ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 3, Number 1 (2020), 54-62 ⓒ http://www.technoskypub.com

DOUBT N-IDEAL THEORY IN BCK-ALGEBRAS BASED ON N-STRUCTURES

ANAS AL-MASARWAH *, ABD GHAFUR AHMAD AND G. MUHIUDDIN

ABSTRACT. The notions of doubt N-subalgebras and doubt N-ideals in BCK-algebras are introduced, and related properties are investigated. Characterizations of a doubt N-subalgebra and a doubt N-ideal are given, and relations between them are discussed.

1. INTRODUCTION

The study of BCK-algebras was introduced by Imai and Iséki [10] in 1966. BCK-algebras have been applied to many branches of mathematics, such as functional analysis, group theory, topology, probability theory.

A crisp set C in a universe \mathcal{X} is a function $\lambda_C : \mathcal{X} \to \{0, 1\}$ yielding the value 0 for elements excluded from the set C and the value 1 for elements belonging to the set C. As a generalization of crisp sets, Zadeh [17] introduced the degree of positive membership in 1965 and defined the fuzzy sets. Jun et al. [12] presented a new function which is called negative-valued function, and developed \mathcal{N} -structures as a one of the hybrid models of fuzzy sets. They applied \mathcal{N} -structures in BCK-algebras and proposed \mathcal{N} -subalgebras and \mathcal{N} -ideals [12]. In [11], Jun established the definition of doubt fuzzy subalgebras and ideals in BCK-algebras. After that, many Hybrid models of fuzzy sets were applied in BCK-algebras and other algebraic structures [5, 6, 8, 7, 9, 4, 15, 16, 2, 1, 3, 14, 13].

In this paper, we discuss an \mathcal{N} -structure with an application to BCK-algebras. We introduce the notions of doubt \mathcal{N} -subalgebras and doubt \mathcal{N} -ideals in BCK-algebras, and investigate related properties. Then, we present some characterizations of them by means of doubt level subset. Moreover, relations between a doubt \mathcal{N} -subalgebra and a doubt \mathcal{N} -ideal in BCK-algebras are discussed.

2. PRELIMINARIES

In this section, we include some basic definitions and preliminary facts about *BCK*-algebras which are essential for our results.

By a *BCK*-algebra, we mean an algebra $(\mathcal{X}; *, 0)$ of type (2, 0) satisfying the following axioms for all $x, y, z \in \mathcal{X}$:

(I) ((x * y) * (x * z)) * (z * y) = 0,

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 03B52, 03B05.

Key words and phrases. BCK/BCI-algebra; N-structures; Doubt N-subalgebra; Doubt N-ideal. Received: February 29, 2020. Accepted: April 25, 2020.

^{*}Corresponding author.

(II) (x * (x * y)) * y = 0, (III) x * x = 0, (IV) 0 * x = 0, (V) x * y = 0 and y * x = 0 imply x = y.

Any *BCK*-algebra \mathcal{X} satisfies the following axioms for all $x, y, z \in \mathcal{X}$: (I1) x * 0 = x, (I2) (x * y) * z = (x * z) * y, (I3) $x * y \le x$, (I4) $(x * y) * z \le (x * z) * (y * z)$, (I5) $x \le y \Rightarrow x * z \le y * z, z * y \le z * x$.

A partial ordering \leq on a *BCK*-algebra \mathcal{X} can be defined by $x \leq y$ if and only if x * y = 0. A non-empty subset *K* of a *BCK*-algebra \mathcal{X} is called a subalgebra of \mathcal{X} if $x * y \in K, \forall x, y \in \mathcal{X}$, and an ideal of \mathcal{X} if $\forall x, y \in \mathcal{X}$,

(1) $0 \in K$, (2) $x * y \in K$ and $y \in K$ imply $x \in K$.

Definition 2.1. [11] A fuzzy set $A = \{(x, \mu_A(x)) \mid x \in \mathcal{X}\}$ in \mathcal{X} is called a doubt fuzzy subalgebra of \mathcal{X} if $\mu_A(x * y) \leq \max\{\mu_A(x), \mu_A(y)\}$ for all $x, y \in \mathcal{X}$.

Definition 2.2. [11] A fuzzy set $A = \{(x, \mu_A(x)) \mid x \in \mathcal{X}\}$ in \mathcal{X} is called a doubt fuzzy ideal of \mathcal{X} if $\mu_A(0) \leq \mu_A(x)$ and $\mu_A(x) \leq \max\{\mu_A(x * y), \mu_A(y)\}$ for all $x, y \in \mathcal{X}$.

Denote by $\mathcal{F}(\mathcal{X}, [-1, 0])$ the collection of functions from a set \mathcal{X} to the interval [-1, 0]. We say that, an element of $\mathcal{F}(\mathcal{X}, [-1, 0])$ is a negative-valued function from \mathcal{X} to [-1, 0] (briefly, \mathcal{N} -function on \mathcal{X}). By an \mathcal{N} -structure we mean an ordered pair (\mathcal{X}, ϕ) , where φ is an \mathcal{N} -function on \mathcal{X} . In what follows, let \mathcal{X} be a *BCK*-algebra and φ an \mathcal{N} -function on \mathcal{X} unless otherwise specified.

In [12], Jun et al. introduced the concepts of N-subalgebras and N-ideals in *BCK*-algebras as follows:

Definition 2.3. An \mathcal{N} -structure (\mathcal{X}, φ) is called an \mathcal{N} -subalgebra of \mathcal{X} if for all $x, y \in \mathcal{X}$: $\varphi(x * y) \leq \max\{\varphi(x), \varphi(y)\}.$

Definition 2.4. An \mathcal{N} -structure (\mathcal{X}, φ) is called an \mathcal{N} -ideal of \mathcal{X} if for all $x, y \in \mathcal{X}$:

(1) $\varphi(0) \le \varphi(x),$ (2) $\varphi(x) \le \max\{\varphi(x * y), \varphi(y)\}.$

3. Doubt N-subalgebras and N-ideals

In this section, we introduce doubt N-subalgebras and ideals in BCK-algebras and investigate some of their properties.

Definition 3.1. An \mathcal{N} -structure (\mathcal{X}, φ) is called a doubt \mathcal{N} -subalgebra of \mathcal{X} if for all $x, y \in \mathcal{X}$:

 $\varphi(x * y) \ge \min\{\varphi(x), \varphi(y)\}.$

Example 3.2. Consider a *BCK*-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	а	b	С
0	0	0	0	0
а	a	0	0	a
b	b	а	0	b
С	c	С	С	0

Let (\mathcal{X}, φ) be an \mathcal{N} -structure in which φ is given by

$$\varphi(x) = \begin{cases} -0.2, \text{ if } x = 0\\ -0.3, \text{ if } x = a, b\\ -0.8, \text{ if } x = c. \end{cases}$$

By routine calculation, we know that (\mathcal{X}, φ) is a doubt \mathcal{N} -subalgebra of \mathcal{X} .

For any \mathcal{N} -function φ and $\alpha \in [-1, 0]$, we define the set $\varphi_{\alpha} = \{x \in \mathcal{X} : \varphi(x) \ge \alpha\}.$

Theorem 3.1. Let (\mathcal{X}, φ) be an \mathcal{N} -structure over \mathcal{X} and let $\alpha \in [-1, 0]$. If (\mathcal{X}, φ) is a doubt \mathcal{N} -subalgebra of \mathcal{X} , then the nonempty set φ_{α} is a subalgebra of \mathcal{X} .

Proof. Let $\alpha \in [-1,0]$ and let $\varphi_{\alpha} \neq \emptyset$. If $x, y \in \varphi_{\alpha}$, then $\varphi(x) \ge \alpha$ and $\varphi(y) \ge \alpha$. It follows from Definition 3.1 that

$$\varphi(x * y) \ge \min\{\varphi(x), \varphi(y)\} \ge \alpha$$

Hence, $x * y \in \varphi_{\alpha}$, and therefore φ_{α} is a subalgebra of \mathcal{X} .

Theorem 3.2. Let (\mathcal{X}, φ) be an \mathcal{N} -structure over \mathcal{X} and assume that $\emptyset \neq \varphi_{\alpha}$ is a subalgebra of \mathcal{X} for all $\alpha \in [-1, 0]$. Then, (\mathcal{X}, φ) is a doubt \mathcal{N} -subalgebra of \mathcal{X} .

Proof. Assume that $\emptyset \neq \varphi_{\alpha}$ is a subalgebra of \mathcal{X} for all $\alpha \in [-1, 0]$. If there exist $a', b' \in \mathcal{X}$ such that

$$\varphi(a' * b') < \min\{\varphi(a'), \varphi(b')\}.$$

Then by taking

$$\alpha_o = \frac{1}{2} [\varphi(a' * b') + \min\{\varphi(a'), \varphi(b')\}],$$

we have

$$\varphi(a' * b') < \alpha_o < \min\{\varphi(a'), \varphi(b')\}$$

Hence, $a' * b' \notin \varphi_{\alpha_o}, a' \in \varphi_{\alpha_o}$ and $b' \in \varphi_{\alpha_o}$. This is a contradiction. Therefore, (\mathcal{X}, φ) is a doubt \mathcal{N} -subalgebra of \mathcal{X} .

Theorem 3.3. If (\mathcal{X}, φ) is a doubt \mathcal{N} -subalgebra of \mathcal{X} , then $\varphi(0) \ge \varphi(x)$ for all $x \in \mathcal{X}$.

Proof. For any $x \in \mathcal{X}$, we have $\varphi(0) = \varphi(x * x) \ge \min\{\varphi(x), \varphi(x)\} = \varphi(x)$. This completes the proof.

Theorem 3.4. If every doubt \mathcal{N} -subalgebra (\mathcal{X}, φ) of \mathcal{X} , satisfies

$$\varphi(x * y) \ge \varphi((y))$$

for all $x, y \in \mathcal{X}$, then (\mathcal{X}, φ) is constant.

Proof. Note that in a *BCK*-algebra $\mathcal{X}, x * 0 = x$ for all $x \in \mathcal{X}$. Since $\varphi(x * y) \ge \varphi((y))$, we have

$$\varphi(x) = \varphi(x * 0) \ge \varphi(0)$$

It follows from Theorem 3.3 that $\varphi(x) = \varphi(0)$ for all $x, y \in \mathcal{X}$. Therefore, (\mathcal{X}, φ) is constant.

Now, we introduce the notion of doubt N-ideals in BCK-algebras.

Definition 3.3. An \mathcal{N} -structure (\mathcal{X}, φ) is called a doubt \mathcal{N} -ideal of \mathcal{X} if for all $x, y \in \mathcal{X}$:

- (1) $\varphi(0) \ge \varphi(x)$,
- (2) $\varphi(x) \ge \min\{\varphi(x * y), \varphi(y)\}.$

Example 3.4. Consider a BCK-algebra $X = \{0, a, b, c\}$ which is given in Example 3.6. Let (\mathcal{X}, φ) be an \mathcal{N} -structure in which φ is defined by

$$\varphi(x) = \begin{cases} -0.2, \text{ if } x = 0\\ -0.3, \text{ if } x = a, b\\ -0.8, \text{ if } x = c. \end{cases}$$

By routine calculation, we know that (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of \mathcal{X} .

Theorem 3.5. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -ideal of \mathcal{X} . If \leq is a partial ordering on \mathcal{X} , then $\varphi(x) \geq \varphi(y)$ for all $x, y \in \mathcal{X}$ such that $x \leq y$.

Proof. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -ideal of \mathcal{X} . It is known that \leq is a partial ordering on \mathcal{X} defined by $x \leq y$ if and only if x * y = 0 for all $x, y \in \mathcal{X}$. Then,

$$\begin{split} \varphi(x) &\geq \min\{\varphi(x * y), \varphi(y)\} \\ &= \min\{\varphi(0), \varphi(y)\} \\ &= \varphi(y). \end{split}$$

This completes the proof.

Theorem 3.6. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -ideal of \mathcal{X} . Then,

$$\varphi(x*y) \ge \varphi((x*y)*y) \Leftrightarrow \varphi((x*z)*(y*z)) \ge \varphi((x*y)*z)$$

for all $x, y, z \in \mathcal{X}$. Proof Note that

$$\begin{array}{rcl} ((x*(y*z))*z)*z &=& ((x*z)*(y*z))*z \\ &\leq& (x*y)*z \end{array}$$

for all $x, y, z \in \mathcal{X}$. Assume that $\varphi(x * y) \ge \varphi((x * y) * y)$ for all $x, y, z \in \mathcal{X}$. It follows from (I2)and Theorem 3.5 that

$$\begin{aligned} \varphi((x*z)*(y*z)) &= & \varphi((x*(y*z))*z) \\ &\geq & \varphi(((x*(y*z))*z)*z) \\ &\geq & \varphi((x*y)*z), \end{aligned}$$

for all $x, y, z \in \mathcal{X}$.

Conversely, suppose that

$$\varphi((x*z)*(y*z)) \ge \varphi((x*y)*z) \tag{3.1}$$

for all $x, y, z \in \mathcal{X}$. If we substitute z for y in Equation (3.1), then

$$\begin{aligned} \varphi(x*z) &= \varphi((x*z)*0) \\ &= \varphi((x*z)*(z*z)) \\ &\geq \varphi((x*z)*z), \end{aligned}$$

for all $x, z \in \mathcal{X}$ by using (III) and (I1.)

Theorem 3.7. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -ideal of \mathcal{X} . Then,

$$\varphi(x*y) \ge \min\{\varphi(x*z), \varphi(z*y)\}$$

for all $x, y, z \in \mathcal{X}$.

Proof. Note that $((x * y) * (x * z)) \le (z * y)$ for all $x, y, x \in \mathcal{X}$. It follows from Theorem 3.5, that

$$\varphi((x*y)*(x*z)) \ge \varphi(z*y).$$

Now, by Definition 3.3, we have

$$\begin{array}{lll} \varphi(x*y) & \geq & \min\{\varphi((x*y)*(x*z)),\varphi(x*z)\} \\ & \geq & \min\{\varphi(x*z),\varphi(z*y)\} \end{array}$$

for all $x, y, z \in \mathcal{X}$. This completes the proof.

Theorem 3.8. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -ideal of \mathcal{X} . Then,

$$\varphi(x \ast (x \ast y)) \ge \varphi(y)$$

for all $x, y \in \mathcal{X}$.

Proof. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -ideal of \mathcal{X} . Then, for all $x, y \in \mathcal{X}$, we have

$$\begin{split} \varphi(x*(x*y)) &\geq \min\{\varphi((x*(x*y))*y),\varphi(y)\} \\ &= \min\{\varphi((x*y)*(x*y)),\varphi(y)\} \\ &= \min\{\varphi(0),\varphi(y)\} \\ &= \varphi(y). \end{split}$$

This completes the proof.

Theorem 3.9. Let (\mathcal{X}, φ) be an \mathcal{N} -structure over \mathcal{X} and let $\alpha \in [-1, 0]$. If (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of \mathcal{X} , then the nonempty set φ_{α} is an ideal of \mathcal{X} .

Proof. Assume that $\varphi_{\alpha} \neq \emptyset$ for $\alpha \in [-1, 0]$. Clearly, $0 \in \varphi_{\alpha}$. Let $x * y \in \varphi_{\alpha}$ and $y \in \varphi_{\alpha}$. Then, $\varphi(x * y) \ge \alpha$ and $\varphi(y) \ge \alpha$. It follows from Definition 3.3 that

 $\varphi(x) \ge \min\{\varphi(x * y), \varphi(y)\} \ge \alpha,$

so, $x \in \varphi_{\alpha}$. Therefore, φ_{α} is an ideal of \mathcal{X} .

Theorem 3.10. Let (\mathcal{X}, φ) be an \mathcal{N} -structure over \mathcal{X} and assume that $\emptyset \neq \varphi_{\alpha}$ is an ideal of \mathcal{X} for all $\alpha \in [-1, 0]$. Then, (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of \mathcal{X} .

Proof. Assume that $\emptyset \neq \varphi_{\alpha}$ is an ideal of \mathcal{X} for all $\alpha \in [-1, 0]$. For any $x \in \mathcal{X}$, let $\varphi(x) = \alpha$. Then, $x \in \varphi_{\alpha}$, and so φ_{α} is nonempty. Since φ_{α} is an ideal of \mathcal{X} , so $0 \in \varphi_{\alpha}$. Hence, $\varphi(0) \geq \alpha = \varphi(x)$ for all $x \in \mathcal{X}$. If there exists $a', b' \in \mathcal{X}$ such that

$$\varphi(a') < \min\{\varphi(a' * b'), \varphi(b')\}.$$

Then, by taking

$$\alpha_1 = \frac{1}{2} [\varphi(a') + \min\{\varphi(a' \ast b'), \varphi(b')\}],$$

we have

$$\varphi(a') \quad < \quad \alpha_1 < \min\{\varphi(a' * b'), \varphi(b')\}.$$

Hence, $a' \notin \varphi_{\alpha_1}, a' * b' \in \varphi_{\alpha_1}$ and $b' \in \varphi_{\alpha_1}$. This is a contradiction, and so $\varphi(x) \ge \min\{\varphi(x * y), \varphi(y)\}$ for all $x, y \in \mathcal{X}$. Therefore, (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of \mathcal{X} . \Box

Theorem 3.11. Let (\mathcal{X}, φ) be an \mathcal{N} -structure over \mathcal{X} . If the inequality $x * y \leq z$ holds in \mathcal{X} , then $\varphi(x) \geq \min\{\varphi(y), \varphi(z)\}$ for all $x, y, z \in \mathcal{X}$.

Proof. (\mathcal{X}, φ) be an \mathcal{N} -structure over \mathcal{X} and $x, y, z \in \mathcal{X}$ be such that $x * y \leq z$. Then, (x * y) * z = 0, and so

$$\begin{split} \varphi(x) &\geq \min\{\varphi(x * y), \varphi(y)\}\\ &\geq \min\{\min\{\varphi((x * y) * z), \varphi(z)\}, \varphi(y)\}\\ &= \min\{\min\{\varphi(0), \varphi(z)\}, \varphi(y)\}\\ &= \min\{\varphi(y), \varphi(z)\}. \end{split}$$

This completes the proof.

Theorem 3.12. Every doubt N-ideal of X is a doubt N-subalgebra of X.

Proof. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -ideal of \mathcal{X} . For any $x, y \in \mathcal{X}$, we have

$$\begin{aligned} \varphi(x * y) &\geq \min\{\varphi((x * y) * x), \varphi(x)\} \\ &= \min\{\varphi((x * x) * y), \varphi(x)\} \\ &= \min\{\varphi(0 * y), \varphi(x)\} \\ &= \min\{\varphi(0), \varphi(x)\} \\ &\geq \min\{\varphi(x), \varphi(y)\} \end{aligned}$$

Hence, (\mathcal{X}, φ) is a doubt \mathcal{N} -subalgebra of \mathcal{X} .

Example 3.5. In Example 3.4, (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of \mathcal{X} , so that (\mathcal{X}, φ) is a doubt \mathcal{N} -subalgebra of \mathcal{X} .

The converse of Theorem 3.12 is not true in general.

Example 3.6. Consider a BCK-algebra $X = \{0, a, b, c, d\}$ with the following Cayley table:

*	0	а	b	С	d
0	0	0	0	0	0
а	a	0	0	0	0
b	b	а	0	а	0
С	С	С	С	0	0
d	d	0 0 <i>a</i> <i>c</i> <i>d</i>	d	С	0

Let (\mathcal{X}, φ) be an \mathcal{N} -structure in which φ is given by

0.0, if	x=0
-0.2, if	x = a
-0.6, if	x=b
-0.4, if	x = c
-0.8, if	x = d.
	-0.2, if -0.6, if -0.4, if

Then, (\mathcal{X}, φ) is a doubt \mathcal{N} -subalgebra of \mathcal{X} , but it is not a doubt \mathcal{N} -ideal of \mathcal{X} since $\varphi(d) = -0.8 < -0.4 = \min\{\varphi(d * c), \varphi(c)\}.$

We give a condition for a doubt N-subalgebra to be a doubt N-ideal in a BCK-algebra.

Theorem 3.13. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -subalgebra of \mathcal{X} . If the inequality $x * y \leq z$ holds in \mathcal{X} , then (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of \mathcal{X} .

Proof. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -subalgebra of \mathcal{X} . Then, from Theorem 3.3, $\varphi(0) \ge \varphi(x)$, for all $x \in \mathcal{X}$. As $x * y \le z$ holds in \mathcal{X} , then from Theorem 3.11, we get $\varphi(x) \ge \min\{\varphi(y), \varphi(z)\}$ for all $x, y, z \in \mathcal{X}$.

Since $x * (x * y) \leq y$ for all $x, y \in \mathcal{X}$, then $\varphi(x) \geq \min\{\varphi(x * y), \varphi(y)\}$. Hence, (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of \mathcal{X} . \Box

Theorem 3.14. Let (\mathcal{X}, φ) be a doubt \mathcal{N} -ideal of \mathcal{X} . Then, the set

$$\mathcal{H} = \{ x \in \mathcal{X} : \varphi(x) = \varphi(0) \}$$

is an ideal of \mathcal{X} .

Proof. Obviously, $0 \in \mathcal{H}$. Hence, $\mathcal{H} \neq \emptyset$. Now, let $x, y \in \mathcal{H}$ such that $x * y, y \in \mathcal{H}$. Then, $\varphi(x * y) = \varphi(0) = \varphi(y)$. Now, $\varphi(x) \ge \min\{\varphi(x * y), \varphi(y)\} = \varphi(0)$. Since (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of $\mathcal{X}, \varphi(0) \ge \varphi(x)$. Therefore, $\varphi(0) = \varphi(x)$. It follows that $x \in \mathcal{H}$, for all $x, y \in \mathcal{X}$. Therefore, \mathcal{H} is an ideal of \mathcal{X} .

For any element $\omega_{\alpha} \in X$, we consider the set:

$$\varphi_{\omega_{\alpha}} = \{ x \in \mathcal{X} \mid \varphi(x) \ge \varphi(\omega_{\alpha}) \}.$$

Clearly, $\omega_{\alpha} \in \varphi_{\omega_{\alpha}}$. So that $\omega_{\alpha} \in \varphi_{\omega_{\alpha}}$ is a nonempty set of \mathcal{X} .

Theorem 3.15. Let ω_{α} be any element of \mathcal{X} . If (\mathcal{X}, φ) is a doubt \mathcal{N} -ideal of X, then $\varphi_{\omega_{\alpha}}$ is an ideal of \mathcal{X} .

Proof. Clearly, $0 \in \varphi_{\omega_{\alpha}}$. Let $x, y \in \mathcal{X}$ be such that $x * y \in \varphi_{\omega_{\alpha}}$ and $y \in \varphi_{\omega_{\alpha}}$. Then, $\varphi(x * y) \ge \varphi(\omega_{\alpha})$ and $\varphi(y) \ge \varphi(\omega_{\alpha})$. It follows that from Definition 3.3, that

$$\varphi(x) \ge \min\{\varphi(x * y), \varphi(y)\} \ge \varphi(\omega_{\alpha})$$

Hence, $x \in \varphi_{\omega_t}$, and therefore $\varphi_{\omega_{\alpha}}$ is an ideal of \mathcal{X} .

Theorem 3.16. Let $\omega_{\alpha} \in \mathcal{X}$ and let (\mathcal{X}, φ) be an \mathcal{N} -structure over \mathcal{X} . Then,

(1) If φ_{ωα} is an ideal of X, then the following assertion is valid for all x, y, z ∈ X : (A1) φ(x) ≤ min{φ(y * z), φ(z)} ⇒ φ(x) ≤ φ(y).
(2) If (X, φ) satisfies (A1) and (A2) φ(0) ≥ φ(x)

for all $x \in \mathcal{X}$. Then, $\varphi_{\omega_{\alpha}}$ is an ideal for all $\omega_{\alpha} \in Im(\varphi)$.

Proof. (1) Assume that $\varphi_{\omega_{\alpha}}$ is an ideal of \mathcal{X} for $\omega_{\alpha} \in \mathcal{X}$. Let $x, y, z \in \mathcal{X}$ be such that $\varphi(x) \leq \min\{\varphi(y * z), \varphi(z)\}$. Then, $y * z \in \varphi_{\omega_{\alpha}}$ and $z \in \varphi_{\omega_{\alpha}}$, where $\omega_{\alpha} = x$. Since $\varphi_{\omega_{\alpha}}$ is an ideal of \mathcal{X} , it follows that $y \in \varphi_{\omega_{\alpha}}$ for $\omega_{\alpha} = x$. Hence, $\varphi(y) \geq \varphi(\omega_{\alpha}) = \varphi(x)$.

(2) Let $\omega_{\alpha} \in Im(\varphi)$ and suppose that (\mathcal{X}, φ) satisfies (A1) and (A2). Clearly, $0 \in \varphi_{\omega_{\alpha}}$ by (A2). Let $x, y \in \mathcal{X}$ be such that $x * y \in \varphi_{\omega_{\alpha}}$ and $y \in \varphi_{\omega_{\alpha}}$. Then, $\varphi(x * y) \ge \varphi(\omega_{\alpha})$ and $\varphi(y) \ge \varphi(\omega_{\alpha})$, so

$$\min\{\varphi(x*y),\varphi(y)\} \ge \varphi(\omega_{\alpha}).$$

It follows from (A1) that $\varphi(\omega_{\alpha}) \leq \varphi(x)$. Thus, $x \in \varphi_{\omega_{\alpha}}$, and therefore $\varphi_{\omega_{\alpha}}$ is an ideal of \mathcal{X} .

4. CONCLUSIONS

Doubt \mathcal{N} -subalgebras and doubt \mathcal{N} -ideals with special properties play an important role in investigating the structure of an algebraic system. In this work, we discussed an \mathcal{N} -structure with an application to BCK-algebras. We introduced the notions of doubt \mathcal{N} - subalgebras and doubt \mathcal{N} -ideals in BCK-algebras, and investigated related properties. We considered some characterizations of a doubt \mathcal{N} -subalgebra and a doubt \mathcal{N} -ideal in BCK-algebras by means of doubt level subset. Relations between a doubt \mathcal{N} -subalgebra and a doubt \mathcal{N} -ideal were provided. We believe that our results presented in this paper will give a foundation for further study the algebraic structure of BCK-algebras.

5. ACKNOWLEDGEMENTS

The authors are thankful to the editors and the anonymous reviewers for their valuable suggestions and comments on the manuscript.

REFERENCES

- M. Abu Qamar and N. Hassan, Characterizations of group theory under Q-neutrosophic soft environment, Neutrosophic Sets and Systems, 27(1) (2019), 114-130.
- [2] M. Abu Qamar and N. Hassan, On Q-neutrosophic subring, Journal of Physics: Conference Series, 1212(1)(2019), 012018.
- [3] M. Abu Qamar, A.G. Ahmad and N. Hassan, An approach to Q-neutrosophic soft rings, AIMS Mathematics, 4(4)(2019), 1291-1306.
- [4] A. Al-Masarwah and A.G. Ahmad, Doubt bipolar fuzzy subalgebras and ideals in BCK/BCI- algebras, Journal of Mathematical Analysis, 9(3)(2018), 9-27.
- [5] A. Al-Masarwah and A.G. Ahmad, m-Polar fuzzy ideals of BCK/BCI-algebras, Journal of King Saud University-Science, 31(4)(2019), 1220-1226.
- [6] A. Al-Masarwah and A.G. Ahmad, m-Polar (α, β) -fuzzy ideals in BCK/BCI-algebras, Symmetry, 11(1)(2019), 44. DOI:10.3390/sym11010044.
- [7] A. Al-Masarwah and A.G. Ahmad, Novel concepts of doubt bipolar fuzzy H-ideals of BCK/BCI-algebras, International Journal of Innovative Computing, Information and Control, 14(6)(2018), 2025-2041.
- [8] A. Al-Masarwah and A.G. Ahmad, On (complete) normality of *m*-pF subalgebras in BCK/BCI-algebras, AIMS Mathematics, 4(3)(2019), 740-750.
- [9] A. Al-Masarwah and A.G. Ahmad, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCIalgebras, European Journal of Pure and Applied Mathematics, 11(3)(2018), 652-670.
- [10] Y. Imai and K. Iséki, On axiom systems of theoremal calculi, Proceeding of the Japan Academy, 42 (1966), 19–22.
- [11] Y. B. Jun, Doubt fuzzy BCK/BCI-algebras, Soochow Journal of Mathematics, 20(3)(1994), 351–358.
- [12] Y. B. Jun, K. J. Lee and S. Z. Song, N-ideals of BCK/BCI-algerbas, Journal of the Chungcheong Mathematical Society, 22(3)(2009), 417-437.
- [13] Y. B. Jun, G. Muhiuddin and A. M. Al-roqi, Ideal theory of BCK/BCI-algebras based on double-framed soft sets, Applied Mathematics and Information Sciences, 7(2013), 1879-1887.
- [14] Y. B. Jun, G. Muhiuddin, M. A. Ozturk and E.H. Roh, Cubic soft ideals in BCK/BCI-algebras, Journal of Computational Analysis and Applications, 22(5)(2017), 929-940.
- [15] Y.B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N-structures applied to BCK/BCI-algebras, Information, (8)(2017), 128.
- [16] M. Khan, S. Anis, F. Smarandache and Y.B. Jun, Neutrosophic N- structures and their applications in semigroups. Annals of Fuzzy Mathematics and Informatics, 14(2017), 583598.
- [17] L. A. Zadeh, Fuzzy sets, Information and Control, (8)(1965), 338–353.

ANAS AL-MASARWAH

SCHOOL OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE AND TECHNOLOGY, UNIVERSITI KEBANGSAAN MALAYSIA, 43600 UKM BANGI, SELANGOR DE, MALAYSIA

Email address: almasarwah85@gmail.com

ABD GHAFUR AHMAD

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan

MALAYSIA, 43600 UKM BANGI, SELANGOR DE, MALAYSIA

Email address: ghafur@ukm.edu.my

G. MUHIUDDIN

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TABUK, TABUK 71491, SAUDI ARABIA *Email address*: chishtygm@gmail.com