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NEUTROSOPHIC REGULAR SEMI CONTINUOUS FUNCTIONS

R. VIJAYALAKSHMI∗ AND R. R. PRAVEENA

ABSTRACT. In this paper, we introduce and study the concept of regular semi continuous,
regular semi irresolute, regular semi-T1/2 space, regular semi homeomorphisms and regu-
lar semi c-homeomorphisms in neutrosophic topological spaces. Moreover, we investigate
the relationship among neutrosophic regular semi continuous, neutrosophic regular semi
irresolute, neutrosophic regular semi homeomorphism and neutrosophic regular semi C-
homeomorphisms mappings. Finally, we have given some counter examples to show that
these types of mappings are not equivalent.

1. INTRODUCTION

The study of fuzzy set was initiated by Zadeh [18] in 1965. Thereafter the paper of
Chang [3] paved the way for the subsequent tremendous growth of the numerous fuzzy
topology concepts. Currently Fuzzy Topology has been observed to be very beneficial in
fixing many realistic problems. Several mathematicians have tried almost all the pivotal
concepts of General Topology for extension to the fuzzy settings. In 1983, Atanassov [1]
introduced the concept of intuitionistic fuzzy set which was generalization of fuzzy set,
where besides the degree of membership and the degree of non-membership of each ele-
ment. Later, Coker [4] introduced the concept of intuitionistic fuzzy topological spaces,
by using the notion of the intuitionitic fuzzy set. Smarandache [7, 8, 9] introduced the
concept of Neutrosophic set. Neutrosophic set is classified into three independent func-
tions namely, membership function, indeterminancy and non membership function that are
independently related. In 2012, Salama and Alblowi [14, 15, 16] introduced the concept of
Neutrosophic topology. Neutrosophic topological spaces are very natural generalizations
of fuzzy topological spaces allow more general functions to be members of fuzzy topol-
ogy. In 2014, Salama et. al., [15] introduced the concept of Neutrosophic closed sets and
Neutrosophic continuous functions. Ishwarya and Bageerathi [10] introduced the concept
of neutrosophic semiopen sets in neutrosophic topological spaces.

In general topology, the concept of regular semiopen set was introduced by Cameron [2]
in 1978. Latter Vadivel and Elavarasan introduced regular semiopen sets in fuzzy topologi-
cal and soft topological spaces in [5, 6, 11, 12]. Recently Vijayalakshmi and Praveena [13]
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introduced the concept of regular semiopen and regular semiclosed sets in neutrosophic
topological spaces. In this paper, we introduce and study the concept of neutrosophic
regular semi continuous and neutrosophic regular semi irresolute mappings. Moreover,
we investigate the relationship among neutrosophic regular semi continuous, neutrosophic
regular semi irresolute, neutrosophic regular semi homeomorphism and neutrosophic reg-
ular semi C-homeomorphisms mappings. Finally, we have given some counter examples
to show that these types of mappings are not equivalent.

2. PRELIMINARIES

Definition 2.1. [14] Let X be a non-empty fixed set. A Neutrosophic set [for short,
Ns] A is an object having the form A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X} where
µA(x), σA(x) and γA(x) which represents the degree of membership function, the de-
gree of indeterminancy and the degree of non-membership function respectively of each
element x ∈ X to the set A.

Remark. [14] A Ns A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X} can be identified to an
ordered triple A = 〈µA(x), σA(x), γA(x)〉 in ]−0, 1+[ on X .

Remark. [14] For the sake of simplicity, we shall use the symbol A = 〈µA, σA, γA〉 for
the Ns A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X}.

Example 2.2. [14] Every intuitionsistic fuzzy set A is a non-empty set in X is obviously
on Ns having the form A = {〈x, µA(x), 1− µA(x) + γA(x)〉 : x ∈ X}. Since our
main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic
topology, we must introduce the Neutrosophic sets 0N and 1N in X as follows:
0N = {〈x, 0, 0, 1〉 : x ∈ X} 1N = {〈x, 1, 1, 0〉 : x ∈ X} .

Definition 2.3. [14] LetA = 〈(µA, σA, γA)〉 be a Ns onX , then the complement of the set
A(Ac orC(A) for short) may be defined asC(A) = {〈x, γA(x), 1− σA(x), µA(x)〉 : x ∈ X} .

Definition 2.4. [14] Let X be a non-empty set and Ns’s A and B in the form A =
{〈x, µA, σA, γA〉 : x ∈ X} and B = {〈x, µB , σB , γB〉 : x ∈ X}. Then (A ⊆ B)
may defined as: (A ⊆ B)⇔ µA(x) ≤ µB(x), σA(x) ≤ σB(x), γA(x) ≥ γB(x)∀x ∈ X.

Definition 2.5. [14] Let X be a non-empty set and A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈
X}, B = {〈x, µB(x), σB(x), γB(x)〉 : x ∈ X} are Ns’s. Then A ∩B and A ∪ B may
defined as:

(i) A ∩B = 〈x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), γA(x) ∨ γB(x)〉
(ii) A ∪B = 〈x, µA(x) ∨ µB(x), σA(x) ∨ σB(x), γA(x) ∧ γB(x)〉

Definition 2.6. [14] A Neutrosophic topology (for short, NT or nt) is a non-empty set X
is a family τN of neutrosophic subsets in X satisfying the following axioms:

(i) 0N , 1N ∈ τN ,
(ii) G1 ∩G2 ∈ τN for any G1, G2 ∈ τN ,

(iii) ∪Gi ∈ τN for every {Gi : i ∈ J} ⊆ τN .

Throughout this paper, the pair of (X, τN ) is called a neutrosophic topological space
(for short, nts). The elements of τN or τ are called neutrosophic open set (for short, nos).
A neutrosophic set F is neutrosophic closed set (for short, ncs)if and only if F c is nos.

Definition 2.7. [14] Let (X, τN ) be nts and A = 〈x, µA, σA, γA〉 be a Ns in X . Then the
neutrosophic closure and neutrosophic interior of A are defined by NCl(A) = ∩{K : K
is a NCS in X and A ⊆ K}, NInt(A) = {G : G is a NOS in X and G ⊆ A}. It can be
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also shown that NCl(A) is NCS and NInt(A) is a NOS in X . A is NOS if and only if
A = NInt(A), A is NCS if and only if A = NCl(A).

Definition 2.8. [17] Let A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X} be a Ns on a nts
(X, τN ) then A is called:

(a) neutrosophic regular open (for short, nro) iff A = NInt(NCl(A)).
(b) neutrosophic regular closed (for short, nrc) iff A = NCl(NInt(A)).

Definition 2.9. [17] Let A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X} be a Ns and B =
{〈x, µB(x), σB(x), γB(x)〉 : x ∈ X} be a Ns on a nts (X, τN ) then A is called neutro-
sophic semi-open (for short, nso) iff A ⊆ NInt(NCl(A)).

Definition 2.10. [13] Let (X, τ) be a nts. Then A is called
(1) neutrosophic regular semiopen (for short, nrso) if there exists an nro set B in X

such that B ⊆ A ⊆ NCl(B).
(2) neutrosophic regular semiclosed (for short, nrsc) if there exists an nrc set B in X

and NInt(B) ⊆ A ⊆ B.

We shall denote the family of all nrso sets (nrsc sets) of a nts (X, τ) by NRSOS(X),
NRSCS(X).

Definition 2.11. [13] Let (X, τ) be a nts. Then
(1) the neutrosophic regular closure of A, denoted by nrcl(A), and is defined by

nrcl(A) =
⋂
{B|B ⊇ A,B is nrc }.

(2) the neutrosophic regular interior of A, denoted by nrint(A), and is defined by
nrint(A) =

⋃
{B|B ⊆ A,B is nro }.

(3) the neutrosophic regular semiclosure of A defined by nrscl(A) =
⋂
{B | A ⊆

B and B ∈ NRSCS(X, τ)} is a neutrosophic set.
(4) the neutrosophic regular semiinterior of A defined by nrsint(A) =

⋃
{B | B ⊆

A and B ∈ NRSOS(X, τ)} is a neutrosophic set.

Definition 2.12. [16] Let (X, τ) and (Y, σ) be any two nts’s. A map f : (X, τ)→ (Y, σ) is
neutrosophic continuous (for short, NC) if the inverse image of every neutrosophic closed
set in (Y, σ) is neutrosophic closed set in (X, τ).

3. NEUTROSOPHIC REGULAR SEMI CONTINUOUS, OPEN AND CLOSED FUNCTIONS

Definition 3.1. Let (X, τ) and (Y, σ) be two nts’s. A Neutrosophic function f : X → Y
is said to be

(1) neutrosophic regular continuous (for short, NRC)if for each nos A of Y , the
inverse image f−1(A) is a nro set of X .

(2) neutrosophic regular semi continuous (for short, NRSC) if for each nos A of Y ,
the inverse image f−1(A) is a nrso set of X .

(3) neutrosophic regular semi irresolute (for short, NRSI) if for each nrso set A of
Y , the inverse image f−1(A) is a nrso set of X .

(4) neutrosophic regular semiopen function (for short, NRS-O) if for each nos B of
X , the image f(B) is a nrso set of Y .

(5) neutrosophic regular semiclosed function (for short, NRS-C) if for each ncs set
B of X , the image f(B) is a nrsc set of Y .

Example 3.2. Let X = {a, b}, τ = {0N , 1N , A,B}, Y = {p, q} and σ = {0N , 1N , C},
where A and B are Ns of X and C is Ns of Y , defined as follows:
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A =
〈
( µa

0.4 ,
µb

0.5 ), ( σa

0.5 ,
σa

0.5 ), ( γa0.6 ,
γb
0.5 )
〉
,

B =
〈
( µa

0.4 ,
µb

0.5 ), ( σa

0.5 ,
σa

0.5 ), ( γa0.4 ,
γb
0.5 )
〉
,

C =
〈
(
µp

0.5 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp
0.6 ,

γq
0.5 )
〉
.

Clearly τ and σ are NT on X and Y . If we define the function f : X → Y as f(a) = p
and f(b) = q, then f is NRSC but not NRC, the Ns C is nrso set of X , since ∃ a nro set
B such that B ⊆ C ⊆ NCl(B) but not nro.

Example 3.3. Let X = {a, b} and τ = {0N , 1N , X,A,B}, Y = {p, q} and σ =
{0N , 1N , C}, where A and B are Ns of X and C is Ns of Y , defined as follows:
A =

〈
( µa

0.3 ,
µb

0.5 ), ( σa

0.5 ,
σa

0.5 ), ( γa0.6 ,
γb
0.5 )
〉
,

B =
〈
( µa

0.6 ,
µb

0.5 ), ( σa

0.5 ,
σa

0.5 ), ( γa0.5 ,
γb
0.5 )
〉
,

C =
〈
(
µp

0.4 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp
0.6 ,

γq
0.5 )
〉
.

Clearly τ and σ are NT on X and Y . If we define the function f : X → Y as f(a) = p
and f(b) = q, then f is NSC but not NRSC, the Ns C is nso set of X , since ∃ a nos B
such that B ⊆ C ⊆ NCl(B) but not nrso.

Remark. The above definition and Examples 3.2and 3.3, it is clear that
(1) Every NRC function is NRSC but not conversely.
(2) Every NRSC function is NSC but not conversely.

Remark. A function f : X → Y is NRSC if for each ncs B of Y , the inverse image
f−1(B) is a nrsc set of X .

Theorem 3.1. A function f : X → Y is NRSC iff f(rsscl(A)) ⊆ NCl(f(A)) for every
Ns A of X .

Proof. Let f : X → Y isNRSC. NowNCl(f(A)) is a ncs of Y . ByNRS-continuity of
f , f−1(NCl(f(A))) is nrsc set and A ⊆ f−1(NCl(f(A))). But nrscl(A) is the small-
est nrsc set containing A. Then nrscl(A) ⊆ f−1(NCl(f(A))). Thus f(nrscl(A)) ⊆
NCl(f(A)).

Conversely, let A be any ncs of Y. Then
f−1(A) ∈ X
⇒ f(nrscl(f−1(A))) ⊆ NCl(f(f−1(A)))
⇒ f(nrscl(f−1(A))) ⊆ NCl(A) = A
⇒ nrscl(f−1(A)) = f−1(A).
Thus f−1(A) is nrsc set. �

Theorem 3.2. A function f : X → Y is NRSC iff f−1(NInt(A)) ⊆ nrsint(f−1(A))
for every Ns A of Y .

Proof. Let f : X → Y is NRSC. Now NInt(f(A)) is a nos of Y . By NRS-continuity
of f , f−1(NInt(f(A))) is nrso set and f−1(NInt(f(A))) ⊆ A. As nrsint(A) is the
largest nrso set containing A, f−1(NInt(f(A))) ⊆ nrsint(A).

Conversely, take a nos A = f−1(NInt(A)) ⊆ nrsint(f−1(A)). Then f−1(A) ⊆
nrsint(f−1(A)). Thus f−1(A) is nrso set. �

Theorem 3.3. A function f : X → Y is NRS-O iff f(NInt(A)) ⊆ nrsint(f(A)) for
every Ns A of X .

Proof. If f : X → Y is NRS-O, then f(NInt (A)) = nrsint(f(NInt(A))) ⊆
nrsint(f(A)). On the other hand, take a nos A of X . Then by hypothesis, f(A) =
f(NInt(A)) ⊆ nrsint(f(A)). Thus f(A) is nrso set in Y . �
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Theorem 3.4. Let f : X → Y be NRS-O. If B is a Ns in Y and A is nrc set containing
f−1(B) then ∃ a nrsc set C such that B ⊆ C and f−1(C) ⊆ A.

Proof. Take C = (f(Ac))c. Then f−1(B) ⊆ A. Thus f(Ac) ⊆ Bc. So Ac is nro set.
Hence f(Ac) is nrso. Therefore C is nrsc and B ⊆ C and f−1(C) ⊆ A. �

Theorem 3.5. A function f : X → Y is NRS-C iff nrscl(f(A)) ⊆ f(NCl(A)) for
every Ns A of X .

Definition 3.4. A nts (X, τ) is called NRST1/2 if for each nrsc set A in X is nrc.

Theorem 3.6. A nts (X, τ) is called NRST1/2 iff nrscl(A) = nrcl(A) for each A in X .

Proof. Let (X, τ) be NRST1/2. By definition of nrscl and nrcl, we have nrscl(A) =
nrcl(A) for each A in X .

Conversely, suppose (X, τ) is not NRST1/2. There exist nrsc set B in X such that B
is not nrc. Hence nrscl(B) = B but nrcl(B) 6= B. Thus, nrscl(B) 6= nrcl(B). �

Theorem 3.7. Let (X, τ) and (Y, σ) be nts’s. Let f : (X, τ)→ (Y, σ) be a function.
(1) If (X, τ) is NRST1/2, then f is NRSC iff f is NRC.
(2) If (Y, σ) is NRST1/2, then f is NRSC iff f is NRSI .
(3) If (X, τ) and (Y, σ) is NRST1/2, then f is NRC iff f is NRSC iff f is NRSI .

Proof. (1) LetB be a ncs in Y . Since f isNRSC, f−1(B) is nrsc set ofX . By Definition
of NRST1/2, f−1(B) is nrc set in X . Thus f is NRC.

Proof of (2) and (3) are similar. �

Theorem 3.8. Let f : (X, τ)→ (Y, η) and g : (Y, η)→ (Z, σ) be NRSC and (Y, η)
is NRST1/2. Then g ◦ f : (X, τ)→ (Z, σ) is NRSC.

Proof. Let A be a ncs in Z. Since f and g are NRSC, g−1(A) is nrsc set in Y . As
Y is NRST1/2, g−1(A) is nrc set in Y . Since every nrc set is nc set. Which implies
f−1(g−1(A)) is nrsc set in X. Thus (g ◦ f)−1(A) = f−1(g−1(A)) is nrsc set in X. Hence
g ◦ f is NRSC. �

Theorem 3.9. Let f : (X, τ) → (Y, η) be NRSI and g : (Y, η) → (Z, σ) be NRSC.
Then g ◦ f : (X, τ)→ (Z, σ) is NRSC.

Proof. Let A be a ncs in Z. Since g is NRSC, g−1(A) is nrsc set in Y . As f is NRSI ,
f−1(g−1(A)) is nrsc set in X. Thus (g ◦ f)−1(A) = f−1(g−1(A)) is nrsc set in X. Hence
g ◦ f is NRSC. �

4. NEUTROSOPHIC REGULAR SEMI HOMEOMORPHISMS

Definition 4.1. A bijection f : X → Y is called neutrosophic regular semi homeomor-
phism (for short, NRS-h) if f is both NRSC and NRS-O functions.

Definition 4.2. A bijection f : X → Y is called neutrosophic regular semiC-homeomorphism
(for short, NRS-C-h) if f and f−1 are both NRSI .

Proposition 4.1. For any bijection f : X → Y , the following statements are equivalent:
(1) f−1 : Y → X is NRSC.
(2) f is NRS-O.
(3) f is NRS-C.
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Proof. (1)⇒(2): Let A be a nos in X . Then Ac is ncs in X . Since f−1 is NRSC,
(f−1)−1(Ac) = f(Ac) = (f(A))c is nrsc set in Y . Then f(A) is nrso in Y . Thus f is a
NRS-O function.

(2)⇒(3): Let f be a NRS-O function. Let A be a ncs in X . Then Ac nos in X . Since
f is NRS-O function, f(Ac) = (f(A))c is nrso set in Y . Thus f(A) is nrsc set in Y . So
f is NRS-C.

(3)⇒(1): Let A be ncs in X . Then f(A) is nrsc set in Y . Thus is (f−1)−1(A) is nrsc
set in Y . So f−1 is NRSC. �

Proposition 4.2. Let f : X → Y be a bijective andNRSC. Then the following statements
are equivalent:

(1) f is a NRS-O.
(2) f is a NRS-h.
(3) f is a NRS-C.

Proof. (1)⇒(2): Follows from the definition.
(2)⇒(3): Let A be a ncs in X . Then Ac is nos in X . Since f is a NRS-h, f(Ac) =

(f(A))c is nrso set in Y . Then f(A) is nrsc set in Y . Hence f is a NRS-C.
(3)⇒(1): Let A be a nos in X . Then Ac is ncs in X . Since f is a NRS-C, f(Ac) =

(f(A))c is nrsc set in Y . Thus f(A) is nrso set in Y . So f is a NRS-O function. �

Proposition 4.3. If f : X → Y and g : Y → Z are NRS-C-h, then g ◦ f : X → Z is
also a NRS-C-h.

Proof. Let A be a nrso set in Z. Then (g ◦ f)−1(A) = f−1(g−1(A)) = f−1(A), where
A = g−1(A). By hypothesis, A is nrso set in Y and again by hypothesis, f−1(A) is nrso
set in X . Thus, (g ◦ f) is NRSI . Also for a nrso set B in X , we have (g ◦ f)(B) =
g(f(B)) = g(C), where C = f(B). By hypothesis, f(B) is nrso set in Y and again by
hypothesis, g(C) is nrso set in Z. So, (g ◦ f)−1 is NRSI . Hence g ◦ f is NRS-C-h. �

Proposition 4.4. For a nts (X, τ), the collection nrsCh(X, τ) forms a group under the
composition of functions.

Proof. Define Ψ : nrsCh(X, τ) × nrsCh(X, τ) → nrsCh(X, τ) by Ψ(f, g) = (g ◦ f)
for every f, g ∈ nrsCh(X, τ). Then by Proposition 4.3, (g ◦ f) ∈ nrsCh(X, τ). Thus
nrsCh(X, τ) is nrsc. We know that the composition of maps is associative. The identity
map i : (X, τ) → (X, τ) is a NRS-C-h and i ∈ nrsCh(X, τ). Also i ◦ f = f ◦ i = f
for every f ∈ nrsCh(X, τ). For any f ∈ nrsCh(X, τ), f ◦ f−1 = f−1 ◦ f = i. So
inverse exists for each element of nrsCh(X, τ). Hence nrsCh(X, τ) is a group under
composition of functions. �

Proposition 4.5. Every NRS-h from a nrs-space into another nrs-space is a neutro-
sophic homeomorphism.

Proof. Let f : X → Y be a NRS-h. Then f is bijective, NRSC and NRS-O. Let A be
an nos in X . Since f is NRS-O and since Y is nrs-space, f(A) is nos in Y . This implies
f is neutrosophic open function. Let A be ncs in Y . Since f is NRSC and since X is
nrs-space, f−1(A) is ncs inX . Thus f is neutrosophic continuous. So f is a neutrosophic
homeomorphism. �

Proposition 4.6. EveryNRS-h from a nrs-space into another nrs-space is aNRS-C-h.
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Proof. Let f : X → Y be a NRS-h. Then f is bijective, NRSC and NRS-O. Let A be
an nrsc set in Y. Then A is ncs in Y . Since f is NRSC, f−1(A) is nrsc set in X . Thus
f is a NRSI map. Let B be nrso set in X . Then B is nos in X . Since f is NRS-O,
f(B) is nrso set in Y . That is (f−1)−1(B) is nrso set in Y . Thus f−1 is NRSI . So f is
NRS-C-h. �
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