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THE FAREY MAP EXPLOITED IN THE CONSTRUCTION OF A FAREY
MOTHER WAVELET

SABRINE ARFAOUI AND ANOUAR BEN MABROUK∗

ABSTRACT. The wavelet analysis of a function passes through its so-called wavelet trans-
form. Such a transform is mathematically defined as a convolution product of the analyzed
function with another analyzing function known as the mother wavelet by involving the
scale and the translation parameters. This means that the mother wavelet construction is
the starting and major point in the wavelet analysis. Besides, the choice of the mother
wavelet remains a major problem in wavelet applications such as statistical series, time
series, signal, and image processing. This needs more candidates of mother wavelets to be
constructed. The main aim of the present paper is to construct a new mother wavelet by
exploiting the well-known Farey map. We showed indeed that such a map may be a mother
wavelet owing properties such as admissibility, moments, 2-scale relation, and reconstruc-
tion rule already necessary in the wavelet analysis of functions. By a suitable choice of
translation-dilation parameters on the original Farey map, we succeeded to prove the main
properties of a Farey wavelet analysis. The constructed mother looks to be suitable for
many complicated applications such as hyperbolic PDEs.

1. INTRODUCTION

Wavelet analysis was introduced in the 80th decade of the last century in petroleum
exploration as a refinement of Fourier analysis which failed in extracting the characteristics
of signals subjects of the exploration ([3, 4, 17]). Since then, wavelets have attracted the
interest of researchers in both pure and applied fields ([2, 5, 8, 10].

Indeed, wavelets have been shown powerful tools since their discovery in the context of
petroleum extraction at the last century. They have been next involved in quasi-all scientific
fields ([3, 4, 13, 14]), and also in social and actuarial sciences especially the last decade
([1, 6, 7, 16]).

Wavelets act on signals, images, functions, and time series in an analog way as Fourier
analysis by the so-called wavelet transform. A type of transform based on a ’product’
of the analyzed object with copies of a source function called the mother/father wavelet,
which plays the role of the Fourier sine/cosine.

Wavelets have been also developed independently in the fields of mathematics, quantum
physics, electrical engineering, and seismic geology. Next, interchanges between these
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fields have yielded more understanding of their theory and more and more bases as well as
applications such as image compression, turbulence, human vision, radar, earthquake, and
so on.

Wavelets have been also extended in many new frameworks such as the quantum theory
([9]), analysis on the sphere and manifolds ([3]), statistics ([12, 13, 18]), economics and
finance ([1, 12, 18]), and also biosciences ([4, 15, 20]).

For a large community, of non-mathematicians, a wavelet may be defined as a wave
function that decays rapidly and which has a zero mean. Wavelet analysis consists of
breaking up a signal into parts relatively to approximating functions obtained as shifted
and dilated versions of the wavelet [11, 19].

In Fourier analysis, the description of signals is restricted to the global behavior and
can not provide information about hidden details due to its lack of time-frequency and/or
time-space localization. In 1940, Denis Gabor introduced the so-called windowed Fourier
transform (WFT) to overcome this lack. The Fourier modes used in Fourier transform are
multiplied by suitable functions localized in time such as Gaussian window. This step per-
mitted to understand new situations. But the situation has changed again with the discovery
and/or the emergence of new problems related to irregular variations such as gravitational
waves where glitches (which are bursts of noise) remain after filtering. This leads re-
searchers to think about more sophisticated tools for signal processing and leads next to
the discovery and development of wavelet analysis. Wavelets thus permit the localization
of analyzed signals in both time and frequency. Contrarily to Fourier analysis, wavelets
permit also us to analyze nonstationarity, non-seasonality, and irregularity with more pre-
cision.

The main common and essential point between all these frameworks is that any wavelet
analysis starts with a source function called the mother wavelet, which gives rise next to
the wavelet basis, and the wavelet transform. In the present work, we propose to provide
a rigorous development of a new wavelet mother by exploiting the characteristics of the
well-known Farey map. The remaining parts of the present document will be organized
as follows. Section 2 is devoted to the review of wavelet analysis. Section 3 is concerned
with the development of our main results dealing with a new type of wavelet function based
on the well-known Farey map which we call Farey wavelet. Special characteristics such
as admissibility, moments, and reconstruction rules have been established. Section 4 is a
conclusion.

2. WAVELETS REVISITED

A wavelet is a wave function that decays rapidly and has a zero average value. Wavelet
analysis is a breaking up of a signal into approximating functions (shifted and dilated
versions of the wavelet) contained in finite domains [11]. Wavelet analysis was introduced
in the early 1980s in the context of signal analysis and petroleum exploration. It aims to
give a representation of signals and detect their characteristic. Several methods previously
have been used, the most known is the Fourier transform. In Fourier transform further
description of signals is limited to the overall behavior and can not provide any information
on the details. In digital signal processing, Fourier analysis often requires linear calculation
algorithms. In 1940, Denis Gabor introduced the windowed Fourier transform (TFF) to
address the problems of time-frequency localization. It consists in calculating the Fourier
transform of the signal by multiplying it by a function localized in time (Gaussian window)
and then calculating the transform. But the situation has changed with the emergence of
new problems especially irregular variation. The major drawback of the TFF is the shape
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stability and the window’s size. Gaussian-type windows can not for example model non-
stationary properties. Henceforth the need for analysis using non-linear algorithms, non-
stationary signals, and/or non-periodical bases became necessary. Specifically analysis
with well-specified characteristics, i.e. localization time and frequency, adaptation to the
data, easily implemented advanced algorithms and optimum computation time needs to
be developed. This was how wavelet theory was born. It subsequently renewed interest
and has been steadily developed in theory and application. Wavelets differ from Fourier
methods in that they allow the localization of a signal in both time and frequency. It is a
tool that breaks up data into different frequency components or subbands and then studies
each component with a resolution that is matched to a specific or proper scale. Unlike
the Fourier series, it can be used on non-stationary transient signals with more precise
results [13]. This section is devoted to presenting the main ideas on wavelet analysis
namely wavelet transforms, multi-resolution analysis, wavelet bases, and algorithms of
construction and reconstruction.

In a purely mathematical point of view, a wavelet is a function ψ ∈ L2(R) which
satisfies the following conditions.

• Admissibility,

Aψ =

∫
R+

|ψ̂(ω)|2 dω
|ω|

<∞. (2.1)

• Zero mean,

ψ̂(0) =

∫ +∞

−∞
ψ(u)du = 0. (2.2)

• Localization,

∥ψ∥22 =

∫ +∞

−∞
|ψ(u)|2du = 1. (2.3)

• Enough vanishing moments,

p = 0, ...,m− 1,

∫
R
ψ(t)tpdt = 0. (2.4)

To analyze functions/signals by wavelets, one pass by the so-called wavelet transforms. A
wavelet transform (WT) is a representation of a time-frequency signal. It replaces Fourier
sine/cosine by a wavelet. Generally, there are two types of processing; continuous wavelet
transform and discrete wavelet transform.

The CWT is based firstly on the introduction of a translation parameter u ∈ R and
another parameter s > 0 known as the scale to the analyzing wavelet ψ called the mother
wavelet. The translation parameter determines the position or the time around which we
want to assess the behavior of the signal, while the scale factor is used to assess the signal
behavior around the position. That is, it allows us to estimate the frequency of the signal
at that point. Let

ψs,u(x) =
1√
s
ψ(
x− u

s
). (2.5)

The continuous wavelet transform at the position u and the scale s is defined by

du,s(f) =

∫ ∞

−∞
ψu,s(t)f(t)dt, ∀u, s. (2.6)

By varying the parameters s and u, we may cover completely all the time-frequency plans.
This gives a full and redundant representation of the whole signal to be analyzed (See [17]).
This transform is called continuous because of the nature of the parameters s and u that
may operate at all levels and positions. The original function f can be reproduced knowing
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its CWT by the following relationship.

f(x) =
1

Aψ

∫ ∫
R
du,s(f)ψ

(
x− u

s

)
dsdu

s2
. (2.7)

The DWT is obtained by restricting the scale and position parameters to a discrete grid.
The most known method is the dyadic grid s = 2−j and u = k2−j , j, k ∈ Z. In this case,
the wavelet copy ψu,s is usually denoted by ψj,k(x) = 2−j/2ψ(2jx − k). The DWT of a
function f is

dj,k =

∫ ∞

−∞
ψj,k(t)f(t)dt. (2.8)

These are often called wavelet coefficients or detail coefficients of the signal S.
It holds that the set (ψj,k)j,k∈Z constitutes an orthonormal basis of L2(R) and called

wavelet basis. An element f ∈ L2(R) is decomposed according to this basis into a series

f(t) =

∞∑
j=0

∑
k

dj,kψj,k(t) (2.9)

called the wavelet series of f which replaces the reconstruction formula for the CWT.
It holds in wavelet theory that the previous concepts may induce a functional framework

for representing functions by a series of approximations called resolutions. Such frame-
work is known as the multiresolution analysis (MRA) on R. MRA is a family of closed
vector subspaces (Vj)j∈Z of L2(R). For each j ∈ Z, Vj is called the approximation at the
scale or the level j. More precisely ([17]), a multi-resolution analysis is a countable set of
closed subsets (Vj)j∈Z of L2(R) that satisfies the following points.

a) ∀j ∈ Z; .Vj ⊂ Vj+1.
b)

⋂
j∈Z

Vj = {0}.

c)
⋃
j∈Z

Vj = L2(R).

d) ∀j ∈ Z; f ∈ Vj ⇔ f(2.) ∈ Vj+1

e) ∀j ∈ Z; f ∈ Vj ⇔ f(x− k) ∈ Vj
f) There exists φ ∈ V0 such that {φ0,k = φ(.− k); k ∈ Z} is an orthogonal Riesz

basis of V0.

The source function φ is called the scaling function of the MRA or also the wavelet father.
It holds that this function generates all the subspaces Vj’s of the MRA by acting dila-

tion/translation parameters. Indeed, the set
(
φj,k(x) = 2j/2φ(2jx− k)

)
k

is an orthogonal
basis of Vj for all j,∈ Z. Moreover, there is an orthogonal supplementary Wj of Vj in
Vj+1, that is

Vj+1 = Vj ⊕⊥ Wj (2.10)
The space Wj , j ∈ Z is called detail space at the scale or the level j for which the set(
ψj,k(t) = 2j/2ψ(2jt− k)

)
k

is an orthogonal basis.
The strongest point in MRA and wavelet theory is that the scaling function and the

analyzing wavelet leads each one to the other. Indeed, recall that φ belongs to V0 ⊂ V1
and the latter is generated by the basis (φ1,k)k. Hence, φ is expressed by means of (φ1,k)k.
More precisely, we have the so-called 2-scale relation

φ(x) =
√
2
∑
k

hkφ(2x− k) (2.11)
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where the coefficients hk are

hk =

∫
R
φ(x)φ(2x− k)dx.

It holds that the mother wavelet ψ satisfies

ψ(x) =
√
2
∑
k

gkφ(2x− k)

where the gk’s are evaluated by

gk = (−1)kh1−k.

For more details, we refer to [11], [13], [17]. These last relations are the starting point to
develop next our main results.

3. MAIN RESULTS

In the present paper, our aim is to introduce ’new’ wavelet functions (father and mother
wavelets) and associated multiresolution analysis using the well-known Farey map. We
will show that such a map permits (as in the case of Haar, Morlet, and Gaussian func-
tions) to develop a multiresolution analysis on R and to conduct important applications
and algorithms in applied contexts.

The Faray map (slightly modified) is defined by

F (x) =


1

4 log 2− 2

x

1− x
, 0 ≤ x ≤ 1

2 ,

1

4 log 2− 2

1− x

x
, 1

2 ≤ x ≤ 1.

We may define in a general way a generalized Farey map relatively to a gauge function h

instead of
1

4 log 2− 2

x

1− x
by considering

Fh(x) =

{
h(x) , 0 ≤ x ≤ 1

2 ,
h(1− x) , 1

2 ≤ x ≤ 1.

or more generally

Fh,h,a(x) =

{
h(x) , 0 ≤ x ≤ a,

h(x) , a ≤ x ≤ 1,
(3.1)

relatively to some suitable functions h and h and real number a. Figure 1 illustrates the
Farey map F .

In this part, we serve the Farey map above to construct a new wavelet function on
R (which may be obviously extended to Rn, N ≥ 2). To do this we consider a bit of
modification of the Farey map above to obtain the modified Farey map which will be
denoted by φ and defined as follows

φ(x) = F (
1 + x

2
) =


1

(4 log 2− 2)

1 + x

1− x
, −1 ≤ x ≤ 0,

1

(4 log 2− 2)

1− x

1 + x
, 0 ≤ x ≤ 1.

(3.2)

Related to wavelet theory, the function φ is a wavelet-copy-like (or scaling-function-copy-
like) of the Farey map F as in wavelet theory the copies of the mother wavelet and the
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FIGURE 1. The Farey map F .

scaling function are always obtained by means of translation/dilation copies. In our case

we remark easily that φ =
√
2F1,−1 where for j, k ∈ Z, Fj,k(x) =

1

2j/2
F (
x− k

2j
).

In this section, we propose to establish some properties of the modified Farey function
φ introduced in (3.2) and thus prove consequently that it serves to construct father and
mother wavelets.

Lemma 3.1. The function φ satisfies φ̂(0) = 1.

Indeed, simple computations yield that

φ̂(0) =
1

2 log 2− 1

∫ 2

1

2− t

t
dt =

1

2 log 2− 1

∫ 2

1

(
2

t
− 1)dt = 1.

The first point in the construction of wavelet mothers and fathers and consequently associ-
ated multi-resolution analysis is to check the existence of Riesz basis φk (for the eventual
space V0), the admissibility, vanishing moments, and localization for the mother wavelet
ψ and next, the famous 2-scale relation. In this direction, we have a series of results.

Lemma 3.2. The function φ satisfies the 2-scale relation

φ(x) =
√
2
∑
k∈Z

hkφ(2x− k),

where h1 = h−1 =
1

3
√
2

, h0 =
1√
2

and 0 else.

Proof. Because of the disjointness of the supports of the functions φ(. − k), k ∈ Z
appearing in the 2-scale relation we immediately observe that

hk = 0, ∀k, |k| ≥ 2.
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So the relation in Lemma 3.2 above reads

φ(x) =
√
2h−1φ(2x+ 1) +

√
2h0φ(2x) +

√
2h1φ(2x− 1).

Next, evaluating the last equation for suitable values of x we obtain

h1 = h−1 =
1

3
√
2

and h0 =
1√
2
.

Corollary 3.3. For all ξ ∈ R, we have

φ̂(ξ) = M0(
ξ

2
)φ̂(

ξ

2
),

where M0(ξ) =
1

2

(
1 +

2

3
cos ξ

)
.

Proof. By applying the Fourier transform to the 2-scale relation in Lemma 3.2 above
we obtain

φ̂(ξ) =
1

2

(
1

3
eiξ/2 + 1 +

1

3
e−iξ/2

)
φ̂(
ξ

2
)

which reads as

φ̂(ξ) =
1

2

(
1 +

2

3
cos(

ξ

2
)

)
φ̂(
ξ

2
).

Hence, the desired result follows.

Theorem 3.4. The function ψ defined by

ψ(x) = K0(
√
2
∑
k∈Z

gkφ(2x− k)),

with gk = (−1)k−1h1−k and K0 =
4 log 2− 2√
3− 4 log 2

satisfies

i. ψ̂(ξ) = M1(
ξ

2
)φ̂(

ξ

2
), where M1(ξ) =

K0

6
(3− 2 cos ξ) e−iξ.

ii. ∥ψ∥22 = 1.

Proof. Using Lemma 3.1, we get gk = 0, ∀, k ≤ −1 and k ≥ 3. So the relation above
reads

ψ(x) = K0

√
2g0φ(2x) +

√
2g1φ(2x− 1) +

√
2g2φ(2x− 2)

with
g0 = − 1

3
√
2
, g1 =

1√
2

and g2 = − 1

3
√
2
.

Otherwise,

ψ(x) = K0(−
1

3
φ(2x) + φ(2x− 1)− 1

3
φ(2x− 2)). (3.3)

Denote for simplicity K =
1

(4 log 2− 2)
√
2

. Consequently,

∥ψ∥22 = K2
0 (

22

9K2

∫ 2

1

(
2− x

x

)2

dx− 4

3K2

∫ 1

0

(
x(1− x)

(1 + x)(2− x)

)2

dx).

Now, standard computations yield that

∥ψ∥22 = 1.
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Theorem 3.5. The function ψ is explicitly expressed by

ψ(x) = K1



1

3

1 + 2x

1− 2x
; −1

2
≤ x ≤ 0,

1

3

1− 2x

1 + 2x
− x

1− x
; 0 ≤ x ≤ 1

2
,

x− 1

x
− 1

3

1− 2x

3− 2x
;

1

2
≤ x ≤ 1,

−1

3

3− 2x

1− 2x
; 1 ≤ x ≤ 3

2
.

where K1 =
1√

3− 4 log 2
is the normalization constant.

Proof. We have from Theorem 3.4

ψ(x) = K0(
1

3
φ(2x)− φ(2x− 1) +

1

3
φ(2x− 2)).

We now proceed by evaluating the right-hand side quantity piecewise.

• On [−1

2
, 0] we get

φ(2x− 1) = φ(2x− 2) = 0 and φ(2x) =
1 + 2x

1− 2x
. Consequently,

ψ(x) =
K0

3(4 log 2− 3)

1 + 2x

1− 2x
=
K1

3

1 + 2x

1− 2x
.

• On [0,
1

2
] we get similarly to the previous case

ψ(x) =
K0

4 log 2− 3

(1
3

1− 2x

1 + 2x
− x

1− x

)
= K1

(1
3

1− 2x

1 + 2x
− x

1− x

)
.

• On [
1

2
, 1] we get

ψ(x) =
K0

4 log 2− 3

(
−1− x

x
− 1

3

1− 2x

3− 2x

)
= K1

(x− 1

x
− 1

3

1− 2x

3− 2x

)
.

• On [1,
3

2
] we get

ψ(x) =
K0

3(4 log 2− 2)

3− 2x

2x− 1

)
= −K1

3

3− 2x

1− 2x
.

Theorem 3.6. The function ψ̃ defined by

ψ̃(x) = ψ(x)− cχ]−1/2,3/2[(x)

with c =
2 log 2− 1

6
, is admissible with one vanishing moment.

Proof. It remains to show the admissibility and vanishing moments. From equation
(3.3) it suffices to show the admissibility of the Farey map F . Denote

AF =

∫ ∞

0

|F̂ (ω)|2

ω
dω,
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H(ω) =

∫ 1/2

0

h(x)eiωxdx

and
G(ω) = e−iωH(ω).

Straightforward computations yield that

F̂ (ω) = H(−ω)−G(ω). (3.4)

We will now evaluate F̂ (ω) near the origin ω = 0. By applying the equality above, we get

F̂ ′(0) = −iG(0)− 2G(0) = i
1− 4 log 2

4
.

Consequently, near 0 we get

F̂ (ω) = i
1− 4 log 2

4
ω + ωo(ω),

where o(ω) → 0 as ω → 0. Consequently,∫ η

0

|F̂ (ω)|2

ω
dω <∞, ∀ η > 0.

On the other hand, using equality (3.4), we get

|F̂ (ω)| ≤ 2|G(ω)|.
Next, integration by parts yields that

G(ω) =
e−iω/2

iω
+

1

iω

∫ 1

1/2

e−iωt

t2
dt.

Consequently,

|G(ω)| ≤ 2

|ω|
,

which means that
|F̂ (ω)| ≤ 4

|ω|
.

As a result, for η > 0 large enough we get∫ ∞

η

|F̂ (ω)|2

ω
dω ≤

∫ ∞

η

16

ω3
dω <∞.

It holds finally that AF <∞.
Figures 2 and 3 below illustrate the functions φ and ψ respectively.

Remark. The supports of the functions φ and ψ are compact and satisfy Support(φ) =

[N1, N2] and Support(φ) = [
N1 −N2

2
,
N2 −N1

2
] with N1 = −1 and N2 = 1, which

joins the result of Daubechies on compactly supported wavelets.

Definition 3.1. Let g ∈ L2(R). The system of functions (gk = g(.− k); k ∈ Z) is called
a Riesz basis if there exist positive constantsA andB such that for any finite set of integers
Λ ⊂ Z and real numbers λk; k ∈ Λ, we have

A
∑
k∈Λ

λ2k ≤ ∥
∑
k∈Λ

λkgk∥22 ≤ B
∑
k∈Λ

λ2k.

Lemma 3.7. The Farey function F and the modified Farey function φ satisfy the following
assertions.
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FIGURE 2. Farey scaling function φ.

FIGURE 3. Farey wavelet mother ψ.
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(1) The system (Fk = F (.− k), k ∈ Z) is orthogonal in L2(R).
(2) The system (φk = φ(.− k), k ∈ Z) is only a Riesz system in L2(R).

Proof. The first point is a simple consequence of the disjoint supports of the functions
Fk. So, we prove the second. Let Λ ⊂ Z be a finite set of integers and let (λk)k∈Λ be real
numbers. We have

∥
∑
k∈Λ

λkφk∥22 =
∑
l,k∈Λ

λlλk < φl, φk > .

Due to the supports of the functions φk the last equality reads as

∥
∑
k∈Λ

λkφk∥22 =
∑
k∈Λ

(
λkλk−1 < φk, φk−1 > +λ2k∥φk∥22 + λkλk+1 < φk, φk+1 >

)
.

As φk are positive functions for all k, we obtain

∥
∑
k∈Λ

λkφk∥22 ≥
∑
k∈Λ

λ2k∥φk∥22 = ∥φ∥22
∑
k∈Λ

λ2k.

On the other hand, using Cauchy-Schwartz inequality we obtain∑
k∈Λ

(λkλk−1 < φk, φk−1 > +λkλk+1 < φk, φk+1 >) ≤ (< φ,φ−1 + φ1 >)
∑
k∈Λ

λ2k.

As a result, by taking A = ∥φ∥22 and B = ∥φ∥22+ < φ,φ−1 + φ1 > we obtain 0 < A <
B <∞ and

A
∑
k∈Λ

λ2k ≤ ∥
∑
k∈Λ

λkφk∥22 ≤ B
∑
k∈Λ

λ2k.

So as the Lemma.

Corollary 3.8. The function Γφ(ω) =
∑
k∈Z

|φ̂(ω + 2kπ)|2 is bounded on R.

Proof. With the same notations in Lemma 3.7 denote

H(x) =
∑
k∈Λ

λkφk(x),

and
H̃(ξ) =

∑
k∈Λ

λke
−ikξ.

We have ∫
R
|
∑
k∈Λ

λke
−ikξ|2dx =

∫
R
|H(x)|2dx =

1

2π

∫
R
|Ĥ(ξ)|2dξ.

Observe now that
Ĥ(ξ) = H̃(ξ)φ̂(ξ).

Hence, ∫
R
|
∑
k∈Λ

λke
−ikξ|2dx =

1

2π

∫
R
|H̃(ξ)|2|φ̂(ξ)|2dξ

=
1

2π

∑
l∈Z

∫ 2π(l+1)

2πl

|H̃(ξ)|2|φ̂(ξ)|2dξ.
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Observing next that H̃ is 2π-periodic we get∫
R
|
∑
k∈Λ

λke
−ikξ|2dx =

1

2π

∫ 2π

0

|H̃(ξ)|2
∑
l∈Z

|φ̂(ξ + 2πl)|2dξ

=
1

2π

∫ 2π

0

|H̃(ξ)|2Γφ(ξ)dξ.

Now, as the set (φk)k is a Riesz system on L2(R), we deduce that Γφ is bounded.

Definition 3.2. The function Γφ is called the overlap function associated to the system
(φk) or to the function φ.

Proposition 3.9. Let Φ ∈ L2(R) be defined by its Fourier transform Φ̂ =
φ̂√
Γφ

. Then,

the system (Φk = Φ(.− k))k∈Z is orthonormal in L2(R).

Proof. We have for all l, k ∈ Z,

< Φk,Φl >=
1

2π
< Φ̂k, Φ̂l >=

1

2π

∫
R
|Φ̂(ξ)|2e−i(k−l)ξdξ.

Consequently,

< Φk,Φl > =
1

2π

∑
n∈Z

∫ 2(n+1)π

2nπ

|Φ̂(ξ)|2e−i(k−l)ξdξ

=
1

2π

∫ 2π

0

∑
n∈Z

|Φ̂(ξ + 2nπ)|2e−i(k−l)ξdξ.

Observe now that

∑
n∈Z

|Φ̂(ξ + 2nπ)|2 =

∑
n∈Z

|φ̂(ξ + 2nπ)|2

Γφ(ξ)
= 1.

We obtain

< Φk,Φl >=
1

2π

∫ 2π

0

e−i(k−l)ξdξ = δlk.

Lemma 3.10. The Fourier transform of the modified Farey map φ is expressed by

φ̂(ξ) = 4 cos(ξ)Ci(ξ)− 4 sin(ξ)Si(ξ)− 2
sin ξ

ξ
; ∀ ξ ̸= 0,

where Ci(ξ) =
∫ 2ξ

ξ

cos t

t
dt and Si(ξ) =

∫ 2ξ

ξ

sin t

t
dt.

Proof. Assume that ξ > 0. Elementary calculus yield that

φ̂(ξ) = 2

∫ 2

1

2− t

t
cos(ξ(t− 1))dt,

which may be written as

φ̂(ξ) = 4

∫ 2

1

cos(ξ(t− 1))

t
dt− 2

∫ 2

1

cos(ξ(t− 1))dt.
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The last integral is an easy form. Applying standard trigonometric rules for the first one
we obtain

φ̂(ξ) = 4 cos(ξ)

∫ 2

1

cos(ξt)

t
dt− 4 sin(ξ)

∫ 2

1

sin(ξt)

t
dt− 2

sin ξ

ξ
.

Next, taking u = ξt for the last integrals we obtain

φ̂(ξ) = 4 cos(ξ)Ci(ξ)− 4 sin(ξ)Si(ξ)− 2
sin ξ

ξ
.

For ξ < 0, it suffices to see that φ̂ is in fact an even function.

Lemma 3.11. The modified Farey wavelet mother ψ satisfies

ψ̂(0) = 0 and x̂ψ(0) = log 2− 3

4
.

Proof. Simple calculus yields that

ψ̂(0) =

∫ 1/2

0

h(x)dx−
∫ 1

1/2

h(1− x)dx = 0.

Similarly,

x̂ψ(0) =

∫ 1/2

0

xh(x)dx−
∫ 1

1/2

xh(1− x)dx

=

∫ 1

1/2

(1− 2x)(1− x)

x
dx

= log 2− 3

4
.

4. CONCLUSION

Wavelet theory has known a great success since its discovery. Mathematically, it pro-
vides for function spaces good bases allowing their decomposition into spices associated
with different horizons known as the levels of decomposition. A wavelet basis is a family
of functions obtained from one function known as the mother wavelet, by translations and
dilations. This makes the finding of wavelet mothers of great interest. The analysis of a
given function using wavelets passes through the so-called wavelet transform or wavelet
coefficient. It is a quantity obtained by a convolution product between the function to be
analyzed and the copies of the analyzing wavelet mother.

In the present work, one motivation was to construct indeed a wavelet mother starting
from the exploitation of the characteristics of the well-known Farey map. Well-known
characteristics in wavelet theory such as admissibility and vanishing moments rules, com-
pact support have been established for the new wavelet. Many extensions may be addressed
as future directions for the present work.

• Exploit more the characteristics of the new Farey wavelet such as its continuous
wavelet transform, Fourier-Plancherel type rule as well as Parceval formula.

• Associate a discrete wavelet transform for the new Farey wavelet.
• Construct suitable multi-resolution analysis.
• Develop concrete applications of the new wavelet framework to show the utility

of the newly constructed wavelet mother.
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