6(e1) = {x1}, F2(e2) = {x3}
Then (X, τ,E) is a sts over X . We note that (X, τ,E) is soft RS-T1 space, because there
exists RSO soft sets (F1, E), (F2, E), (F3, E) such that x1 ∈ (F1, E), x2 /∈ (F1, E) and
x2 ∈ (F2, E), x1 /∈ (F2, E); x1 ∈ (F1, E), x3 /∈ (F1, E) and x3 ∈ (F3, E), x1 /∈
(F3, E); x2 ∈ (F2, E), x3 /∈ (F2, E) and x3 ∈ (F3, E), x2 /∈ (F3, E).

Theorem 5.4. Let (X, τ,E) be a sts and the soft points F (e), G(e) of (X,E) such that
F (e) 6= G(e). If there exists RSO soft sets (G,C) and (H,D) such that F (e)∈̃(G,C)

and G(e) /̃∈(H,D) and G(e)∈̃(H,D) and F (e) /̃∈(G,C). Then (X, τ,E) is soft RS-T1
space.

Proof. It is similar to the proof of Theorem 5.1 �

Theorem 5.5. If every soft point of a sts (X, τ,E) is a RSC soft set then (X, τ,E) is a
soft RS-T1 space.

Proof. Let F (e) and G(e) be two distinct soft points of (X,E) ⇒ (F (e))′, (G(e))′ are
RSO soft sets such that G(e)∈̃(F (e))′ and G(e) /̃∈F (e); F (e)∈̃(G(e))′ and F (e) /̃∈G(e).

�

Theorem 5.6. A soft subspace of a soft RS-T1 space is soft RS-T1.

Proof. It is similar to the proof of Theorem 5.3 �

Definition 5.6. A sts (X, τ,E) is said to be a soft RS-T2 space if and only if for distinct
soft points F (e), G(e) of (X,E), ∃ disjoint RSO soft sets (H,B) and (G,C) such that
F (e)∈̃(H,B) and G(e)∈̃(G,C).

Example 5.7. In Example 5.3, (X, τ,E) is also soft RS-T2 space.

Example 5.8. Let us consider the soft topology (X, τ,E) on Exanple 5.5. Now we show
that (X, τ,E) is not a soft RS-T2 space. For x1 6= x2, x1 ∈ (F1, E), x2 ∈ (F2, E) and
(F1, E)∩̃(F2, E) = {{x2}, {x1}} 6= (Φ, E). Then (X, τ,E) is not soft RS-T2 space.

Theorem 5.7. A soft subspace of a soft RS-T2 space is soft RS-T2.

Proof. Let (X, τ,E) be a soft RS-T2 space and (Y,B) be a soft subspace of (X,E),
where B ⊆ E and Y ⊆ X . Let F (e) and G(e) be two distinct soft points of (Y,B).
(X,E) is soft RS-T2 ⇒ ∃ two disjoint RSO soft sets (H,D) and (G,C) such that
F (e)∈̃(H,D), G(e)∈̃(G,C). Then (H,D)∩̃(Y,B) and (G,C)∩̃(Y,B) are RSO soft
sets satisfying the requirements for (Y,B) to be a soft RS-T2 space. �



REGULAR SEMIOPEN SOFT SETS AND THEIR APPLICATIONS 55

Theorem 5.8. A sts (X, τ,E) is softRS-T2 if and only if for distinct soft pointsG(e), F (e)

of (X,E), ∃ aRSO soft set (F,A) containingG(e) but notF (e) such thatF (e) /̃∈rsscl(F,A).

Proof. Let G(e), F (e) be distinct soft points in a soft RS-T2 space (X, τ,E).
(⇒) ∃ distinctRSO soft sets (G,C) and (H,D) such thatF (e)∈̃(G,C), G(e)∈̃(H,D).

This implies G(e)∈̃(G,C)′. So, (G,C)′ is a RSC soft set containing G(e) but not F (e)
and rsscl(G,C)′ = (G,C)′.

(⇐) Take a pair of distinct soft points G(e) and F (e) of (X,E), ∃ a RSO soft set
(H,D) containingG(e) but notF (e) such thatF (e) /̃∈rsscl(H,D)⇒ F (e)∈̃(rsscl(H,D))′

⇒ (H,D) and (rsscl(H,D))′ are disjointRSO soft set containingG(e) and F (e) respec-
tively. �

Definition 5.9. A sts (X, τ,E) is said to be a soft RS-regular space if for every soft point
F (e) and RSC soft set (L,A) not containing F (e), ∃ disjoint RSO soft sets (G,C) and
(H,D) such that F (e)∈̃(G,C) and (L,A)⊆̃(H,D), where C,D ∈ E.

A soft RS-regular with soft RS-T1 space is called a soft RS-T3 space.

Example 5.10. Let us consider the soft topology (X, τ,E) on Exanple 5.5. We know that
(X, τ,E) is softRS-T1 space from Example 5.5. Now we show that (X, τ,E) is not a soft
RS-T3 space. For this,
τ ′ = {Φ, X, (F1, E)′, (F2, E)′, (F3, E)′, (F4, E)′, (F5, E)′, (F6, E)′}
where,
F ′1(e1) = {x3}, F ′1(e2) = {x2}
F ′2(e1) = {x1}, F ′2(e2) = {x3}
F ′3(e1) = {x2}, F ′3(e2) = {x1}
F ′4(e1) = {x1, x3}, F ′4(e2) = {x2, x3}
F ′5(e1) = {x1, x2}, F ′5(e2) = {x1, x3}
F ′6(e1) = {x2, x3}, F ′6(e2) = {x1, x2}
Then, x1 ∈ (F1, E), a RSC soft set (G,E) = (F1, E)′ and x1 /∈ (G,E), then there
exists a RSO soft sets (F2, E) and (F5, E) such that x1 ∈ (F2, E) and (G,E)⊆̃(F5, E)
but (F2, E)∩̃(F5, E) = {{x3}, {x2}} 6= (Φ, E). Then (X, τ,E) is not soft RS-regular
space, so (X, τ,E) is not a soft RS-T3 space.

Remark. It can be shown that the property of being soft RS-T3 is hereditary.

Remark. Soft RS-T3 ⇒ soft RS-T2 ⇒ soft RS-T1 ⇒ soft RS-T0.

Definition 5.11. A cover of a soft set is said to be a soft RSO-cover if every member of
the cover is a RSO soft set.

Definition 5.12. A sts (X, τ,E) is said to be soft RS-compact if each soft RSO-cover of
(X,E) has a finite subcover.

Theorem 5.9. A sts which is both soft RS-compact and soft RS-T2 is soft RS-T3.

Proof. It suffices to show every soft RS-compact sts is soft RS-regular. Let F (e) be a
soft point and (H,D) be a RSC soft set not containing the point ⇒ F (e)∈̃(H,D)′.
Now for each soft point G(e), ∃ disjoint RSO soft sets (G,C1) and (G,C2) such that
G(e)∈̃(G,C1) and F (e)∈̃(G,C2). So, the collection {(Gi, C)|i ∈ I} forms aRSO-cover
of (H,D). Now (H,D) is a RSC soft set ⇒ (H,D) is soft RS-compact. Hence ∃ a

finite subfamily I0 of I such that (H,D)⊆̃
⋃

i∈I0
(Gi, C). Take (K,B) =

n⋂
i=1

(Ki, B) and
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(G,C) =
n⋃

i=1

(Gi, C). Then (K,B), (G,C) are disjoint RSO sets such that F (e) is a soft

point of (K,B) and (L,A)⊆̃(G,C). �

Proposition 5.10. Let (X, τ,E) be a sts, (G,C) be a RSC soft set in (X,E) and F (e)

be a soft point such that F (e) /̃∈(G,C). If (X, τ,E) is soft RS-regular space, then there
exists a RSO soft set (K,D) such that F (e)∈̃(K,D) and (K,D)∩̃(G,C) = (Φ, E).

Proof. It is obvious from Definition 5.9 �

Proposition 5.11. Let (X, τ,E) be a sts, (G,C)∈̃ SS(X,E) and x ∈ X . Then:

(i) x ∈ (G,C) if and only if (x,E)⊆̃(G,C).
(ii) If (x,E)∩̃(G,C) = (Φ, E), then x /∈ (G,C).

Proof. Obvious. �

Theorem 5.12. Let (X, τ,E) be a sts and x ∈ X . If (X, τ,E) is soft RS-regular space,
then:

(1) x /∈ (G,C) if and only if (x,E)∩̃(G,C) = (Φ, E) for everyRSC soft set (G,C).
(2) x /∈ (H,D) if and only if (x,E)∩̃(H,D) = (Φ, E) for every RSO soft set

(H,D).

Proof. (i) Let (G,C) be a RSC soft set such that x /∈ (G,C). Since (X, τ,E) is soft RS-
regular space. Then by Proposition 5.10 there exists a RSO soft set (H,D) such that x ∈
(H,D) and (G,C)∩̃(H,D) = (Φ, E). It follows that (x,E)⊆̃(H,D) from Proposition
5.11(1). Hence (x,E)∩̃(G,C) = (Φ, E). Conversely, if (x,E)∩̃(G,C) = (Φ, E), then
x /∈ (G,C) from Proposition 5.11(2).

(ii) Let (H,D) be aRSO soft set such that x /∈ (H,D). If x /∈ F (e) for all e ∈ E, then
we get the proof. If x /∈ F (e1) and x ∈ F (e2) for some e1, e2 ∈ E, then x ∈ (F (e1))′

and x /∈ (F (e2))′ for some e1, e2 ∈ E. This means that, (x,E)∩̃(H,D) 6= (Φ, E). Hence
(H,D)′ is RSC soft set such that x /∈ (H,D)′. It follows by (1) (x,E)∩̃(H,D)′ =

(Φ, E). This implies that, (x,E)⊆̃(H,D) and so x ∈ (H,D), which is contradiction
with x /∈ F (e1) for some e1 ∈ E. Therefore, (x,E)∩̃(H,D) = (Φ, E). Conversely,
if (x,E)∩̃(H,D) = (Φ, E), then it is obvious that x /∈ (H,D). This completes the
proof. �

Corollary 5.13. Let (X, τ,E) be a sts and x ∈ X . If (X, τ,E) is soft RS-regular space,
then the following are equivalent:

(1) (X, τ,E) is soft RS-T1 space.
(2) ∀ x, y ∈ X such that x 6= y, there exist RSO soft sets (G,C) and (H,D)

such that (x,E)⊆̃(G,C) and (y,E)∩̃(G,C) = (Φ, E) and (y,E)⊆̃(H,D) and
(x,E)∩̃(H,D) = (Φ, E).

Proof. It is obvious from Theorem 5.12 �

Theorem 5.14. Let (X, τ,E) be a sts and x ∈ X . Then the following are equivalent:

(1) (X, τ,E) is soft RS-regular space.
(2) For every RSC soft set (G,C) such that (x,E)∩̃(G,C) = (Φ, E), there exist

RSO soft sets (L,A) and (H,D) such that (x,E)⊆̃(L,A), (G,C)⊆̃(H,D) and
(L,A)∩̃(H,D) = (Φ, E).
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Proof. (1)⇒(2): Let (G,C) be a RSC soft set such that (x,E)∩̃(G,C) = (Φ, E). Then
x /∈ (G,C) from Theorem 5.12(1). It follows by (1), there exist RSO soft sets (L,A) and
(H,D) such that x ∈ (L,A), (G,C)⊆̃(H,D) and (L,A)∩̃(H,D) = (Φ, E). This means
that, (x,E)⊆̃(L,A), (G,C)⊆̃(H,D) and (L,A)∩̃(H,D) = (Φ, E).

(2)⇒(1): Let (G,C) be a RSC soft set such that x /∈ (G,C). Then (x,E)∩̃(G,C) =
(Φ, E) from Theorem 5.12(1). It follows by (2), there exist RSO soft sets (L,A) and
(H,D) such that (x,E)⊆̃(L,A), (G,C)⊆̃(H,D) and (L,A)∩̃(H,D) = (Φ, E). Hence
(x,E)⊆̃(L,A), (G,C)⊆̃(H,D) and (L,A)∩̃(H,D) = (Φ, E). Thus, (X, τ,E) is soft
RS-regular space. �

Theorem 5.15. Let (X, τ,E) be a sts. If (X, τ,E) is soft RS-T3 space, then ∀ x ∈ X ,
(x,E) is RSC soft set.

Proof. We want to prove that (x,E) is RSC soft set, which is suficient to prove that
(x,E)′ is RSO soft set for all y ∈ {x}′. Since (X, τ,E) is soft RS-T3-space, then there
existRSO soft sets (H,D)y and (G,C) such that (y,E)⊆̃(H,D)y and (x,E)∩̃(H,D)y =

(Φ, E) and (x,E)⊆̃(G,C) and (y,E)∩̃(G,C) = (Φ, E). It follows that
⋃̃

y∈{x}′
(H,D)y

⊆̃(x,E)′. Now we want to prove that (x,E)′⊆̃
⋃̃

y∈{x}′
(H,D)y . Let

⋃̃
y∈{x}′

(H,D)y =

(F,A), where F (e) =
⋃̃

y∈{x}′
(F (e)y) for all e ∈ E. Since (x,E)′(e) = {x}′ for all

e ∈ E from Definition 15 in [23]. So, for all y ∈ {x}′ and e ∈ E, (x,E)′(e) = {x} =⋃̃
y∈{x}′

{y} =
⋃̃

y∈{x}′
(y,E)(e)⊆̃

⋃̃
y∈{x}′

F (e)y = F (e). Thus, (x,E)′⊆̃
⋃̃

y∈{x}′
(H,D)y from

definition of soft subsets and so (x,E)′ =
⋃̃

y∈{x}′
(H,D)y . This means that, (x,E)′ is

RSO soft set for all y ∈ {x}′. Therefore, (x,E) is RSC soft set. �

Theorem 5.16. Every soft RS-T3 space is soft RS-T2 space.

Proof. Let (X, τ,E) be a soft RS-T3 space and x, y ∈ X such that x 6= y. By Theorem
5.15, (y,E) is RSC soft set and x /∈ (y,E). It follows from the soft RS-regularity,
there exist RSO soft sets (G,C) and (H,D) such that x ∈ (G,C), (y,E)⊆̃(H,D) and
(G,C)∩̃(H,D) = (Φ, E). Thus, x ∈ (G,C), y ∈ (y,E)⊆̃(H,D) and (G,C)∩̃(H,D) =
(Φ, E). Therefore, (X, τ,E) is soft RS-T2 space. �

Theorem 5.17. A soft subspace (Y, τY , E) of a soft RS-T3 space (X, τ,E) is soft RS-T3.

Proof. By Theorem 5.3 (Y, τY , E) is soft RS-T1 space. Now we want to prove that
(Y, τY , E) is soft RS-regular space. Let y ∈ Y and (G,C) be a RSC soft set in Y
such that y /∈ (G,C). Then (G,C) = (Y,E)∩̃(H,D) for some RSC soft set (H,D)
in X from Theorem 2.4 Hence y /∈ (Y,E)∩̃(H,D). But y ∈ (Y,E), so y /∈ (H,D).
Since (X, τ,E) is soft RS-T3-space, so there exist RSO soft sets (H1, D) and (H2, D)

in X such that y ∈ (H1, D), (H,D)⊆̃(H2, D) and (H1, D)∩̃(H2, D) = (Φ, E). Take
(G1, C) = (Y,E)∩̃(H1, D) and (G2, C) = (Y,E)∩̃(H2, D), then (G1, C), (G2, C)

are RSO soft sets in Y such that y ∈ (G1, C), (G,C)⊆̃(Y,E)∩̃(H2, D) = (G2, C)

and (G1, C)∩̃(G2, C)⊆̃(H1, D)∩̃(H2, D) = (Φ, E). Thus, (Y, τY , E) is soft RS-T3
space. �



58 E. ELAVARASAN AND A. VADIVEL

Definition 5.13. A sts (X, τ,E) is said to be a soft RS-normal space if for every pair of
disjointRSC soft sets (G1, C) and (G2, C), ∃ two disjointRSO soft sets (H1, D), (H2, D)

such that (G1, C)⊆̃(H1, D) and (G2, C)⊆̃(H2, D).

A soft RS-normal with T1-space is called a soft RS-T4-space.

Example 5.14. Let us consider the soft topology (X, τ,E) on Example 5.5. We know
that (X, τ,E) is a soft RS-T1-space from Example 5.5. Now we show that (X, τ,E)
is a soft RS-T4-space. Here, (F4, E), (F5, E), (F6, E) are soft RSC sets such that
(F5, E)∩̃(F6, E) = (Φ, E), (F5, E)∩̃(F4, E) = (Φ, E), (F4, E)∩̃(F6, E) = (Φ, E).
Then there exist RSO soft sets (F4, E), (F5, E), (F6, E) such that (F5, E)⊆̃(F5, E),

(F6, E)⊆̃(F6, E), (F4, E)⊆̃(F4, E) and (F5, E)∩̃(F6, E) = (Φ, E), (F5, E)∩̃(F4, E) =
(Φ, E), (F4, E)∩̃(F6, E) = (Φ, E). And then, (X, τ,E) is a soft RS-normal space.
Therefore, (X, τ,E) is a soft RS-T4 space.

Remark. In Examples 5.10 and 5.14 shows that every soft RS-T4 space is need not be
soft RS-T3.

Theorem 5.18. A sts (X, τ,E) is soft RS-normal if and only if for any RSC soft set
(L,A) and RSO soft set (G,C) containing (L,A), there exists an RSO soft set (H,D)

such that (L,A)⊆̃(H,D) and rsscl(H,D)⊆̃(G,C).

Proof. Let (X, τ,E) be RS-normal space and (L,A) be a RSC soft set and (G,C) be a
RSO soft set containing (L,A)⇒ (L,A) and (G,C)′ are disjointRSC soft sets⇒ ∃ two
disjointRSO soft sets (H1, D), (H2, D) such that (L,A)⊆̃(H1, D) and (G,C)′⊆̃(H2, D).
Now (H1, D)⊆̃(H2, D)′ ⇒ rsscl(H1, D)⊆̃rsscl(H2, D)′ = (H2, D)′. Also, (G,C)′

⊆̃(H2, D)⇒ (H2, D)′⊆̃(G,C)⇒ rsscl(H1, D)⊆̃(G,C).
Conversely, let (F,A) and (K,B) be any disjoint pairRSC soft sets⇒ (F,A)⊆̃(K,B)′,

then by hypothesis there exists an RSO soft set (H,D) such that (F,A)⊆̃(H,D) and
rsscl(H,D)⊆̃(K,B)′⇒ (K,B)⊆̃(rsscl(H,D))′⇒ (H,D) and (rsscl(H,D))′ are dis-
joint RSO soft sets such that (F,A)⊆̃(H,D) and (K,B)⊆̃(rsscl(H,D))′. �

Theorem 5.19. Let f : SS(X,E) → SS(Y,E′) be a soft surjective function which is
both SRS-irresolute and SRSI-open where (X, τ,E) and (Y, σ,E′) are soft topological
spaces. If (X,E) is soft RS-normal space then so is (Y,E′).

Proof. Take a pair of disjoint RSC soft sets (F,A) and (K,B) of (Y,E′)⇒ f−1(F,A)
and f−1(K,B) are disjoint RSC soft sets of (X,E)⇒ ∃ disjoint RSO soft sets (G,C)

and (H,D) such that f−1(F,A)⊆̃(G,C) and f−1(K,B)⊆̃(H,D) ⇒ (F,A)⊆̃f(G,C)

and (K,B)⊆̃f(H,D) ⇒ f(G,C) and f(H,D) are disjoint RSO soft sets of (Y,E′)
containing (F,A) and (K,B) respectively. Hence the result. �

Theorem 5.20. A regular semiclosed soft subspace of a soft RS-normal space is soft RS-
normal.

Proof. Let (Y,E′) be a regular semiclosed soft subspace of a softRS-normal space (X,E).
Take a disjoint pair (F,A) and (G,C) of RSC soft sets of (Y,E′)⇒ ∃ disjoint RSC soft
sets (K,B) and (H,D) such that (F,A) = (K,B)∩̃(Y,E′), (G,C) = (H,D)∩̃(Y,E′).
Now by soft RS-normality of (X,E), ∃ disjoint RSO soft sets (K1, B) and (H1, D) such
that (K,B)⊆̃(K1, B) and (H,D)⊆̃(H1, D) ⇒ (F,A)⊆̃(K1, B)∩̃(Y,E′) and (G,C)⊆̃
(H1, D)∩̃(Y,E′). �

Theorem 5.21. Every soft RS-compact with soft RS-T2 space is RS-normal.
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Proof. Let (X, τ,E) be a soft RS-compact with soft RS-T2 space. Take a disjoint pair
(F,A) and (K,B) of RSC soft sets. By Theorem 5.9, for each soft point L(e), ∃ disjoint
RSO soft sets (G,C) and (H,D) such that L(e)⊆̃(G,C) and (K,B)⊆̃(H,D). So the
collection {(Gi, C) | L(e)⊆̃(G,C), i ∈ I} is a RSO-cover of (G,C). Then by Theorem
5.9, ∃ a finite subfamily {(Gi, C) | i = 1, 2, . . . , n} such that (G,C)⊆̃

⋃̃
{(Gi, C) | i =

1, 2, . . . , n}. Take (G,C) =
⋂̃
{(Gi, C) | i = 1, 2, . . . , n} and (H,D) =

⋂̃
{(Hi, D) | i =

1, 2, . . . , n}. Then (G,C) and (H,D) are disjointRSO soft sets such that (F,A)⊆̃(G,C)

and (K,B)⊆̃(H,D). Hence (X,E) is soft RS-normal. �

6. SOME TYPES OF SOFT FUNCTIONS

Theorem 6.1. Let (X, τ1, A) and (Y, τ2, B) be sts’s and fpu : SS(X,A)→ SS(Y,B) be
soft function which is bijective and SRSI-open. If (X, τ1, A) is soft RS-T0 space, then
(Y, τ2, B) is also a soft RS-T0 space.

Proof. Let y1, y2 ∈ Y such that y1 6= y2. Since fpu is surjective, then ∃ x1, x2 ∈ X such
that u(x1) = y1, u(x2) = y2 and x1 6= x2. By hypothesis, there exist RSO soft sets
(G,C) and (H,D) in X such that either x1 ∈ (G,C) and x2 /∈ (G,C) or x2 ∈ (H,D)
and x1 /∈ (H,D). So, either x1 ∈ F (e) and x2 /∈ F (e) or x2 ∈ G(e) and x1 /∈ G(e) for
all e ∈ E. This implies that, either y1 = u(x1) ∈ u(F (e)) and y2 = u(x2) /∈ u(F (e))
or y2 = u(x2) ∈ u(G(e)) and y1 = u(x1) /∈ u(G(e)) for all e ∈ E. Hence either
y1 ∈ fpu(G,C) and y2 /∈ fpu(G,C) or y2 ∈ fpu(H,D) and y1 /∈ fpu(H,D). Since
fpu is SRSI-open function, then fpu(G,C), fpu(H,D) are RSO soft sets in Y . Hence
(Y, τ2, B) is also a soft RS-T0space. �

Theorem 6.2. Let (X, τ1, A) and (Y, τ2, B) be sts’s and fpu : SS(X,A)→ SS(Y,B) be
soft function which is bijective and SRSI-open. If (X, τ1, A) is soft RS-T1 space, then
(Y, τ2, B) is also a soft RS-T1 space.

Proof. It is similar to the proof of Theorem 6.1 �

Theorem 6.3. Let (X, τ1, A) and (Y, τ2, B) be sts’s and fpu : SS(X,A)→ SS(Y,B) be
soft function which is bijective and SRSI-open. If (X, τ1, A) is soft RS-T2 space, then
(Y, τ2, B) is also a soft RS-T2 space.

Proof. y1, y2 ∈ Y such that y1 6= y2. Since fpu is surjective, then ∃ x1, x2 ∈ X such that
u(x1) = y1, u(x2) = y2 and x1 6= x2. By hypothesis, there exist RSO soft sets (G,C)
and (H,D) in X such that x1 ∈ (G,C), x2 ∈ (H,D) and (G,C)∩̃(H,D) = (Φ, E). So,
x1 ∈ F (e), x2 ∈ G(e) and F (e)∩̃G(e) = (Φ, E) for all e ∈ E. This implies that, y1 =
u(x1) ∈ u(F (e)), y2 = u(x2) ∈ u(G(e)) for all e ∈ E. Hence y1 ∈ fpu(G,C), y2 ∈
fpu(H,D) and fpu(G,C)∩̃fpu(H,D) = fpu[(G,C)∩̃(H,D)] = fpu(Φ, A) = (Φ, B)
from Theorem 2.5 Since fpu is SRSI-open function, then fpu(G,C), fpu(H,D) are
RSO soft sets in Y . Thus, (Y, τ2, B) is also a soft RS-T2 space. �

Theorem 6.4. Let (X, τ1, A) and (Y, τ2, B) be sts’s and fpu : SS(X,A) → SS(Y,B)
be soft function which is bijective, SRS-irresolute and SRSI-open. If (X, τ1, A) is soft
RS-regular space, then (Y, τ2, B) is also a soft RS-regular space.

Proof. Let (G,C) be a RSC soft set in Y and y ∈ Y such that y /∈ (G,C). Since fpu is
surjective and SRS-irresolute, then ∃ x ∈ X such that u(x) = y and f−1pu (G,C) is RSC
soft set inX such that x /∈ f−1pu (G,C). By hypothesis, there existRSO soft sets (F,A) and
(H,D) in X such that x ∈ (F,A), f−1pu (G,C)⊆̃(H,D) and (F,A)∩̃(H,D) = (Φ, E).
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It follows that x ∈ F (e) for all e ∈ E and (G,C) = fpu[f−1pu (G,C)]⊆̃fpu(H,D) from
Theorem 2.5. So, y = u(x1) ∈ u[F (e)] for all e ∈ E and (G,C)⊆̃fpu(H,D). Hence y ∈
fpu(F,A) and (G,C)⊆̃fpu(H,D) and fpu(F,A)∩̃fpu(H,D) = fpu[(F,A)∩̃(H,D)] =
fpu(Φ, A) = (Φ, B) from Theorem 2.5 Since fpu is SRSI-open function. Then fpu(F,A),
fpu(H,D) are RSO soft sets in Y . Thus, (Y, τ2, B) is also a soft RS-regular space. �

Theorem 6.5. Let (X, τ1, A) and (Y, τ2, B) be sts’s and fpu : SS(X,A) → SS(Y,B)
be soft function which is bijective, SRS-irresolute and SRSI-open. If (X, τ1, A) is soft
RS-T3 space, then (Y, τ2, B) is also a soft RS-T3 space.

Proof. Since (X, τ1, A) is soft RS-T3 space, then (X, τ1, A) is soft RS-regular with soft
RS-T1 space. It follows that (Y, τ2, B) is also a soft RS-T1 space from Theorem 6.4 and
softRS-regular space from Theorem 6.4 Hence, (Y, τ2, B) is also a softRS-T3 space. �

Theorem 6.6. Let (X, τ1, A) and (Y, τ2, B) be sts’s and fpu : SS(X,A) → SS(Y,B)
be soft function which is bijective, SRS-irresolute and SRSI-open. If (X, τ1, A) is soft
RS-normal space, then (Y, τ2, B) is also a soft RS-normal space.

Proof. Let (F,A) and (G,C) be RSC soft sets in Y such that (F,A)∩̃(G,C) = (Φ, E).
Since fpu is SRS-irresolute, then f−1pu (F,A) and f−1pu (G,C) are RSC soft set in X

such that f−1pu (F,A)∩̃f−1pu (G,C) = f−1pu [(F,A)∩̃(G,C)] = f−1pu [Φ, B] = (Φ, A) from
Theorem 2.5 By hypothesis, there exist RSO soft sets (K,B) and (H,D) in X such
that f−1pu (F,A)⊆̃(K,B), f−1pu (G,C)⊆̃(H,D) and (K,B)∩̃(H,D) = (Φ, A). It follows
that (F,A) = fpu[f−1pu (F,A)]⊆̃ fpu(K,B), (G,C) = fpu[f−1pu (G,C)]⊆̃fpu(H,D) from
Theorem 2.5 and fpu(K,B)∩̃fpu(H,D) = fpu[(K,B)∩̃(H,D)] = fpu[Φ, A] = (Φ, B)
from Theorem 2.5 Since fpu is SRSI-open function. Then fpu(K,B), fpu(H,D) are
RSO soft sets in Y . Thus, (Y, τ2, B) is also a soft RS-normal space. �

Corollary 6.7. Let (X, τ1, A) and (Y, τ2, B) be sts’s and fpu : SS(X,A) → SS(Y,B)
be soft function which is bijective, SRS-irresolute and SRSI-open. If (X, τ1, A) is soft
RS-T4 space, then (Y, τ2, B) is also a soft RS-T4 space.

Proof. It is obvious from Theorem 6.2 and Theorem 6.6 �

7. CONCLUSION

Topology is an important and major area of mathematics and it can give many relation-
ships between other scientific areas and mathematical models. Recently, many scientists
have studied and improved the soft set theory, which is initiated by Molodtsov [19] and
easily applied to many problems having uncertainties from social life. In this paper, we in-
troduce the notion of soft regular semi compactness, connectedness and separation axioms.
In particular we study the properties of the soft RS-regular spaces and soft RS-normal
spaces. We show that if (x,E) is RSC soft set for all x ∈ X in a sts (X, τ,E), then
(X, τ,E) is soft RS-T1 space. Also, we show that if a sts (X, τ,E) is soft RS-T3 space,
then ∀ x ∈ X, (x,E) is RSC soft set. Also, we show that the property of being soft
RS-Ti spaces (i = 1,2) is soft topological property under a bijection and irresolute open
soft mapping. Further, the properties of being soft RS-regular and soft RS-normal are
soft topological properties under a bijection, SRS-irresolute functions and SRSI-open
functions. Finally, we show that the property of being soft RS-Ti spaces (i = 1,2,3,4) is a
hereditary property. Similarly other forms of generalized open set can be applied to define
different forms of compactness and connectedness. We hope that the results in this paper
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will help researcher enhance and promote the further study on soft topology to carry out a
general framework for their applications in practical life.
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