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GENERALIZATIONS OF FUZZY QUASI OPEN SETS AND
CONNECTEDNESS BETWEEN FUZZY SETS IN FUZZY

BITOPOLOGICAL SPACES

G. SARAVANAKUMAR, A. VADIVEL∗, S. MURUGAMBIGAI AND M. KAMARAJ

Abstract. In this paper we introduce and study fuzzy quasi e (resp. e∗, a,
β, δs and δp)-open sets, fuzzy quasi e (resp. e∗, a, β, δs and δp)-closed sets,
fuzzy quasi e (resp. e∗, a, β, δs and δp)-connectedness between fuzzy sets
fuzzy quasi e (resp. e∗, a, β, δs and δp)–separated sets in fuzzy bitopological
spaces.

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [29] provided a natural foun-
dation for building new branches in mathematics. Fuzzy sets have applications in
many fields such as information [23] and control [24]. In 1968 chang [6] introduced
fuzzy topological space using fuzzy sets. Kandil [14] defined and studied the concept
of fuzzy bitopological spaces as a generalization of bitopological spaces [16] in fuzzy
setting. Since then many results from classical topology are being extended in both
fuzzy topological and fuzzy bitopological spaces ([3], [4], [12], [14], [15], [18]-[21],
[28]) and their properties were also investigated. The initiations of e-open sets,
e∗-open sets and a-open sets in topological spaces are due to Ekici [[9],[10],[11]]. In
fuzzy topology, e-open sets were introduced by Seenivasan in 2015 [22]. In 1971
Datta [7] introduced and studied quasi semiopen sets in bitopological spaces. Using
it concepts of fuzzy quasi semiopen sets and connectedness between fuzzy sets in
fuzzy bitopological spaces were defined and studied [26]. The purpose of this paper
is to generalize some of the concepts of [8, 13, 25] in fuzzy bitopological spaces using
fuzzy e (resp. e∗, a, β, δs and δp)-open sets.

2. PRELIMINARIES

We recall the following definition.
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Definition 2.1. A fuzzy subset λ in an fts (X, τ) is called fuzzy regular open (fro,
for short) [2] if λ = IntCl(λ) and a regular closed set if λ = ClInt(λ).

Definition 2.2. [22] The fuzzy δ interior of subset λ of X is the union of all fuzzy reg-
ular open sets contained in λ and fuzzy δ closure of subset λ of X is the intersection
of all fuzzy regular closed sets containing λ.

Definition 2.3. [27] A subset λ is called fuzzy δ open if λ = δInt(λ). The complement
of fuzzy δ open set is called fuzzy δ closed (i.e., λ = δCl(λ).)

Definition 2.4. A subset λ is called fuzzy δ-pre open [1] (resp. fuzzy δ-semi open
[17], fuzzy e-open [22]) if λ ≤ IntClδ(λ) (resp. λ ≤ ClIntδ(λ) , λ ≤ IntClδ(λ) ∨
ClIntδ(λ))

Definition 2.5. [1, 17, 22] The complement of a fuzzy δ-preopen set (resp. fuzzy
δ-semiopen set, fuzzy e-open ) is called fuzzy δ-preclosed (resp. fuzzy δ-semiclosed,
fuzzy e- closed).

Definition 2.6. [1, 17, 22] The intersection of all fuzzy δ-preclosed (resp. fuzzy δ-
semiclosed, fuzzy e-closed) sets containing λ is called fuzzy δp (resp. δs, e)-closure
of λ and is denoted by fδpCl(λ) (resp. fδsCl(λ), feCl(λ) and the union of all
fuzzy δ-preopen (resp. fuzzy δ-semiopen, fuzzy e-open) sets contained in λ is called
fuzzy δp (resp. δs, e)-interior of λ and is denoted by fδpInt(λ) (resp. fδsInt(λ),
feInt(λ)).

Definition 2.7. A fuzzy bitopological space [14] (in short fbts) in an ordered triple
(X, τ1, τ2) where τ1 and τ2 are fuzzy topologies on X and the members of τ1 (or τ2)
are called τ1-fuzzy (or τ2-fuzzy ) open sets.

A fuzzy set λ in a fbts (X, τ1, τ2) is called τi-fuzzy closed if its complement 1−λ
or λ′ is τi-fuzzy open for i = 1, 2.

Definition 2.8. [5] In a fbts (X, τ1, τ2) a fuzzy set λ is said to be fuzzy quasi-open
(in short fqo) if λ = µ ∨ η for some µ ∈ τ1 and η ∈ τ2.

In this paper we shall denote the family of τi-fuzzy e (resp. e∗, a, β, δs and
δp)-open (τi-fuzzy e (resp. e∗, a, β, δs and δp)-closed) sets in fbts (X, τ1, τ2) by
τfeoi (resp. τfe

∗o
i , τfaoi , τfβoi , τfδsoi and τfδpoi ) (τfeci (resp. τfe

∗c
i , τfaci , τfβci , τfδsci

and τfδpci )) for i = 1, 2.

3. FUZZY QUASI e (RESP. e∗, a, β, δs AND δp)-OPEN SETS IN FUZZY
BITOPOLOGICAL SPACES

Definition 3.1. In a fbts (X, τ1, τ2) a fuzzy set λ is said to be fuzzy quasi e (resp.
e∗, a, β, δs and δp)-open (in short fqeo) (resp., in short fqe∗o, fqao, fqβo, fqδso
and fqδpo)) if λ = µ ∨ η for some µ ∈ τfeo1 and η ∈ τfeo2 (resp. µ ∈ τfe

∗o
1 and

η ∈ τfe
∗o

2 , µ ∈ τfao1 and η ∈ τfao2 , µ ∈ τfβo1 and η ∈ τfβo2 , µ ∈ τfδso1 and η ∈ τfδso2 ,
µ ∈ τfδpo1 and η ∈ τfδpo2 ).

Remark.
(i) Every fuzzy quasi-open set is fuzzy quasi e-open sets.
(ii) Every fuzzy quasi-open set is fuzzy quasi δ-semi open sets.
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(iii) Every fuzzy quasi-open set is fuzzy quasi δ-pre open sets.
(iv) Every fuzzy quasi δ-semi open and quasi δ-pre open set is fuzzy quasi e-open

sets.
(v) Every fuzzy quasi a-open set is fuzzy quasi e-open sets.
(vi) Every fuzzy quasi a-open set is fuzzy quasi β-open sets.
(vii) Every fuzzy quasi e-open set is fuzzy quasi β-open sets.
(viii) Every fuzzy quasi e∗-open set is fuzzy quasi β-open sets.

But the converse is not true as shown in the following Examples.

Example 3.2. Let X = {a, b, c, d}, τ1 = {0, 1, µ1, µ2, µ3, µ4} and τ2 =
{0, 1, η1, η2, η3} where µ1, µ2, µ3, µ4, η1, η2, η3 : X → [0, 1] are defined as
follows: µ1 = 0

a + 0.1
b + 1

c + 1
d , µ2 = 0

a + 0.4
b + 0

c + 0
d , µ3 = 0

a + 0.4
b + 1

c + 1
d ,

µ4 = 0
a +

0.1
b + 0

c +
0
d , η1 = 0

a +
0.3
b + 0

c +
0
d , η2 = 0

a +
0
b +

1
c +

1
d , η3 = 0

a +
0.3
b + 1

c +
1
d .

Then (X, τ1, τ2) is a fbts with fuzzy topologies τ1 and τ2. Let λ be a fuzzy set in X
defined as λ : X → [0, 1] such that (i) λ = 0

a + 0.7
b + 1

c +
1
d . But λ = µ5 ∨ η5 where

µ5 = 0
a +

0.5
b + 1

c +
1
d ∈ τfqeo1 and η5 = 0

a +
0.7
b + 0

c +
0
d ∈ τfqeo2 , therefore, λ is fqeo,

but it is not fuzzy quasi-open and fuzzy quasi a-open. (ii) λ = 1
a + 0.4

b + 0.4
c + 0.4

d .
But λ = µ∨η where µ = 1

a +
0.4
b + 0

c +
0
d ∈ τfqβo1 and η = 0

a +
0
b +

0.4
c + 0.4

d ∈ τfqβo2 ,
therefore, λ is fqβo, but it is not fqe∗o and fqao. (iii) λ = 0.7

a + 0.7
b + 1

c +
1
d . But

λ = µ∨η where µ = 0
a+

0.5
b + 1

c+
1
d ∈ τfqeo1 and η = 0.7

a + 0.7
b + 0

c+
0
d ∈ τfqeo2 , therefore,

λ is fqeo, but it is not fqδpo and fqδso. (iv) λ = 0
a + 0.4

b + 1
c + 1

d . But λ = µ ∨ η
where µ = 0

a +
0.4
b + 1

c +
1
d ∈ τfqδpo1 (resp. ∈ τfqδso1 ) and η = 0

a +
0.2
b + 0

c +
0
d ∈ τfqδpo2

(resp. ∈ τfqδso1 ) therefore, λ is fqδpo and fqδso, but it is not fqo.

Example 3.3. Let X = {a, b, c}, τ1 = {0, 1, µ1, µ2, µ3, µ4} and τ2 =
{0, 1, η1, η2, η3} where µ1, µ2, µ3, µ4, η1, η2, η3 : X → [0, 1] are defined
as follows: µ1 = 0.7

a + 1
b +

0
c , µ2 = 0.2

a + 0
b +

1
c , µ3 = 0.7

a + 1
b +

1
c , µ4 = 0.2

a + 0
b +

0
c ,

η1 = 0
a + 0.3

b + 0
c , η2 = 0

a + 0
b +

1
c , η3 = 0

a + 0.3
b + 1

c . Then (X, τ1, τ2) is a fbts with
fuzzy topologies τ1 and τ2. Let λ be a fuzzy set in X defined as λ : X → [0, 1]

such that λ = 0.3
a + 0

b + 0.2
c . But λ = µ ∨ η where µ = 0.2

a + 0
b + 0.1

c ∈ τfqβo1 and
η = 0.3

a + 0
b + 0.2

c ∈ τfqβo2 , therefore, λ is fqβo, but it is not fqeo.

Remark. Fuzzy quasi e-open set and fuzzy quasi e∗-open sets are independent.

Example 3.4. In Example 3.2, λ = 1
a + 0.4

b + 0.4
c + 0.4

d . But λ = µ ∨ η where
µ = 1

a + 0.4
b + 0

c +
0
d ∈ τfqeo1 and η = 0

a + 0
b +

0.4
c + 0.4

d ∈ τfqeo2 , therefore, λ is fqeo,
but it is not fqe∗o.

Example 3.5. In Example 3.3, λ = 0.3
a + 0

b + 0.2
c . But λ = µ ∨ η where µ =

0.2
a + 0

b + 0.1
c ∈ τfe

∗o
1 and η = 0.3

a + 0
b + 0.2

c ∈ τfe
∗o

2 , therefore, λ is fqe∗o, but it is
not fqeo.

All above discussed interrelation can be put together in an arrow diagram is
given as follows.

fqo-set fqeo-set

fqao-set

fqe∗o-set

fqβo-set

fqδso-set

fqδpo-set
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Proposition 3.1. A fuzzy set λ in a fbts (X, τ1, τ2) is
(i) fqeo iff λ = eIntτ1(λ) ∨ eIntτ2(λ).
(ii) fqe∗o iff λ = e∗Intτ1(λ) ∨ e∗Intτ2(λ).
(iii) fqao iff λ = aIntτ1(λ) ∨ aIntτ2(λ).
(iv) fqβo iff λ = βIntτ1(λ) ∨ βIntτ2(λ).
(v) fqδso iff λ = δsIntτ1(λ) ∨ δsIntτ2(λ).
(vi) fqδpo iff λ = δpIntτ1(λ) ∨ δpIntτ2(λ).

Proof. Prove the first part only the other cases are similar.
(i) Suppose λ is fqeo set in fbts (X, τ1, τ2). Then, by definition, we have

λ = µ ∨ η (3.1)
for some µ ∈ τfeo1 and η ∈ τfeo2 .

From (3.1), µ = eIntτ1(λ), η = eIntτ2(λ) and so λ = eIntτ1(λ) ∨ eIntτ2(λ).
Conversely, suppose that λ = eIntτ1(λ) ∨ eIntτ2(λ) = λ1 ∨ λ2 (say) where λ1 =

eIntτ1(λ) and λ2 = eIntτ2(λ). Clearly λ1 and λ2 are τ1-fuzzy e-open and τ2-fuzzy
e-open sets respectively. Therefore λ is fqeo set. □
Remark.

(i) Every τ1-fuzzy e-open (or τ2-fuzzy e-open) sets is fqeo set.
(ii) Every τ1-fuzzy a-open (or τ2-fuzzy a-open) sets is fqao set.
(iii) Every τ1-fuzzy e∗-open (or τ2-fuzzy e∗-open) sets is fqe∗o set.
(iv) Every τ1-fuzzy β-open (or τ2-fuzzy β-open) sets is fqβo set.
(v) Every τ1-fuzzy δp-open (or τ2-fuzzy δp-open) sets is fqδpo set.
(vi) Every τ1-fuzzy δs-open (or τ2-fuzzy δs-open) sets is fqδso set.

But the converse is not true as shown in the following Example ??.

Example 3.6. In Example 3.2, let λ be a fuzzy set in X defined as λ : X → [0, 1]

such that λ = 0
a + 0.7

b + 1
c + 1

d . But λ = µ5 ∨ η4 where µ5 ∈ τfeo1 and η4 ∈ τfeo2 ,
therefore, λ is fqeo, but it is not τ2-fuzzy e-open set.

Example 3.7. In Examples 3.3 and 3.9, let λ be a fuzzy set in X defined as
λ : X → [0, 1] such that (i) λ = 0.6

a + 1
b + 1

c . But λ = µ5 ∨ η4 where µ5 ∈ τfe
∗o

1

and η4 ∈ τfe
∗o

2 , therefore, λ is fqe∗o, but it is not τ2-fuzzy e∗-open set.
(ii) λ = 0.5

a + 1
b + 1

c . But λ = µ6 ∨ η5 where µ6 ∈ τfβo1 and η5 ∈ τfβo2 , therefore, λ
is fqβo, but it is not τ2-fuzzy β-open set.
(iii) λ = 0.1

a + 0
b + 1

c . But λ = µ7 ∨ η2 where µ7 ∈ τfao1 and η2 ∈ τfao2 , therefore, λ
is fqao, but it is not τ2-fuzzy a-open set.
(iv) λ = 0.5

a + 1
b + 1

c . But λ = µ6 ∨ η6 where µ6 ∈ τfδpo1 and η6 ∈ τfδpo2 , therefore,
λ is fqδpo, but it is not τ2-fuzzy δp-open set.
(v) λ = 0.1

a + 0
b +

1
c . But λ = µ6 ∨ η2 where µ6 ∈ τfδso1 and η2 ∈ τfδso2 , therefore, λ

is fqδso, but it is not τ2-fuzzy δs-open set.

Proposition 3.2. Arbitrary union of fqeo (resp. fqe∗o, fqao, fqβo, fqδso, fqδpo)
sets is a fqeo (resp. fqe∗o, fqao, fqβo, fqδso, fqδpo) set.

Proof. Let λi, i ∈ I be fqeo sets in a fts X. To prove that
∨
i∈I

λi is fqeo set. Let∨
i∈I

λi = λ1 ∨ λ2 ∨ · · · = (µ1 ∨ η1) ∨ (µ2 ∨ η2) · · · =
∨
i∈I

(µi ∨ ηi) as λ1, λ2, . . . are

fqeo set. Then
∨
i∈I

λi =
∨
i∈I

(µi ∨ ηi) = (
∨
i∈I

µi) ∨ (
∨
i∈I

ηi) for some
∨
i∈I

µi ∈ T feo
1 and
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i∈I

ηi ∈ T feo
2 . Hence

∨
i∈I

λi is fqeo set. Thus arbitrary union of fqeo sets is a fqeo

set. □
The proof of the other cases are similar.

Remark. If λ1 and λ2 are two fqeo (resp. fqe∗o, fqao, fqβo, fqδso, fqδpo) sets
in a fbts (X, τ1, τ2) then λ1 ∧λ2 need not be fqeo (resp. fqe∗o, fqao, fqβo, fqδso,
fqδpo) as shown in the following Examples 3.8 and 3.9.
Example 3.8. In Example 3.2, let λ1, λ2, µ5, µ6, η4 and η5 be two fuzzy sets on X
and are defined as λ1, λ2 , µ5, µ6, η4, η5 : X → [0, 1] such that λ1 = 0

a+
0.7
b + 1

c +
1
d ,

λ2 = µ6 = 0.1
a + 0.5

b + 1
c + 1

d , µ5 = 0
a + 0.5

b + 1
c + 1

d , η4 = 0
a + 0.7

b + 0
c + 0

d and
η5 = 0

a + 0.4
b + 0

c +
1
d . As λ1 = µ5 ∨ η4, µ5 ∈ τfeo1 and η4 ∈ τfeo2 , and λ2 = µ6 ∨ η5,

µ6 ∈ τfeo1 , and η5 ∈ τfeo2 , λ1 and λ2 are fuzzy quasi e-open (fqeo) sets in X.
However λ1 ∧ λ2 = λ (say) where λ = 0

a + 0.5
b + 1

c + 1
d , is not equal to µ ∨ η for

some µ ∈ τfeo1 and η ∈ τfeo2 , which shows that λ1 ∧ λ2 is not fqeo set in X. Hence
the Remark 3
Example 3.9. In Example 3.3, let λ1 = µ3, λ2 = µ5, µ6, µ7, µ8,µ9, η4, η5 and
η6 be two fuzzy sets on X and are defined as λ1, λ2, η4 : X → [0, 1] such that
λ2 = µ5 = 0.6

a + 1
b + 1

c , µ6 = 0.5
a + 1

b + 1
c , µ7 = 0.1

a + 0
b + 0

c , µ8 = 0.9
a + 1

b + 0
c ,

µ9 = 0.1
a + 0

b + 1
c , η4 = 0.2

a + 0.1
b + 0

c , η5 = 0.3
a + 0.2

b + 0
c and η6 = 0

a + 0.2
b + 0

c .
(i) As λ1 = µ3 ∨ η4, µ3 ∈ τfe

∗o
1 and η4 ∈ τfe

∗o
2 , and λ2 = µ5 ∨ η4, µ5 ∈ τfe

∗o
1 ,

and η4 ∈ τfe
∗o

2 , λ1 and λ2 are fuzzy quasi e∗-open (fqe∗o) sets in X. However
λ1 ∧ λ2 = λ (say) where λ = 0.6

a + 1
b + 1

c , is not equal to µ ∨ η for some µ ∈ τfe
∗o

1

and η ∈ τfe
∗o

2 , which shows that λ1 ∧ λ2 is not fqe∗o set in X.
(ii) As λ1 = µ3 ∨ η5, µ3 ∈ τfβo1 and η5 ∈ τfβo2 , and λ2 = µ6 ∨ η5, µ6 ∈ τfβo1 , and
η5 ∈ τfβo2 , λ1 and λ2 are fuzzy quasi β-open (fqβo) sets in X. However λ1∧λ2 = λ

(say) where λ = 0.5
a + 1

b +
1
c , is not equal to µ ∨ η for some µ ∈ τfβo1 and η ∈ τfβo2 ,

which shows that λ1 ∧ λ2 is not fqβo set in X.
(iii) As λ1 = µ7 ∨ η2, µ7 ∈ τfao1 and η2 ∈ τfao2 , and λ2 = µ2 ∨ η2, µ2 ∈ τfao1 , and
η2 ∈ τfao2 , λ1 and λ2 are fuzzy quasi a-open (fqao) sets in X. However λ1 ∧λ2 = λ

(say) where λ = 0.1
a + 0

b +
1
c , is not equal to µ ∨ η for some µ ∈ τfao1 and η ∈ τfao2 ,

which shows that λ1 ∧ λ2 is not fqao set in X.
(iv) As λ1 = µ3 ∨ η6, µ3 ∈ τfδpo1 and η6 ∈ τfδpo2 , and λ2 = µ6 ∨ η6, µ6 ∈ τfδpo1 ,
and η6 ∈ τfδpo2 , λ1 and λ2 are fuzzy quasi δp-open (fqδpo) sets in X. However
λ1 ∧ λ2 = λ (say) where λ = 0.5

a + 1
b + 1

c , is not equal to µ ∨ η for some µ ∈ τfδpo1

and η ∈ τfδpo2 , which shows that λ1 ∧ λ2 is not fqδpo set in X.
(v) As λ1 = µ8 ∨ η2, µ8 ∈ τfδso1 and η2 ∈ τfδso2 , and λ2 = µ9 ∨ η2, µ9 ∈ τfδso1 ,
and η2 ∈ τfδso2 , λ1 and λ2 are fuzzy quasi δs-open (fqδso) sets in X. However
λ1 ∧ λ2 = λ (say) where λ = 0.1

a + 0
b + 1

c , is not equal to µ ∨ η for some µ ∈ τfδso1

and η ∈ τfδso2 , which shows that λ1 ∧ λ2 is not fqδso set in X. Hence the Remark
3
Definition 3.10. A fuzzy set λ in a fbts (X, τ1, τ2) is said to be fuzzy quasi e (resp.
e∗, a, β, δp and δs)-closed (in short fqec) (resp. in short, fqe∗c, fqβc, fqac, fqδsc,
fqδpc) iff its complement 1 − λ or λ′ is fqeo (in short fqe∗o, fqβo, fqao, fqδso,
fqδpo) set.
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Remark. Every τ1-fuzzy e (resp. e∗, a, β, δp and δs)-closed (or τ2-fuzzy e (resp.
e∗, a, β, δp and δs)-closed) set in any fbts (X, τ1, τ2) is fuzzy quasi e (resp. e∗, a,
β, δp and δs)-closed.

Remark. Finite intersection of fqec (resp. fqe∗c, fqac, fqβc, fqδpc and fqδsc)
sets is also a fqec (resp. fqe∗c, fqac, fqβc, fqδpc and fqδsc) set.

Definition 3.11. Let λ be a fuzzy set in fbts (X, τ1, τ2). Then fuzzy quasi e-closure
and fuzzy quasi e-interior of λ, denoted by fqeCl(λ) and fqeInt(λ) respectively,
are defined as follows:

(1) fqeCl(λ) = ∧{δ : δ is fqec set and δ ≥ λ}
(2) fqeInt(λ) = ∨{η : η is fqeo set and η ≤ λ}

In fact a fuzzy set λ in a fbts (X, τ1, τ2) is
(1) fqec iff λ = fqeCl(λ),
(2) fqeo iff λ = fqeInt(λ).

In a similar way we can define fqe∗Cl, fqaCl, fqβCl, fqδpCl and fqδsCl (resp.
fqe∗Int, fqaInt, fqβInt, fqδpInt and fqδsInt).

Remark. The interrelation between fqeCl(λ) and fqeInt(λ) are given as follows:
(i) 1− fqeCl(λ) = 1− ∧{δ : δ is fqec set and δ ≥ λ}
= ∨{δ′

: δ
′ is fqeo set and δ

′ ≤ λ
′}.

Thus 1− fqeCl(λ) = fqeInt(λ
′
).

(ii) 1− fqeInt(λ) = 1− ∨{η : η is fqeo set and η ≤ λ}
= ∧{η′

: η
′ is fqec set and η

′ ≥ λ
′}.

Thus 1−fqInt(λ) = fqeCl(λ
′
). In a similar way we relate the interrelation between

other generalized sets also.

Definition 3.12. A fuzzy set λ in a fbts (X, τ1, τ2) is said to be (τ1, τ2)-fuzzy e (resp.
e∗, a, β, δp and δs)-clopen (resp. (τ2, τ1)-fuzzy e (resp. e∗, a, β, δp and δs)-clopen)
set if it is τ1-fuzzy e (resp. e∗, a, β, δp and δs)-closed and τ2-fuzzy e (resp. e∗, a,
β, δp and δs)-open (resp. τ2-fuzzy e (resp. e∗, a, β, δp and δs)-closed and τ1-fuzzy
e (resp. e∗, a, β, δp and δs)-open).

Definition 3.13. A fuzzy set λ in a fbts (X, τ1, τ2) is said to be fuzzy e (resp. e∗, a,
β, δp and δs)-biclopen if it is both (τ1, τ2)-fuzzy e (resp. e∗, a, β, δp and δs)-clopen
as well as (τ2, τ1)-fuzzy e (resp. e∗, a, β, δp and δs)-clopen set.

Definition 3.14. In a fbts (X, τ1, τ2) a fuzzy quasi e (resp. e∗, a, β, δp and δs)-
clopen set means a set which is both fuzzy quasi e (resp. e∗, a, β, δp and δs)-closed
as well as fuzzy quasi e (resp. e∗, a, β, δp and δs)-open.

Remark. Every (τ1, τ2)-fuzzy e (resp. e∗, a, β, δp and δs)-clopen (resp., (τ2, τ1)-
fuzzy e (resp. e∗, a, β, δp and δs)-clopen) set is fuzzy quasi e (resp. e∗, a, β, δp
and δs)-clopen. But the converse is not true as shown by Example ??

Example 3.15. In Example 3.2, let µ be a fuzzy set on X defined as µ : X → [0, 1]
such that µ = 0

a +
0.7
b + 1

c +
1
d . Then µ is fuzzy quasi e-clopen in the fbts (X, τ1, τ2).

But it is not (τ1, τ2)-fuzzy e-clopen.

Example 3.16. In Example 3.3, let µ be a fuzzy set on X defined as µ : X → [0, 1]
such that (i) µ = 0.6

a + 1
b +

1
c . Then µ is fuzzy quasi e∗-clopen in the fbts (X, τ1, τ2).

But it is not (τ1, τ2)-fuzzy e∗-clopen.
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(ii) µ = 0.5
a + 1

b +
1
c . Then µ is fuzzy quasi β (resp. δp )-clopen in the fbts (X, τ1, τ2).

But it is not (τ1, τ2)-fuzzy β (resp. δp )-clopen.
(iii) µ = 0.1

a + 0
b+

1
c . Then µ is fuzzy quasi a (resp. δs )-clopen in the fbts (X, τ1, τ2).

But it is not (τ1, τ2)-fuzzy a(resp. δs )-clopen.

4. FUZZY QUASI e (RESP. e∗, a, β, δp AND δs)-CONNECTEDNESS
BETWEEN FUZZY SETS

Definition 4.1. A fbts (X, τ1, τ2) is said to be (τ1, τ2)-fuzzy e (resp. e∗, a, β, δp and
δs)-connected between some fuzzy sets λ1 and λ2 if there exists no (τ1, τ2)-fuzzy
e (resp. e∗, a, β, δp and δs)-clopen set µ such that λ1 ≤ µ ≤ 1 − λ2. Further
(X, τ1, τ2) is said to be pairwise fuzzy e (resp. e∗, a, β, δp and δs) -connected
between the fuzzy sets λ1 and λ2 if it is (τ1, τ2)-fuzzy e (resp. e∗, a, β, δp and δs)
-connected as well as (τ2, τ1)-fuzzy e (resp. e∗, a, β, δp and δs) -connected between
λ1 and λ2.

Example 4.2. In Examples 3.8 and 3.9 is an example of pairwise fuzzy e-connected.

Definition 4.3. A fbts (X, τ1, τ2) is said to be fuzzy quasi e (resp. e∗, a, β, δp and
δs) -connected between its fuzzy sets λ1 and λ2, if it has no fuzzy quasi e (resp. e∗,
a, β, δp and δs) -clopen set µ such that λ1 ≤ µ ≤ 1− λ2.

Remark. The implications contained in the following diagram are true and the
reverse implications need not be true as shown in the following examples.

fq-connected

fqδp-connected

fqδs-connected

fqe-connected

fqe∗-connected

fqa-connected

fqβ-connected

Example 4.4. In Example 3.3, let λ1 and λ2 be two fuzzy sets on X defined as
λ1, λ2 : X → [0, 1] such that (i) λ1(x) = 0.7

a + 0.8
b + 0

c and λ2(x) =
0.2
a + 0

b + 1
c .

We note that µ = 0.7
a + 0.9

b + 0
c is fuzzy quasi e (resp. δs and δp)-connected but

not fuzzy quasi (resp. e∗)-connected. Since λ1 ≤ µ ≤ 1− λ2, we can conclude that
(X, τ1, τ2) is not (τ1, τ2) fuzzy quasi connected between λ1 and λ2. But, as there
is no (τ1, τ2)-fuzzy clopen set µ satisfying λ1 ≤ µ ≤ 1−λ2, (X, τ1, τ2) is not fuzzy
quasi (resp. e∗)-connected.
(ii) λ1(x) = 0.4

a + 0
b +

0.6
c and λ2(x) = 0.3

a + 0
b +

0.2
c . We note that µ = 0.6

a + 0
b +

0.8
c

is fuzzy quasi e∗ (resp. β)-connected but not fuzzy quasi e-connected. Since λ1 ≤
µ ≤ 1−λ2, we can conclude that (X, τ1, τ2) is not (τ1, τ2) fuzzy quasi e-connected
between λ1 and λ2.
(iii) λ1(x) = 0.7

a + 0.5
b + 0

c and λ2(x) = 0.2
a + 0.3

b + 0.9
c . We note that µ = 0.7

a + 0.6
b + 0

c
is fuzzy quasi e-connected but not fuzzy quasi δp-connected. Since λ1 ≤ µ ≤ 1−λ2,
we can conclude that (X, τ1, τ2) is not (τ1, τ2) fuzzy quasi δp-connected between
λ1 and λ2.
(iv) λ1(x) = 0.5

a + 0.2
b + 0.3

c and λ2(x) = 0.3
a + 0.5

b + 0.5
c . We note that µ = 0.5

a + 0.4
b + 0.3

c
is fuzzy quasi β-connected but not fuzzy quasi e∗-connected. Since λ1 ≤ µ ≤ 1−λ2,
we can conclude that (X, τ1, τ2) is not (τ1, τ2) fuzzy quasi e∗-connected between
λ1 and λ2.
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Example 4.5. Let X = {a, b, c, d}, τ1 = {0, 1, µ1, µ2, µ3, µ4} and τ2 =
{0, 1, η1, η2, η3} where µ1, µ2, µ3, µ4, η1, η2, η3 : X → [0, 1] are defined as
follows: µ1 = 0

a + 0.1
b + 1

c + 1
d , µ2 = 0

a + 0.4
b + 0

c + 0
d , µ3 = 0

a + 0.4
b + 1

c + 1
d ,

µ4 = 0
a +

0.1
b + 0

c +
0
d , η1 = 1

a +
0.7
b + 1

c +
1
d , η2 = 1

a +
1
b +

0
c +

0
d , η3 = 1

a +
0.7
b + 0

c +
0
d .

Then (X, τ1, τ2) is a fbts with fuzzy topologies τ1 and τ2. Let λ1 and λ2 be two
fuzzy sets on X defined as λ1, λ2 : X → [0, 1] such that λ1(x) = 0

a + 0.4
b + 0

c + 0
d

and λ2(x) =
0
a + 0.2

b + 0.8
c + 0.8

d . We note that µ = 1
a + 0.6

b + 0
c + 0

d is fuzzy quasi
e (resp. β)-connected but not fuzzy quasi a-connected. Since λ1 ≤ µ ≤ 1 − λ2,
we can conclude that (X, τ1, τ2) is not (τ1, τ2) fuzzy quasi e (resp. β)-connected
between λ1 and λ2.

Example 4.6. Let X = {a, b}, τ1 = {0, 1, µ1, µ2} and τ2 = {0, 1, η1, η2} where
µ1, µ2, η1, η2 : X → [0, 1] are defined as follows: µ1 = 0.2

a + 0.1
b , µ2 = 0

a + 0.1
b ,

η1 = 0.3
a + 0.1

b , η2 = 0.2
a + 0.1

b . Then (X, τ1, τ2) is a fbts with fuzzy topologies τ1
and τ2. Let λ1 and λ2 be two fuzzy sets on X defined as λ1, λ2 : X → [0, 1] such
that λ1(x) = 0.4

a + 0.4
b and λ2(x) =

0.2
a + 0.3

b . We note that µ = 0.6
a + 0.7

b is fuzzy
quasi e-connected but not fuzzy quasi δs-connected.

Proposition 4.1. If a fbts (X, τ1, τ2) is fuzzy quasi e-connected between its fuzzy
sets λ1 and λ2 and if λ1 ≤ η1 and λ2 ≤ η2, then (X, τ1, τ2) is fuzzy quasi e-
connected between fuzzy sets η1 and η2.

Proof. Suppose (X, τ1, τ2) is not fuzzy quasi e-connected between fuzzy sets η1 and
η2. Then it has fuzzy quasi e-clopen set µ such that

η1 ≤ µ ≤ 1− η2. (4.1)
By construction we have, λ1 ≤ η1 and λ2 ≤ η2. From (1) we get λ1 ≤ η1 implies

λ1 ≤ µ. (4.2)
And also λ2 ≤ η2 gives

1− λ2 ≥ 1− η2 ≥ µ⇒ 1− λ2 ≥ µ

(i.e) µ ≤ 1− λ2. (4.3)
From (4.1) and (4.2) we get λ1 ≤ µ ≤ 1−λ2. This shows (X, τ1, τ2) is not fuzzy quasi
e-connected between fuzzy sets λ1 and λ2, a contradiction. Hence the proposition
is proved. □

Proposition 4.2. If a fbts (X, τ1, τ2) is fuzzy quasi e∗ (resp. a, β, δp and δs)-
connected between its fuzzy sets λ1 and λ2 and if λ1 ≤ η1 and λ2 ≤ η2, then
(X, τ1, τ2) is fuzzy quasi e (resp. a, β, δp and δs) -connected between fuzzy sets
η1 and η2.

Proof. Follows from Proposition 4.1 □

Proposition 4.3. A fbts (X, τ1, τ2) is fuzzy quasi e-connected between fuzzy sets
λ1 and λ2 iff it is fuzzy quasi e-connected between fqeCl(λ1) and fqeCl(λ2).

Proof. Sufficiency: Suppose (X, τ1, τ2) is not fuzzy quasi e-connected between
fuzzy sets λ1 and λ2. Then X has fuzzy quasi e-clopen set µ such that λ1 ≤ µ ≤
1− λ2.
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Thus we have, λ1 ≤ µ and µ ≤ 1 − λ2. Now λ1 ≤ µ implies fqeCl(λ1) ≤
fqeCl(µ) = µ, as µ is fuzzy quasi e-closed.

i.e fqeCl(λ1) ≤ µ. (4.4)
Also µ ≤ 1 − λ2 implies µ = fqeInt(µ) ≤ fqeInt(1 − λ2) = 1 − fqeCl(λ2) as µ is
fuzzy quasi e-open.

i.e µ ≤ 1− fqeCl(λ2). (4.5)
From 4.4 and 4.5 we get fqeCl(λ1) ≤ µ ≤ 1−fqeCl(λ2). This shows that (X,T1, T2)
is not fuzzy quasi e-connected between fuzzy sets fqeCl(λ1) and fqCl(λ2).

Necessity: Suppose (X, τ1, τ2) is not fuzzy quasi e-connected between fqeCl(λ1)
and fqeCl(λ2). Then X has fuzzy quasi e-clopen set µ such that fqeCl(λ1) ≤ µ ≤
1− fqeCl(λ2)

Now λ1 ≤ fqeCl(λ1) ≤ µ implies
λ1 ≤ µ. (4.6)

Also, µ ≤ 1−fqeCl(λ2). But fqeCl(λ2) ≥ λ2 which implies 1−fqeCl(λ2) ≤ 1−λ2.
Therefore, µ ≤ 1− fqeCl(λ2) ≤ 1− λ2

i.e µ ≤ 1− λ2 (4.7)
Combining (4.6) and (4.7) we get λ1 ≤ µ ≤ 1− λ2. This shows that (X, τ1, τ2) is
not fuzzy quasi e-connected between λ1 and λ2. □

Proposition 4.4. A fbts (X, τ1, τ2) is fuzzy quasi e∗ (resp. a, β, δp and δs)
-connected between fuzzy sets λ1 and λ2 iff it is fuzzy quasi e∗ (resp. a, β, δp
and δs) -connected between fqe∗Cl(λ1) and fqe∗Cl(λ2) (resp. fqaCl(λ1) and
fqaCl(λ2), fqβCl(λ1) and fqβCl(λ2), fqδpCl(λ1) and fqδpCl(λ2), fqδsCl(λ1)
and fqδsCl(λ2)).

Proof. Follows from Proposition 4.3 □

Proposition 4.5. If a fbts (X, τ1, τ2) is fuzzy quasi e-connected neither between
λ1 and η1 nor between λ1 and η2 then it is not fuzzy quasi e-connected between λ1
and η1 ∨ η2.

Proof. Suppose (X, τ1, τ2) is fuzzy quasi e-connected neither between λ1 and η1 nor
between λ1 and η2. Then it has fuzzy quasi e-clopen sets µ1, µ2 such that

λ1 ≤ µ1 ≤ 1− η1 and λ1 ≤ µ2 ≤ 1− η2. (4.8)
Now, put µ1∧µ2 = µ. Then, λ1∧λ1 ≤ µ1∧µ2 ≤ (1−η1)∧ (1−η2),⇒ λ1 ≤ µ ≤

1 − (η1 ∨ η2), which shows that (X, τ1, τ2) is not fuzzy quasi e-connected between
λ1 and η1 ∨ η2. □

Proposition 4.6. If a fbts (X, τ1, τ2) is fuzzy quasi e∗ (resp. a, β, δp and δs)
-connected neither between λ1 and η1 nor between λ1 and η2 then it is not fuzzy
quasi e∗ (resp. a, β, δp and δs) -connected between λ1 and η1 ∨ η2.

Proof. Follows from Proposition 4.5 □

Definition 4.7. A fbts (X, τ1, τ2) is said to be fuzzy quasi e (resp. e∗, a, β, δp and
δs) -connected iff it has no proper fuzzy set which is both fuzzy quasi e (resp. e∗,
a, β, δp and δs) -open and fuzzy quasi e (resp. e∗, a, β, δp and δs)-closed.
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Equivalently, a fbts (X, τ1, τ2) is said to be fuzzy quasi e (resp. e∗, a, β, δp and
δs)-connected iff it has no proper fuzzy quasi e (resp. e∗, a, β, δp and δs)-clopen
set.
Proposition 4.7. A fbts (X, τ1, τ2) is fuzzy quasi e- connected iff X has no proper
fuzzy sets λ1 and λ2 , which are fuzzy quasi e-open sets such that λ1 + λ2 = 1.

Proof. Necessity: Suppose (X, τ1, τ2) is not fuzzy quasi e-connected. Then X
has proper fuzzy set λ1, which is both fuzzy quasi e-open and fuzzy quasi e-closed.
Take 1−λ1 = λ2. Since λ1 is fuzzy quasi e-closed λ2 is fqeo set. Then λ1+λ2 = 1.

Sufficiency: Suppose that fbts (X, τ1, τ2) has fqeo sets λ1 and λ2, such that
λ1+λ2 = 1. Then λ1 = 1−λ2 is fuzzy quasi e-closed set. Similarly, λ2 is also fuzzy
quasi e-closed. Hence (X, τ1, τ2) is not fuzzy quasi e-connected. □
Proposition 4.8. A fbts (X, τ1, τ2) is fuzzy quasi e∗ (resp. a, β, δp and δs) -
connected iff X has no proper fuzzy sets λ1 and λ2 , which are fuzzy quasi e∗ (resp.
a, β, δp and δs)-open sets such that λ1 + λ2 = 1.

Proof. Follows from Proposition 4.7 □
Proposition 4.9. A fbts (X, τ1, τ2) is said to be fuzzy quasi e-connected iff it is
fuzzy quasi e-connected between each pair of its non-zero fuzzy sets λ1 and λ2.
Proof. Necessity: Let λ1 and λ2 be any a pair of non-zero fuzzy sets on X. Suppose
(X, τ1, τ2) is not fuzzy quasi e-connected between λ1 and λ2. Then it has fuzzy quasi
e-clopen set µ such that λ1 ≤ µ ≤ 1 − λ2. Since λ1, λ2 ̸= 0 then µ ̸= 0, 1 is a
proper fuzzy quasi e-clopen set of X. This shows that X has a proper fuzzy quasi
e-clopen set. Therefore (X, τ1, τ2) is not fuzzy quasi e-connected.

Sufficiency: Suppose that (X, τ1, τ2) is not fuzzy quasi e-connected. Then there
exists a proper fuzzy set µ, (say) in X such that µ is fuzzy quasi e-clopen. Since µ is
proper it is easy to find non-zero fuzzy sets λ1, λ2 in X such that λ1 ≤ µ ≤ 1− λ2.
This implies that (X, τ1, τ2) is not fuzzy quasi e-connected between λ1 and λ2. □
Proposition 4.10. A fbts (X, τ1, τ2) is said to be fuzzy quasi e∗ (resp. a, β, δp and
δs)-connected iff it is fuzzy quasi e∗ (resp. a, β, δp and δs)-connected between each
pair of its non-zero fuzzy sets λ1 and λ2.
Proof. Follows from Proposition 4.9 □
Proposition 4.11. For a non-empty subset Y of X let (Y, τ1/Y, τ2/Y ) be a subspace
of the fbts (X, τ1, τ2) and let λ1 and λ2 be fuzzy sets of Y . If (Y, τ1/Y, τ2/Y ) is
fuzzy quasi e (resp. e∗, a, β, δp and δs) -connected between the fuzzy sets λ1 and λ2
then (X, τ1, τ2) is also fuzzy quasi e (resp. e∗, a, β, δp and δs) -connected between
its fuzzy sets λ∗1 and λ∗2, where λ∗1 : X → [0, 1] is such that

λ∗1(x) = λ1(x) if x ∈ Y
= 0 if x ∈ X \ Y

and λ∗2 : X → [0, 1] is such that
λ∗2(x) = λ2(x) if x ∈ Y

= 0 if x ∈ X \ Y .
Proposition 4.12. In a fbts (X, τ1, τ2) let (Y, τ1/Y, τ2/Y ) be a fuzzy subspace for a
non-empty subset Y of X such that χY is fuzzy e-clopen set in (X, τ1, τ2) and let
δ1 and δ2 be fuzzy sets of Y . If (Y, τ1/Y, τ2/Y ) is fuzzy quasi e-connected between
δ1 and δ2 then (X, τ1, τ2) is also fuzzy quasi e-connected between δ1 and δ2.
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Proof. Suppose (X, τ1, τ2) is not fuzzy quasi e-connected between δ1 and δ2. By
construction χY is fuzzy e-clopen in (X, τ1, τ2) and hence it is fuzzy quasi e-clopen
in (X, τ1, τ2). Then by our supposition on X we have

δ1 ≤ χY ≤ 1− δ2 (4.9)
holds true. Obviously, χY is fuzzy e-clopen in (Y, τ1/Y, τ2/Y ), and it is fuzzy quasi
e-clopen in (Y, τ1/Y, τ2/Y ).

As χY in fuzzy quasi e-clopen in (Y, τ1/Y, τ2/Y ), the existence of the inequality
(4.9) for fuzzy sets δ1 and δ2 in Y implies that (Y, τ1/Y, τ2/Y ) is not fuzzy quasi
e-connected between δ1 and δ2. □
Proposition 4.13. In a fbts (X, τ1, τ2) let (Y, τ1/Y, τ2/Y ) be a fuzzy subspace for a
non-empty subset Y of X such that χY is fuzzy e∗ (resp. a, β, δp and δs)-clopen
set in (X, τ1, τ2) and let δ1 and δ2 be fuzzy sets of Y . If (Y, τ1/Y, τ2/Y ) is fuzzy
quasi e∗ (resp. a, β, δp and δs)-connected between δ1 and δ2 then (X, τ1, τ2) is also
fuzzy quasi e∗ (resp. a, β, δp and δs)-connected between δ1 and δ2.
Proof. Follows from Proposition 4.12 □
Proposition 4.14. Let (X, τ1, τ2) be a fuzzy bitopological space and let Y ⊂ X be
a non-empty subset of X such that χY is fuzzy e (resp. e∗, a, β, δp and δs) -biopen
set in (X, τ1, τ2). Suppose that (Y, τ1/Y, τ2/Y ) be a fuzzy subspace of (X, τ1, τ2). If
(X, τ1, τ2) is fuzzy quasi e (resp. e∗, a, β, δp and δs) -connected between its fuzzy
sets λ1 and λ2, then (Y, τ1/Y, τ2/Y ) is also fuzzy quasi e (resp. e∗, a, β, δp and
δs)-connected between λ1/Y and λ2/Y .

5. FUZZY QUASI e (RESP. e∗, a, β, δp, δs)-SEPARATED SETS IN FUZZY
BITOPOLOGICAL SPACES

Definition 5.1. In a fbts (X, τ1, τ2) two fuzzy sets λ1 and λ2 are termed as
(i) fuzzy quasi e-separated if λ1 ∧ fqeC1(λ2) = 0 = fqeC1(λ1) ∧ λ2.
(ii) fuzzy quasi e∗-separated if λ1 ∧ fqe∗C1(λ2) = 0 = fqe∗C1(λ1) ∧ λ2.
(iii) fuzzy quasi a-separated if λ1 ∧ fqaC1(λ2) = 0 = fqaC1(λ1) ∧ λ2.
(iv) fuzzy quasi β-separated if λ1 ∧ fqβC1(λ2) = 0 = fqβC1(λ1) ∧ λ2.
(v) fuzzy quasi δp-separated if λ1 ∧ fqδpC1(λ2) = 0 = fqδpC1(λ1) ∧ λ2.
(vi) fuzzy quasi δs-separated if λ1 ∧ fqδsC1(λ2) = 0 = fqδsC1(λ1) ∧ λ2.

Proposition 5.1. Let λ1 and λ2 be fqeo sets in a fbts (X, τ1, τ2). If λ1 and λ2 are
fuzzy quasi e-separated then λ1 ∧ λ2 = 0.

Proof. Suppose λ1 ∧ λ2 ̸= 0. Then λ1 ̸= 0 and λ2 ̸= 0, and so fqeC1(λ1) ̸= 0,
fqeC1(λ2) ̸= 0.

Therefore λ1 ∧ fqeC1(λ2) ̸= 0 and fqeC1(λ1) ∧ λ2 ̸= 0.
Thus we get λ1 ∧ fqeC1(λ2) ̸= 0 ̸= fqeC1(λ1) ∧ λ2 which shows that λ1 and λ2

are not fuzzy quasi e-separated. □
Proposition 5.2. Let λ1 and λ2 be fqe∗o (resp. a, β, δp and δs) sets in a fbts
(X, τ1, τ2). If λ1 and λ2 are fuzzy quasi e∗ (resp. a, β, δp and δs)-separated then
λ1 ∧ λ2 = 0.

Proof. Follows from Proposition 5.1 □
Proposition 5.3. If λ and µ, are fuzzy quasi e-separated sets and λ ∨ µ is fuzzy
biopen in a fbts (X, τ1, τ2), then λ and µ, are fuzzy quasi e-open sets in (X, τ1, τ2).
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Proof. Since λ and µ are fuzzy quasi e-separated sets, λ ∧ µ = 0. Then
λ = (λ ∨ µ) ∧ (1− fqeC1(λ)). (5.1)

Since λ∨µ is fuzzy biopen set and (1−fqeCl(λ)) is fqeo set then, by Proposition
5.1, (λ ∨ µ) ∧ (1− fqeCl(λ)) is fuzzy quasi e-open set and equivalently, λ is fuzzy
quasi e-open set.

Similarly, from µ = (λ ∨ µ) ∧ (1 − fqeCl(µ)), we can prove that µ, is fqeo set.
Thus we get λ and µ, are fqeo sets in (X, τ1, τ2). □

Proposition 5.4. If λ and µ, are fuzzy quasi e∗ (resp. a, β, δp and δs)-separated
sets and λ ∨ µ is fuzzy biopen in a fbts (X, τ1, τ2), then λ and µ, are fuzzy quasi
e∗ (resp. a, β, δp and δs)-open sets in (X, τ1, τ2).

Proof. Follows from Proposition 5.3 □

Proposition 5.5. Let Y ⊂ X and ψY be fuzzy biopen in (X, τ1, τ2). If λ is fuzzy
quasi e (resp. e∗, a, β, δp and δs)-open in (X, τ1, τ2) then λ∧ψY is fuzzy quasi e
(resp. e∗, a, β, δp and δs)-open in the fuzzy subspace (Y, τ1/Y, τ2/Y ) of (X, τ1, τ2).

Proposition 5.6. Let (Y, τ1/Y, τ2/Y ) be a fuzzy subspace of a fbts (X, τ1, τ2). If
λ is fuzzy quasi e (resp. e∗, a, β, δp and δs)-open in (Y, τ1/Y, τ2/Y ) and ψY is
fuzzy biopen in (X, τ1, τ2) then λ is fuzzy quasi e (resp. e∗, a, β, δp and δs)-open
in (X, τ1, τ2).

Proposition 5.7. Let Y ⊂ X such that ψY is fuzzy biopen in fbts (X, τ1, τ2) and
(Y, τ1/Y, τ2/Y ) be fuzzy subspace of (X, τ1, τ2) and let λ1 and λ1 are two fuzzy
sets on Y. Then λ1 and λ2 are fuzzy quasi e (resp. e∗, a, β, δp and δs)-separated
in (X, τ1, τ2) iff they are fuzzy quasi e (resp. e∗, a, β, δp and δs)-separated in the
subspace (Y, τ1/Y, τ2/Y ).

6. CONCLUSION

In this paper, we have introduced and studied fuzzy quasi e (resp. e∗, a, β, δs
and δp)-open sets, fuzzy quasi e (resp. e∗, a, β, δs and δp)-closed sets, fuzzy quasi e
(resp. e∗, a, β, δs and δp)-connectedness between fuzzy sets fuzzy quasi e (resp. e∗,
a, β, δs and δp)-separated sets in fuzzy bitopological spaces and some properties
and characterizations of them are investigated.
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