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GENERALIZATIONS OF FUZZY QUASI OPEN SETS AND
CONNECTEDNESS BETWEEN FUZZY SETS IN FUZZY
BITOPOLOGICAL SPACES

G. SARAVANAKUMAR, A. VADIVEL*, S. MURUGAMBIGAI AND M. KAMARAJ

Abstract. In this paper we introduce and study fuzzy quasi e (resp. e*, a,
B, ds and Op)-open sets, fuzzy quasi e (resp. e*, a, 8, ds and dp)-closed sets,
fuzzy quasi e (resp. e*, a, B8, ds and dp)-connectedness between fuzzy sets
fuzzy quasi e (resp. e*, a, 3, ds and dp)-separated sets in fuzzy bitopological
spaces.

1. INTRODUCTION
The concept of fuzzy set was introduced by Zadeh [@] provided a natural foun-

dation for building new branches in mathematics. Fuzzy sets have applications in
many fields such as information [@] and control [24]. In 1968 chang [Eﬁ)introduced
fuzzy topological space using fuzzy sets. Kandil [14] defined and studied the concept

of fuzzy bitopological spaces as a generalization of bitopological spaces [16] in fuzzy
setting. Since then many results from classical topology are being extended in both
fuzzy topological and fuzzy bitopological spaces ([E], [H], [@], @], [@], [@H@],
[28]) and their properties were also investigated. The initiations of e-open sets,
e*-open sets and a-open sets in topological spaces are due to Ekici [[9].[10],[11]]. In
fuzzy topology, e-open sets were introduced by Seenivasan in 2015 [22]. In 1971
Datta [[7] introduced and studied quasi semiopen sets in bitopological spaces. Using
it concepts of fuzzy quasi semiopen sets and connectedness between fuzzy sets in
fuzzy bitopological spaces were defined and studied [@] The purpose of this paper
is to generalize some of the concepts of [8, 13, 2] in fuzzy bitopological spaces using
fuzzy e (resp. €*, a, 3, s and dp)-open sets.

2. PRELIMINARIES
We recall the following definition.
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Definition 2.1. A fuzzy subset A in an fts (X, 7) is called fuzzy regular open (fro,
for short) [2] if A = IntCI(\) and a regular closed set if A = ClInt(\).

Definition 2.2. [22] The fuzzy § interior of subset A of X is the union of all fuzzy reg-
ular open sets contained in A and fuzzy § closure of subset A of X is the intersection
of all fuzzy regular closed sets containing A.

Definition 2.3. [27] A subset A is called fuzzy ¢ open if A = §Int(A). The complement
of fuzzy ¢ open set is called fuzzy ¢ closed (i.e., A = §CI(N).)

Definition 2.4. A subset X is called fuzzy d-pre open [[1] (resp. fuzzy d-semi open
[17), fuzzy e-open [22]) if A < IntCls(A\) (resp. A < ClInts(A) , A < IntCls(\) V
ClInts(\))

Definition 2.5. [, 17, 2] The complement of a fuzzy §-preopen set (resp. fuzzy
d-semiopen set, fuzzy e-open ) is called fuzzy d-preclosed (resp. fuzzy d-semiclosed,
fuzzy e- closed).

Definition 2.6. [, 17, 22] The intersection of all fuzzy d-preclosed (resp. fuzzy J-
semiclosed, fuzzy e-closed) sets containing A is called fuzzy dp (resp. ds, e)-closure
of A and is denoted by fopCIl(A) (resp. fdsCIl(N), feCl(A\) and the union of all
fuzzy d-preopen (resp. fuzzy d-semiopen, fuzzy e-open) sets contained in A is called
fuzzy dp (resp. ds, e)-interior of A and is denoted by fopInt(\) (resp. fdsInt(N),

felnt(X)).

Definition 2.7. A fuzzy bitopological space [[14] (in short fbts) in an ordered triple
(X, 71, 72) where 71 and 72 are fuzzy topologies on X and the members of 7 (or 72)
are called 71-fuzzy (or mo-fuzzy ) open sets.

A fuzzy set X in a fbts (X, 71, 72) is called 7;-fuzzy closed if its complement 1 — A
or \ is T;-fuzzy open for i =1, 2.

Definition 2.8. [5] In a fbts (X, 71,72) a fuzzy set A is said to be fuzzy quasi-open
(in short fqo) if A = VvV n for some p € 71 and 1 € To.

In this paper we shall denote the family of 7;-fuzzy e (resp. e*, a, 8, ds and
op)-open (7;-fuzzy e (resp. e*, a, 8, ds and dp)-closed) sets in fbts (X, 71,72) by

feo fe*o _fao _fBo _féso fépo fec fe*c _fac _fBc _fdsc
7% (resp. 7 °, 7, 770 T and 77 ") (17 (vesp. /% ¢, 7/, 7/ P07

and 77°7¢)) for i = 1, 2.
3. FUZZY QUASI e (RESP. ¢*, a, 8, §s AND 6p)-OPEN SETS IN FUZZY
BITOPOLOGICAL SPACES

Definition 3.1. In a fbts (X, 71, 72) a fuzzy set X is said to be fuzzy quasi e (resp.
e*, a, B, ds and dp)-open (in short fgeo) (resp., in short fge*o, fqao, fqBo, fqdso

€0

and fgdpo)) if X = p VvV n for some p € 71 and 7 € Tgeo (resp. p € TlfE ° and

nerd° ner{andnerf® per{? and ye %, ue /% and e 77,
p e 71%7° and n € 7J°P°).
Remark.

(i) Every fuzzy quasi-open set is fuzzy quasi e-open sets.
(ii) Every fuzzy quasi-open set is fuzzy quasi d-semi open sets.
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(iii) Every fuzzy quasi-open set is fuzzy quasi -pre open sets.
(iv) Every fuzzy quasi §-semi open and quasi d-pre open set is fuzzy quasi e-open
sets.
) Every fuzzy quasi a-open set is fuzzy quasi e-open sets.
(vi) Every fuzzy quasi a-open set is fuzzy quasi S-open sets.
) Every fuzzy quasi e-open set is fuzzy quasi S-open sets.
(viii) Every fuzzy quasi e*-open set is fuzzy quasi S-open sets.

But the converse is not true as shown in the following Examples.

Example 3.2. Let X = {a, b, ¢, d}, 71 = {0, 1, p1, po, ps, pa} and 7o =
{Oa L, m, n2, 773} where K1, H2, K3, H4, M1, T2, 73 ¢ X = [07 1] are defined as
follows: jui = &+ G-+ L+ 4 p2 = g+ G+ 0+ 0 s = g+ G+ 1+,
po= sy die S Bae g el B g Do e ]
Then (X, 71, 72) is a fbts with fuzzy topologies 71 and 7. Let A be a fuzzy set in X
defined as A : X — [0, 1] such that (i) A= 24+ %7+ 1 4+ 1 But A\ = 415V 5 where
o= g+ 5L+ e/ and s = 24+ 4T+ 2+ 7 € ', therefore, A is fqeo,
but it is not fuzzy quasi-open and fuzzy qua;iﬁa—open. (i) A = % + % + % +f 0/@74.
But A =pVnwhere p=214%4049 ¢ 7/ and np =049 4044 01 ¢ pJaPe,
therefore, A is fgfo, but it is not fge*o and fqao. (iii) A = % + OT7 + % + é. But
A=pVpwherep=24854141 ¢ 7% and n = 974071940 ¢ 749 therefore,
A is fgeo, but it is not fgdpo and fgdso. (iv) A = g + % + % + é. But A\=puVn
where py= 94944141 GTlfq‘SpO (resp. GTlfqéso) andn=249%2,0,0 ETquépo

a b c d
(resp. € Tlfq‘sso) therefore, \ is fqdpo and fqdso, but it is not fqo.

Example 3.3. Let X = {a, b, ¢}, m = {0, 1, pi1, po2, ps, pa} and 72 =
{07 ]-a s 12, 773} where M1, M2, K3, K4, 71, T2, 73 ¢ X = [07 1] are defined
o ollowst = 02+ 4+ 8y = 0844 0 S04 {82400
m=2+% 40 p=04941 p=0940341 Then (X,7,72) is a fbts with
fuzzy topologies 71 and 72. Let A be a fuzzy set in X defined as A : X — [0, 1]
such that A = &3 4 9 4 0.2, But)\:u\/nwhereu:%Jr%Jr%GTlfqﬁo and
n= 0{-73 + % + % € 7_2fq/30, therefore, A is fqBo, but it is not fgeo.
Remark. Fuzzy quasi e-open set and fuzzy quasi e*-open sets are independent.
Example 3.4. In Example @, A= é + % + O—f + %. But A = p VvV n where
p=14044040 €7/ and n = 9490404404 € 749 therefore, \ is fqeo,
but it is not fge*o.

_ 03
Example 3.5. In E*xample @, A= 2
L2 46403 ¢ andy— 82444
not fgqeo.

C

%+0'2. But A\ = p v n where y =
€

TQfE*O, therefore, \ is fge*o, but it is

All above discussed interrelation can be put together in an arrow diagram is

given as follows.
% fqe*o—se\

fqo-set  — o fgeo-set fqBo-set

™~

fqdso-set fqao-set

fqdpo-set
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Proposition 3.1. A fuzzy set A in a fbts (X, 7y, 72) is

(i) fgeo iff X = elInt, (X) Velnt,, ().
(ii) fge*o iff X = e*Int, (N) V e*Int.,(N).
(iii) fgao iff X = alnt,, (\) V alnt., ().
(iv) fqBo ift A = BInt. (M) V BInt., ().
(v) fqosoiff X = dsInt, (A)V dsInt,,(X).
i)

(vi) fgdpo iff X = dpInt,, (N) V opInt,,(N).

Proof. Prove the first part only the other cases are similar.
(i) Suppose M is fgeo set in fbts (X, 71, 72). Then, by definition, we have

A=puVn (3.1)

for some p € 7{°° and 1 € 7

From (Ell)7 w=elnt; (N\),n=elnt,,(A) and so A = elnt, (A) Velnt,, ().

Conversely, suppose that A = eInt,, (\) V elnt.,(A) = A1 V Ay (say) where A\ =
elnt., (A\) and Ao = eInt,,(A). Clearly A\; and Ay are 7-fuzzy e-open and 7o-fuzzy
e-open sets respectively. Therefore A is fgeo set. O

€eo

Remark.
(i) Every 7i-fuzzy e-open (or mo-fuzzy e-open) sets is fgeo set.

Every 7i-fuzzy a-open (or mo-fuzzy a-open) sets is fqao set.
Every 7i-fuzzy e*-open (or mo-fuzzy e*-open) sets is fge*o set.
Every 71-fuzzy S-open (or 1o-fuzzy S-open) sets is fgfo set.
Every 71-fuzzy dp-open (or mo-fuzzy dp-open) sets is fqdpo set.

(vi) Every m-fuzzy ds-open (or mo-fuzzy ds-open) sets is fgdso set.
But the converse is not true as shown in the following Example 77.
Example 3.6. In Example @, let A be a fuzzy set in X defined as A : X — [0, 1]

such that A\ = %—l— % + % + é. But A = p5 V 1y where ps € Tifeo and 74 € 73,
therefore, A is fgeo, but it is not 7»-fuzzy e-open set.

Example 3.7. In Examples @ and @, let A be a fuzzy set in X defined as
A: X — [0, 1] such that (i) A =28+ 1+ 1 But A = p5 V4 where ps € 7§ °

and ny € 72f e’o therefore A is fge*o, but it is not To-fuzzy e* open set
(i) A = @ + + 2. But A = pg V 15 where ug € Tfﬁ and 15 € 75"°, therefore, A

is fqpo, but 1t is not To-fuzzy [-open set.

(i) A= &1 4+ 9 + L. But A = 7 V g where iy € 7’ and 1 € 74, therefore, A
is fqao, but it is not To-fuzzy a-open set.

(iv) A= 0—5 —|— + 1. But A = pg V 16 where g € Tf P2 and ng € . f P? therefore,
Alis fq5po but it 1s not 7o-fuzzy dp-open set.

(V) A=2L 4+ 941 But A= pgVn, where pg € 719 and n, € 7J°%°, therefore, A
is fgdso, but it is not To-fuzzy ds-open set.

Proposition 3.2. Arbitrary union of fgeo (resp. fge*o, fqao, fqBo, fqdso, fqdpo)
sets is a fgeo (resp. fge*o, fqao, fqBo, fqdso, fqdpo) set.

Proof. Let A;, i € I be fqeo sets in a fts X. To prove that \/ \; is fqeo set. Let
il

\/ )\i = )\1\/)\2\/"' = (/11\/1’}1)\/(,[@\/772)"' = \/(ﬂi\/m) as )\1, /\2,... are

iel icl

fqeo set. Then V Ai = V (15 Vi) = (V i) V (V n5) for some V p; € Tlfeo and
i€l i€l i€l i€l i€l
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\/ m; € TJ°°. Hence \/ \; is fqeo set. Thus arbitrary union of fgeo sets is a fqeo
i€l i€l
set. [l

The proof of the other cases are similar.

Remark. If Ay and Ay are two fgeo (resp. fge*o, fqao, fqBo, fqdso, fqdpo) sets
in a fbts (X, 71, 72) then A\; A A2 need not be _fgeo (resp. fge*o, fqao, fqBo, fqdso,
fqdpo) as shown in the following Examples and

Example 3.8. In Example @, let A1, Ao, s, e, na and 15 be two fuzzy sets on X
and are defined as A1, A2 , s, 6, N4, 75 : X — [0, 1] such that Ay = %4—0774-%—#5,
O T

s =940+ 04 L As A = s Vo, ps er{® and ny € 7%, and Xy = g V 15,
lg € Tlf ° and 75 € Tzfeo, A1 and Ay are fuzzy quasi e-open (fgeo) sets in X.

However A1 A Ay = A (say) where A = g + O—If’ + % + %, is not equal to p V n for

some p1 € 11

the Remark

and 7 € 73 °°, which shows that A; A A2 is not fgeo set in X. Hence

Example 3.9. In Example B.3, let A = ps, Aa = us, ps, w7, psuo, ma, 15 and
76 be two fuzzy sets on X and are defined as Aj, Ag, 4 : X — [0, 1] such that
o= =20+ g e = g =S A s =22+ Y
= L B 0% 0 00 2 gy =04

(i) As Ay = p3 Vg, pus € Tlfe*o and 74 € 728*0, and A\ = ps V 14, ps € Tlfe °,

and 7y € 7_2)‘6*07 A1 and Ao are fuzzy quasi e*-open (fge*o) sets in X. However

A1 A A2 = )\ (say) where A = 076 + % + %, is not equal to p vV i) for some p € 7

*
€ o

and n € 73 e’o , which shows that A; A \g is not fge*o set in X.
(i) As Ay = p3 V15, g € 7{7° Joe

andeT2 ° and Ay = g V ns, e € 71", and

N5 € TQfﬁ A1 and Ay are fuzzy quasi B-open (fqpBo) sets in X. However \y Adg = A
(say) where A = 05 +1 —|—f is not equal to p V 7 for some p € Tfﬁo and n € Tfﬁo,

which shows that )\1 A )\2 is not fgpPo set in X
(iii) As )\1 =z V1, pr € 7% and my € 71, and Ay = po V2, po € T
Ny € 7'2 ° A1 and Ao are fuzzy quasi a-open (fqao) sets in X. However \; Ady = A

(say) where A=l 941 is not equal to uV g for some p € 7§ and n € 74,

which shows that Ay A A2 is not fgao set in X.

, and

(iv) As A\ = ,u3\/776, ps € 7% and ng € 7I°P°, and Ay = pg V g, g € 7 °F°,
and ng € 73°7°, Ay and Ay are fuzzy quasi dp-open (fgdpo) sets in X. However
fopo

)\1/\/\2f)\(say) where \ = 05+ +Z,1snot equal to p Vv 7 for some p € 75

and n € T f‘;po , which shows that A; A A2 is not fgdpo set in X.

(v) As )\1 = ug\/ng, us € Tlf‘sso and 72 € T. f5 ,and Ao = ug V1o, pg € Tlf‘sso,
and 79 € Tzféqo A1 and Ao are fuzzy quabl 58 open (fqdso) sets in X. However

A A X2 = A (say) where A = &L 4+ 9 4+ 1 s not equal to p V1 for some p1 € Tf6so

and 5 € T f‘sm , which shows that A /\ )\2 is not fgdso set in X. Hence the Remark

Definition 3.10. A fuzzy set A in a fbts (X, 71, 72) is said to be fuzzy quasi e (resp.
e*, a, B8, 6p and ds)-closed (in short fgec) (resp. in short, fqe*c, fqBc, fqac, fqdsc,
fqdpe) iff its complement 1 — X or N is fgeo (in short fge*o, fqBo, fqao, fqdso,
fqdpo) set.
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Remark. Every 7-fuzzy e (resp. e*, a, 8, dp and ds)-closed (or mo-fuzzy e (resp.
e*, a, B, op and Js)-closed) set in any fbts (X, 71, 72) is fuzzy quasi e (resp. e*, a,
B, dp and ds)-closed.

Remark. Finite intersection of fgec (resp. fqe*c, fqac, fqBe, fqépc and fqdsc)
sets is also a fqec (resp. fqe*c, fqac, fqBe, fqdpc and fqdsc) set.

Definition 3.11. Let A be a fuzzy set in fbts (X, 71, 72). Then fuzzy quasi e-closure
and fuzzy quasi e-interior of A, denoted by fqeCIl(\) and fgelnt(\) respectively,
are defined as follows:

(1) fqeCl(N) = N{0: 4 is fgec set and & > A}

(2) fgeInt(A) =V{n:nis fgeo set and n < A}

In fact a fuzzy set A in a fbts (X, 7y, 72) is
(1) fqecift X = fqeCl(N),
(2) fgeo iff X = fgelnt(N).
In a similar way we can define fqe*Cl, fqaCl, fqBCl, fqdpCl and fqdsCl (resp.
fae*Int, fqalnt, fqBInt, fqdpInt and fqdsInt).

Remark. The interrelation between fgeCl(\) and fgelInt(X) are given as follows:
(i) 1 — fgeCl(A\) =1 —NA{d: 6 is fgec set and § > A}

=Vv{6 : 6 is fgeo set and § < \'}.

Thus 1 — fqeCl(\) = fgelnt(\).

(ii) 1 — fgeInt(A) =1 —Vv{n:nis fgeo set and n < A}

=A{n :n is fgec set and ' > \'}.

Thus 1— fqInt()\) = fqeCIl(\). In a similar way we relate the interrelation between
other generalized sets also.

Definition 3.12. A fuzzy set X in a fbts (X, 71, 72) is said to be (11, 72)-fuzzy e (resp.
e*, a, B, dp and Js)-clopen (resp. (72, 71)-fuzzy e (resp. e*, a, 8, op and ds)-clopen)
set if it is 7y-fuzzy e (resp. e*, a, 8, dp and ds)-closed and 7o-fuzzy e (resp. e*, a,
B, op and ds)-open (resp. mo-fuzzy e (resp. e*, a, B, dp and Js)-closed and 7-fuzzy
e (resp. e*, a, 8, 0p and ds)-open).

Definition 3.13. A fuzzy set A in a fbts (X, 71, 72) is said to be fuzzy e (resp. e*, a,
B, 0p and ds)-biclopen if it is both (71, 72)-fuzzy e (resp. e*, a, 8, dp and ds)-clopen
as well as (1o, 71 )-fuzzy e (resp. e, a, 3, dp and ds)-clopen set.

Definition 3.14. In a fbts (X, 7, 72) a fuzzy quasi e (resp. e*, a, 8, op and 0s)-
clopen set means a set which is both fuzzy quasi e (resp. e*, a, 8, ép and ds)-closed
as well as fuzzy quasi e (resp. e*, a, 8, dp and Js)-open.

Remark. Every (7, 72)-fuzzy e (resp. e*, a, 8, 0p and ds)-clopen (resp., (72,71)-
fuzzy e (resp. €*, a, 8, ép and ds)-clopen) set is fuzzy quasi e (resp. e*, a, 8, op
and ds)-clopen. But the converse is not true as shown by Example 7?7

Example 3.15. In Example @, let p be a fuzzy set on X defined as p: X — [0, 1]
such that p = g—l— %7 + % + é. Then p is fuzzy quasi e-clopen in the fbts (X, 71, 72).
But it is not (71, 72)-fuzzy e-clopen.

Example 3.16. In Example @, let 1 be a fuzzy set on X defined as p: X — [0, 1]
such that (i) p = %5 % + % Then p is fuzzy quasi e*-clopen in the fbts (X, 71, 72).

a
But it is not (71, 72)-fuzzy e*-clopen.
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(i) p = %5+ 141 Then y is fuzzy quasi 3 (resp. 6p )-clopen in the fbts (X, 71, 72).
But it is not (71, 72)-fuzzy B8 (resp. dp )-clopen.

(iii) p = &L+ 941 Then p is fuzzy quasi a (resp. ds )-clopen in the fbts (X, 71, 72).
But it is not (71, 72)-fuzzy a(resp. s )-clopen.

4. FUZZY QUASI e (RESP. ¢*, a, 8, 5p AND 65)-CONNECTEDNESS
BETWEEN FUZZY SETS

Definition 4.1. A fbts (X, 71, 72) is said to be (11, 72)-fuzzy e (resp. e*, a, 3, dp and
ds)-connected between some fuzzy sets A; and Ag if there exists no (71, 72)-fuzzy
e (resp. €*, a, B, op and ds)-clopen set p such that Ay < pu < 1 — Xg. Further
(X, 71,72) is said to be pairwise fuzzy e (resp. e*, a, 3, dp and Js) -connected
between the fuzzy sets A; and Ay if it is (71, 72)-fuzzy e (resp. e*, a, 8, dp and Js)
-connected as well as (72, 71)-fuzzy e (resp. e*, a, 8, 0p and ds) -connected between
A1 and As.

Example 4.2. In Examples @ and @ is an example of pairwise fuzzy e-connected.

Definition 4.3. A fbts (X, 71, 72) is said to be fuzzy quasi e (resp. e*, a, §, dp and
ds) -connected between its fuzzy sets A; and Ao, if it has no fuzzy quasi e (resp. e*,
a, B, 6p and ds) -clopen set p such that Ay < p <1— .

Remark. The implications contained in the following diagram are true and the
reverse implications need not be true as shown in the following examples.

fqdp-connected fqe*-connected
fg-connected fge-connected ———  fqpB-connected
ds-connected a-connected
q q

Example 4.4. In Example @, let Ay and Ay be two fuzzy sets on X defined as
AL, A2 0 X = [0, 1] such that (i) Ai(z) = &7 + %8 4+ O and Ap(z) = 22 + 2+ 1
We note that p = 077 + % + % is fuzzy quasi e (resp. ds and dp)-connected but
not fuzzy quasi (resp. e*)-connected. Since A; < p < 1 — A9, we can conclude that
(X, 71, T2) is not (71, 72) fuzzy quasi connected between \; and As. But, as there
is no (11, 72)-fuzzy clopen set p satisfying \y < u < 1— Ao, (X, 71, 72) is not fuzzy
quasi (resp. e*)-connected.

(i) Ap(z) = 22 4+ 94+ 98 and Ap(2) = 22 + 2 + 92, We note that p = 284 24 08
is fuzzy quasi e* (resp. [8)-connected but not fuzzy quasi e-connected. Since A; <
@ < 1—Xy, we can conclude that (X, 71, 72) is not (71, 72) fuzzy quasi e-connected
between \; and As.

(iif) Ar(z) = &7+ %5 + 2 and Ay(x) = 22+ 53+ 99 We note that p = %7+ 56 +9
is fuzzy quasi e-connected but not fuzzy quasi dp-connected. Since A} < p < 1—Ag,
we can conclude that (X, 71, 72) is not (71, 72) fuzzy quasi dp-connected between
A1 and As.

(iv) A (z) = 254924 03 and Ay (z) = 23+ 035405 We note that p = %54 %4403
is fuzzy quasi S-connected but not fuzzy quasi e*-connected. Since \; < p < 1— Ao,
we can conclude that (X, 71, 72) is not (71, 7o) fuzzy quasi e*-connected between
A1 and As.
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Example 4.5. Let X = {a, b, ¢, d}, 71 = {0, 1, p1, po, ps, pa} and 7o =
{0, 1, m1, m2, m3} where pun, po, pa, pa, M1, M2, M3 2 X — [0, 1] are defined as
follows: pg = 2+ % + 24 % pp = 2484 49404y =04 04 414 1
R o ht o S ey |
Then (X, 71, 72) is a fbts with fuzzy topologies 71 and 75. Let Ay and Ay be two
fuzzy sets on X defined as A1, A2 : X — [0, 1] such that A\(z) =2+ 244949
and)\g(x):%—&-%—i—%—l—off. Wenotethatu:%—i—%—i—%—i—%isfuzzyquasi
e (resp. f)-connected but not fuzzy quasi a-connected. Since A\ < p < 1 — Ao,
we can conclude that (X, 71, 72) is not (71, 72) fuzzy quasi e (resp. 3)-connected
between \; and As.

Example 4.6. Let X = {a, b}, 71 = {0, 1, p1, pao} and 72 = {0, 1, 1, 12} where
ti, p2, M, m2 2 X — [0,1] are defined as follows: pq = %2 4 &1y = 8 4 &1
m = % + 0.717 o = % + 071.)1. Then (X, 71,72) is a fbts with fuzzy topologies 71
and 7o. Let A; and A9 be two fuzzy sets on X defined as A1, A2 : X — [0, 1] such
that Ay (z) = 22 + %4 and Ap(z) = 22 + %3 We note that p = 28 + &7 is fuzzy
quasi e-connected but not fuzzy quasi ds-connected.

Proposition 4.1. If a fbts (X, 71, 72) is fuzzy quasi e-connected between its fuzzy
sets A1 and Ag and if Ay < m; and A < no, then (X, 71, 72) is fuzzy quasi e-
connected between fuzzy sets 17; and 7.

Proof. Suppose (X, 71, 72) is not fuzzy quasi e-connected between fuzzy sets 1, and
72. Then it has fuzzy quasi e-clopen set p such that

m<pu<1—mn. (4.1)
By construction we have, Ay <n; and Ay < 72. From (1) we get A\; < n; implies
A1 < p. (4.2)

And also Ay < 19 gives

1-X>21l-m>2pu=1- Il >p

(i.e) p < 1= Ao (4.3)
From (@) and (@) we get A\ < p < 1—Ay. This shows (X, 71, 72) is not fuzzy quasi
e-connected between fuzzy sets A1 and Ao, a contradiction. Hence the proposition
is proved. O

Proposition 4.2. If a fbts (X, 71, 7o) is fuzzy quasi e* (resp. a, §, dp and 0s)-
connected between its fuzzy sets A; and Ay and if Ay < n; and A < 19, then
(X, 11, 72) is fuzzy quasi e (resp. a, 3, 0p and ds) -connected between fuzzy sets
m and .

Proof. Follows from Proposition @ O

Proposition 4.3. A fbts (X, 7, 72) is fuzzy quasi e-connected between fuzzy sets
A1 and Ag iff it is fuzzy quasi e-connected between fgeCl(\1) and fgeCl(Ag).

Proof. Sufficiency: Suppose (X, 71, 72) is not fuzzy quasi e-connected between
fuzzy sets A1 and Ay. Then X has fuzzy quasi e-clopen set p such that A\ < p <
1—As.
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Thus we have, \y < pand p < 1 — Ag. Now Ay < p implies fgeCl(A\1) <
fqeCl(p) = p, as u is fuzzy quasi e-closed.
i.e fqeCl(A\1) < p. (4.4)
Also p <1 — Xg implies p = fgelnt(u) < fgeInt(l — A2) =1 — fqeCl(Aa) as p is
fuzzy quasi e-open.
i.e p <1— fqeCl(Aq). (4.5)
From @ and @ we get fgeCl(A\1) < p < 1—fqeCl(\2). This shows that (X, Ty, T5)
is not fuzzy quasi e-connected between fuzzy sets fgeCl(\1) and fqCl(Xq).
Necessity: Suppose (X, 71, 72) is not fuzzy quasi e-connected between fqeCl()\1)
and fqgeCl(A2). Then X has fuzzy quasi e-clopen set p such that fqeCl(\) < p <
1= fqeCl(A2)
Now A\ < fqeCl(A\1) < p implies
A < p. (4.6)

Also, p < 1—fqeCl(\y). But fqgeCl(Aa) > Ay which implies 1— fgeCl(A2) < 1—Aa.
Therefore, u < 1 — fqgeCl(Aa) <1 — A9

e <1—DX (4.7)
Combining (@) and (@) we get A\ < p < 1— Ay. This shows that (X, 7, 72) is
not fuzzy quasi e-connected between A; and As. O

Proposition 4.4. A fbts (X, 71, 7o) is fuzzy quasi e* (resp. a, [, dp and Js)
-connected between fuzzy sets \; and Ay iff it is fuzzy quasi e* (resp. a, 8, op
and ds) -connected between fqe*Cl(A1) and fqe*Cl(A2) (resp. fqaCl(A1) and
faaCl(a), faBCI(N) and faBCUAs), fadpClA1) and fadpCl(Xa), fadsCl(A)
and fqdsCl(A2)).

Proof. Follows from Proposition @ U

Proposition 4.5. If a fbts (X, 71, 72) is fuzzy quasi e-connected neither between
A1 and 71 nor between A; and 72 then it is not fuzzy quasi e-connected between A;
and n; V ns.

Proof. Suppose (X, 11, 72) is fuzzy quasi e-connected neither between A1 and 7; nor
between \; and 7. Then it has fuzzy quasi e-clopen sets p1, ps such that

Algulglfmand)\lgugglfng. (48)

Now, put g1 Aps = pr. Then, M AN < g Aps < (1—m)A(1—m2),= A < p <

1 — (m V n2), which shows that (X, 7, 72) is not fuzzy quasi e-connected between
A1 and 1V na. O

Proposition 4.6. If a fbts (X, 71, 72) is fuzzy quasi e* (resp. a, §, dp and Js)
-connected neither between A; and n; nor between Ay and 72 then it is not fuzzy
quasi e* (resp. a, 8, dp and ds) -connected between A\ and 1y V 7.

Proof. Follows from Proposition @ (I

Definition 4.7. A fbts (X, 71, 72) is said to be fuzzy quasi e (resp. €*, a, 3, dp and
0s) -connected iff it has no proper fuzzy set which is both fuzzy quasi e (resp. e*,
a, B, 6p and ds) -open and fuzzy quasi e (resp. e*, a, 3, dp and Js)-closed.
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Equivalently, a fbts (X, 71, 72) is said to be fuzzy quasi e (resp. e*, a, 8, dp and
ds)-connected iff it has no proper fuzzy quasi e (resp. e*, a, £, dp and ds)-clopen
set.

Proposition 4.7. A fbts (X, 71, 72) is fuzzy quasi e- connected iff X has no proper
fuzzy sets A1 and Ay , which are fuzzy quasi e-open sets such that A\; + Ay = 1.

Proof. Necessity: Suppose (X, 71, 72) is not fuzzy quasi e-connected. Then X
has proper fuzzy set A1, which is both fuzzy quasi e-open and fuzzy quasi e-closed.
Take 1 — Ay = Xg. Since )\ is fuzzy quasi e-closed A\s is fgeo set. Then A\; + Xy = 1.

Sufficiency: Suppose that fbts (X, 71, 72) has fqgeo sets A1 and Aq, such that
A1+ 2y = 1. Then Ay = 1— Xy is fuzzy quasi e-closed set. Similarly, Ao is also fuzzy
quasi e-closed. Hence (X, 71, 72) is not fuzzy quasi e-connected. (Il

Proposition 4.8. A fbts (X, 71, 72) is fuzzy quasi e* (resp. a, 8, op and Js) -
connected iff X has no proper fuzzy sets A; and Ao , which are fuzzy quasi e* (resp.
a, B, 0p and ds)-open sets such that A\; + A = 1.

Proof. Follows from Proposition @ O

Proposition 4.9. A fbts (X, 7, 72) is said to be fuzzy quasi e-connected iff it is
fuzzy quasi e-connected between each pair of its non-zero fuzzy sets A\; and As.

Proof. Necessity: Let A1 and Ao be any a pair of non-zero fuzzy sets on X. Suppose
(X, 71, T2) is not fuzzy quasi e-connected between A; and Ao. Then it has fuzzy quasi
e-clopen set p such that Ay < g < 1 — Ag. Since Ay, Ay # 0 then p # 0, 1 is a
proper fuzzy quasi e-clopen set of X. This shows that X has a proper fuzzy quasi
e-clopen set. Therefore (X, 71, 72) is not fuzzy quasi e-connected.

Sufficiency: Suppose that (X, 71, 72) is not fuzzy quasi e-connected. Then there
exists a proper fuzzy set p, (say) in X such that p is fuzzy quasi e-clopen. Since y is
proper it is easy to find non-zero fuzzy sets A1, Ao in X such that A\ < pu <1-—As.
This implies that (X, 71, 72) is not fuzzy quasi e-connected between \; and Ag. O

Proposition 4.10. A fbts (X, 7y, 72) is said to be fuzzy quasi e* (resp. a, 3, dp and
ds)-connected iff it is fuzzy quasi e* (resp. a, 8, dp and ds)-connected between each
pair of its non-zero fuzzy sets A\; and Ao.

Proof. Follows from Proposition @ ([

Proposition 4.11. For a non-empty subset Y of X let (Y, 71/Y,72/Y) be a subspace
of the fbts (X, 71,72) and let A1 and Ay be fuzzy sets of Y. If (Y, 71/Y,72/Y) is
fuzzy quasi e (resp. €*, a, 3, dp and ds) -connected between the fuzzy sets A} and Ay
then (X, 71, 72) is also fuzzy quasi e (resp. e*, a, 8, op and ds) -connected between
its fuzzy sets A\j and A3, where A} : X — [0, 1] is such that
Aj(x)=M(z)ifzxeY
=0ifxe X\Y
and A} : X — [0, 1] is such that
Ay(z) =Xe(z)ifz ey
—0ifze X\Y.
Proposition 4.12. In a fbts (X, 71, 72) let (Y,71/Y,72/Y) be a fuzzy subspace for a
non-empty subset Y of X such that xy is fuzzy e-clopen set in (X, 7y, 72) and let
01 and 65 be fuzzy sets of Y. If (Y, 71/Y,72/Y) is fuzzy quasi e-connected between
01 and 69 then (X, 71, 72) is also fuzzy quasi e-connected between é; and Jds.
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Proof. Suppose (X, 71, 72) is not fuzzy quasi e-connected between é; and Js. By
construction yy is fuzzy e-clopen in (X, 71, 72) and hence it is fuzzy quasi e-clopen
in (X, 71,72). Then by our supposition on X we have

01 <xy <1-4 (4.9)

holds true. Obviously, xy is fuzzy e-clopen in (Y, 71/Y,72/Y), and it is fuzzy quasi
e-clopen in (Y, 71/Y,72/Y).

As xy in fuzzy quasi e-clopen in (Y, 71/Y,72/Y), the existence of the inequality
(@) for fuzzy sets 61 and d5 in Y implies that (Y, 71/Y,72/Y) is not fuzzy quasi
e-connected between §; and . O

Proposition 4.13. In a fbts (X, 71, 72) let (Y,71/Y,72/Y) be a fuzzy subspace for a
non-empty subset Y of X such that yy is fuzzy e* (resp. a, 8, dp and ds)-clopen
set in (X, 71,72) and let d; and dy be fuzzy sets of Y. If (Y, 71/Y,72/Y) is fuzzy
quasi e* (resp. a, 8, 0p and Js)-connected between d; and Jo then (X, 7, 72) is also
fuzzy quasi e* (resp. a, 8, dp and ds)-connected between d; and ds.

Proof. Follows from Proposition U

Proposition 4.14. Let (X, 71, 72) be a fuzzy bitopological space and let Y C X be
a non-empty subset of X such that yy is fuzzy e (resp. e*, a, 8, dp and ds) -biopen
set in (X, 71, 72). Suppose that (Y,71/Y,72/Y) be a fuzzy subspace of (X, 11, 72). If
(X, 71, 72) is fuzzy quasi e (resp. e*, a, 8, dp and ds) -connected between its fuzzy
sets A1 and Ag, then (Y, 71/Y,72/Y) is also fuzzy quasi e (resp. e*, a, 3, dp and
ds)-connected between A;/Y and A\y/Y.

5. FUZZY QUASI e (RESP. ¢*, a, 8, 0p, 0s)-SEPARATED SETS IN FUZZY
BITOPOLOGICAL SPACES

Definition 5.1. In a fbts (X, 71, 72) two fuzzy sets A1 and Ay are termed as
(i) fuzzy quasi e-separated if \y A fgeC1(A2) = 0= fgeC1l(A1) A Aa.
(i) fuzzy quasi e*-separated if A1 A fge*C1(A2) =0 = fqe*C1(A\1) A Aa.
(iii) fuzzy quasi a-separated if Ay A fqgaC1l(A2) =0 = fqaC1l(A\1) A As.
(iv) fuzzy quasi S-separated if \y A fgBC1L(A\3) =0 = fqBCL(A\1) A Aa.
(v) fuzzy quasi dp-separated if \y A fgopC1l(Ag) =0 = fqdpC1l(A1) A Aa.
(vi) fuzzy quasi ds-separated if A\; A fgdsC1l(A3) =0 = fqdsC1(A1) A Aa.

Proposition 5.1. Let A; and A2 be fgeo sets in a fbts (X, 71, 72). If Ay and A are
fuzzy quasi e-separated then Ay A Ay = 0.

Proof. Suppose Ay A Ay # 0. Then \; # 0 and A2 # 0, and so fgeC1l(\) # 0,
fqeC1 (M) # 0.

Therefore A\; A fqeC1(A2) # 0 and fgeC1(A1) A Az # 0.

Thus we get A\ A fgeC1(Aa) # 0 # fgeC1(A1) A A2 which shows that A; and Ay
are not fuzzy quasi e-separated. O

Proposition 5.2. Let A; and Ay be fge*o (resp. a, B, dp and Js) sets in a fbts
(X, 71,72). If Ay and Ag are fuzzy quasi e* (resp. a, 8, dp and ds)-separated then
A AN =0.

Proof. Follows from Proposition @ [

Proposition 5.3. If A and p, are fuzzy quasi e-separated sets and A\ V p is fuzzy
biopen in a fbts (X, 71, 72), then X and p, are fuzzy quasi e-open sets in (X, 71, 72).



GENERALIZATIONS OF FUZZY QUASI OPEN SETS IN FBTS 229

Proof. Since A and p are fuzzy quasi e-separated sets, A A u = 0. Then
A=AV u)A (1= feeC1(N)). (5.1)

Since AV p is fuzzy biopen set and (1— fgeCl()\)) is fqeo set then, by Proposition

, (AV ) A (1= fgeCl()N)) is fuzzy quasi e-open set and equivalently, \ is fuzzy
quasi e-open set.

Similarly, from g = (AV u) A (1 — fgeCl(u)), we can prove that p, is fgeo set.
Thus we get A and p, are fgeo sets in (X, 71, 72). O

Proposition 5.4. If A and p, are fuzzy quasi e* (resp. a, 3, dp and ds)-separated
sets and A V p is fuzzy biopen in a fbts (X, 71, 72), then A and pu, are fuzzy quasi

*

e* (resp. a, B, dp and ds)-open sets in (X, 71, T2).
Proof. Follows from Proposition @ (I

Proposition 5.5. Let Y C X and ¢y be fuzzy biopen in (X, 71, o). If X is fuzzy
quasi e (resp. e*, a, 8, 0p and ds)-open in (X, 71, 72) then A\ Aty is fuzzy quasi e
(resp. e*, a, B, dp and ds)-open in the fuzzy subspace (Y, 71/Y,72/Y) of (X, 11, 72).

Proposition 5.6. Let (Y,71/Y,72/Y) be a fuzzy subspace of a fbts (X, 11, 72). If
A is fuzzy quasi e (resp. e*, a, 8, dp and ds)-open in (Y, 71/Y,72/Y) and ¢y is
fuzzy biopen in (X, 71, 72) then X is fuzzy quasi e (resp. €*, a, 8, dp and ds)-open
in (X,7,72).

Proposition 5.7. Let Y C X such that ¢y is fuzzy biopen in fbts (X, 71, 72) and
(Y, 71/Y,72/Y) be fuzzy subspace of (X, 71, 72) and let A\; and Ay are two fuzzy
sets on Y. Then A; and Ay are fuzzy quasi e (resp. e*, a, 8, ép and ds)-separated
in (X, 71, 7o) iff they are fuzzy quasi e (resp. e*, a, 8, 0p and ds)-separated in the
subspace (Y, 71/Y,72/Y).

6. CONCLUSION

In this paper, we have introduced and studied fuzzy quasi e (resp. e*, a, 3, ds
and dp)-open sets, fuzzy quasi e (resp. e*, a, 3, ds and Jp)-closed sets, fuzzy quasi e
(resp. e*, a, B, s and dp)-connectedness between fuzzy sets fuzzy quasi e (resp. e*,
a, B, ds and dp)-separated sets in fuzzy bitopological spaces and some properties
and characterizations of them are investigated.
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