Annals of Communications in Mathematics Volume 3, Number 3 (2020), 218-231 ISSN: 2582-0818 © http://www.technoskypub.com

GENERALIZATIONS OF FUZZY QUASI OPEN SETS AND CONNECTEDNESS BETWEEN FUZZY SETS IN FUZZY BITOPOLOGICAL SPACES

G. SARAVANAKUMAR, A. VADIVEL*, S. MURUGAMBIGAI AND M. KAMARAJ

Abstract. In this paper we introduce and study fuzzy quasi e (resp. e^* , a, β , δs and δp)-open sets, fuzzy quasi e (resp. e^* , a, β , δs and δp)-closed sets, fuzzy quasi e (resp. e^* , a, β , δs and δp)-connectedness between fuzzy sets fuzzy quasi e (resp. e^* , a, β , δs and δp)-separated sets in fuzzy bitopological spaces.

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [29] provided a natural foundation for building new branches in mathematics. Fuzzy sets have applications in many fields such as information [23] and control [24]. In 1968 chang [6] introduced fuzzy topological space using fuzzy sets. Kandil [14] defined and studied the concept of fuzzy bitopological spaces as a generalization of bitopological spaces [16] in fuzzy setting. Since then many results from classical topology are being extended in both fuzzy topological and fuzzy bitopological spaces ([3], [4], [12], [14], [15], [18]-[21], [28]) and their properties were also investigated. The initiations of *e*-open sets, e^* -open sets and *a*-open sets in topological spaces are due to Ekici [[9],[10],[11]]. In fuzzy topology, *e*-open sets were introduced by Seenivasan in 2015 [22]. In 1971 Datta [7] introduced and studied quasi semiopen sets in bitopological spaces. Using it concepts of fuzzy quasi semiopen sets and connectedness between fuzzy sets in fuzzy bitopological spaces were defined and studied [26]. The purpose of this paper is to generalize some of the concepts of [8, 13, 25] in fuzzy bitopological spaces using fuzzy *e* (resp. e^* , a, β , δs and δp)-open sets.

2. PRELIMINARIES

We recall the following definition.

²⁰¹⁰ Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. fuzzy quasi e (resp. e^* , a, β , δs and δp)-open; fuzzy quasi e (resp. e^* , a, β , δs and δp)-connectedness between fuzzy sets; pairwise fuzzy e (resp. e^* , a, β , δs and δp)-connected between the fuzzy sets; fuzzy quasi e (resp. e^* , a, β , δs and δp)-separated sets.

Received: August 24, 2020. Accepted: October 14, 2020.

^{*}Corresponding author.

Definition 2.1. A fuzzy subset λ in an fts (X, τ) is called fuzzy regular open (*fro*, for short) [2] if $\lambda = IntCl(\lambda)$ and a regular closed set if $\lambda = ClInt(\lambda)$.

Definition 2.2. [22] The fuzzy δ interior of subset λ of X is the union of all fuzzy regular open sets contained in λ and fuzzy δ closure of subset λ of X is the intersection of all fuzzy regular closed sets containing λ .

Definition 2.3. [27] A subset λ is called fuzzy δ open if $\lambda = \delta Int(\lambda)$. The complement of fuzzy δ open set is called fuzzy δ closed (i.e., $\lambda = \delta Cl(\lambda)$.)

Definition 2.4. A subset λ is called fuzzy δ -pre open [1] (resp. fuzzy δ -semi open [17], fuzzy *e*-open [22]) if $\lambda \leq IntCl_{\delta}(\lambda)$ (resp. $\lambda \leq ClInt_{\delta}(\lambda)$, $\lambda \leq IntCl_{\delta}(\lambda) \vee ClInt_{\delta}(\lambda)$)

Definition 2.5. [1, 17, 22] The complement of a fuzzy δ -preopen set (resp. fuzzy δ -semiopen set, fuzzy *e*-open) is called fuzzy δ -preclosed (resp. fuzzy δ -semiclosed, fuzzy *e*- closed).

Definition 2.6. [1, 17, 22] The intersection of all fuzzy δ -preclosed (resp. fuzzy δ -semiclosed, fuzzy *e*-closed) sets containing λ is called fuzzy δp (resp. δs , *e*)-closure of λ and is denoted by $f\delta pCl(\lambda)$ (resp. $f\delta sCl(\lambda)$, $feCl(\lambda)$ and the union of all fuzzy δ -preopen (resp. fuzzy δ -semiopen, fuzzy *e*-open) sets contained in λ is called fuzzy δp (resp. δs , *e*)-interior of λ and is denoted by $f\delta pInt(\lambda)$ (resp. $f\delta sInt(\lambda)$, $feInt(\lambda)$).

Definition 2.7. A fuzzy bitopological space [14] (in short fbts) in an ordered triple (X, τ_1, τ_2) where τ_1 and τ_2 are fuzzy topologies on X and the members of τ_1 (or τ_2) are called τ_1 -fuzzy (or τ_2 -fuzzy) open sets.

A fuzzy set λ in a fbts (X, τ_1, τ_2) is called τ_i -fuzzy closed if its complement $1 - \lambda$ or λ' is τ_i -fuzzy open for i = 1, 2.

Definition 2.8. [5] In a fbts (X, τ_1, τ_2) a fuzzy set λ is said to be fuzzy quasi-open (in short fqo) if $\lambda = \mu \lor \eta$ for some $\mu \in \tau_1$ and $\eta \in \tau_2$.

In this paper we shall denote the family of τ_i -fuzzy e (resp. e^* , a, β , δs and δp)-open (τ_i -fuzzy e (resp. e^* , a, β , δs and δp)-closed) sets in fbts (X, τ_1, τ_2) by τ_i^{feo} (resp. $\tau_i^{fe^*o}, \tau_i^{fao}, \tau_i^{f\beta o}, \tau_i^{f\delta so}$ and $\tau_i^{f\delta po}$) (τ_i^{fec} (resp. $\tau_i^{fe^*c}, \tau_i^{fac}, \tau_i^{f\beta c}, \tau_i^{f\delta c}, \tau_i^{f\delta sc}$ and $\tau_i^{f\delta pc}$)) for i = 1, 2.

3. FUZZY QUASI e (RESP. $e^*,\,a,\,\beta,\,\delta s$ AND $\delta p)\text{-}OPEN$ SETS IN FUZZY BITOPOLOGICAL SPACES

Definition 3.1. In a fbts (X, τ_1, τ_2) a fuzzy set λ is said to be fuzzy quasi e (resp. e^* , a, β , δs and δp)-open (in short fqeo) (resp., in short fqe^*o , fqao, $fq\beta o$, $fq\delta o$, $fq\delta o$ and $fq\delta po$)) if $\lambda = \mu \lor \eta$ for some $\mu \in \tau_1^{feo}$ and $\eta \in \tau_2^{feo}$ (resp. $\mu \in \tau_1^{fe^*o}$ and $\eta \in \tau_2^{fe^*o}$, $\mu \in \tau_1^{fao}$ and $\eta \in \tau_2^{fao}$, $\mu \in \tau_1^{f\delta o}$ and $\eta \in \tau_2^{f\delta o}$, $\mu \in \tau_1^{f\delta o}$ and $\eta \in \tau_2^{f\delta o}$, $\mu \in \tau_1^{f\delta o}$ and $\eta \in \tau_2^{f\delta o}$).

Remark.

- (i) Every fuzzy quasi-open set is fuzzy quasi *e*-open sets.
- (ii) Every fuzzy quasi-open set is fuzzy quasi δ -semi open sets.

G. SARAVANAKUMAR ET AL.

- (iii) Every fuzzy quasi-open set is fuzzy quasi δ -pre open sets.
- (iv) Every fuzzy quasi δ -semi open and quasi δ -pre open set is fuzzy quasi e-open sets.
- (v) Every fuzzy quasi *a*-open set is fuzzy quasi *e*-open sets.
- (vi) Every fuzzy quasi a-open set is fuzzy quasi β -open sets.
- (vii) Every fuzzy quasie-open set is fuzzy quasi $\beta\text{-open sets}.$
- (viii) Every fuzzy quasi e^* -open set is fuzzy quasi β -open sets.

But the converse is not true as shown in the following Examples.

Example 3.2. Let $X = \{a, b, c, d\}, \tau_1 = \{0, 1, \mu_1, \mu_2, \mu_3, \mu_4\}$ and $\tau_2 = \{0, 1, \eta_1, \eta_2, \eta_3\}$ where $\mu_1, \mu_2, \mu_3, \mu_4, \eta_1, \eta_2, \eta_3 : X \to [0, 1]$ are defined as follows: $\mu_1 = \frac{0}{a} + \frac{0.1}{b} + \frac{1}{c} + \frac{1}{d}, \mu_2 = \frac{0}{a} + \frac{0.4}{b} + \frac{0}{c} + \frac{0}{d}, \mu_3 = \frac{0}{a} + \frac{0.4}{b} + \frac{1}{c} + \frac{1}{d}, \mu_4 = \frac{0}{a} + \frac{0.1}{b} + \frac{0}{c} + \frac{0}{d}, \eta_1 = \frac{0}{a} + \frac{0.3}{b} + \frac{0}{c} + \frac{0}{d}, \eta_2 = \frac{0}{a} + \frac{0}{b} + \frac{1}{c} + \frac{1}{d}, \eta_3 = \frac{0}{a} + \frac{0.3}{b} + \frac{1}{c} + \frac{1}{d}.$ Then (X, τ_1, τ_2) is a fbts with fuzzy topologies τ_1 and τ_2 . Let λ be a fuzzy set in X defined as $\lambda : X \to [0, 1]$ such that (i) $\lambda = \frac{0}{a} + \frac{0.7}{b} + \frac{1}{c} + \frac{1}{d}$. But $\lambda = \mu_5 \lor \eta_5$ where $\mu_5 = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c} + \frac{1}{d} \in \tau_1^{fqeo}$ and $\eta_5 = \frac{0}{a} + \frac{0.7}{b} + \frac{0}{c} + \frac{0}{d} \in \tau_2^{fqeo}$, therefore, λ is fqeo, but it is not fuzzy quasi-open and fuzzy quasi-open. (ii) $\lambda = \frac{1}{a} + \frac{0.4}{b} + \frac{0.4}{c} + \frac{0.4}{d}$. But $\lambda = \mu \lor \eta$ where $\mu = \frac{1}{a} + \frac{0.4}{b} + \frac{0}{c} + \frac{0}{d} \in \tau_1^{fqbo}}$ and $\eta = \frac{0}{a} + \frac{0}{b} + \frac{0}{c} + \frac{0}{d} \in \tau_2^{fqeo}$, therefore, λ is fqeo, therefore, λ is $fq\delta o$, but it is not fqe^*o and fqao. (iii) $\lambda = \frac{0.7}{a} + \frac{0.7}{c} + \frac{0.6}{d} \in \tau_2^{fqeo}$, therefore, λ is $fq\beta + \frac{1}{c} + \frac{1}{d} \in \tau_1^{fqeo}$ and $\eta = \frac{0.7}{a} + \frac{0.7}{c} + \frac{0}{d} \in \tau_2^{fqeo}$, therefore, λ is $fq\delta o$, but it is not $fq\delta so$. (iv) $\lambda = \frac{0}{a} + \frac{0.4}{b} + \frac{1}{c} + \frac{1}{d}$. But $\lambda = \mu \lor \eta$ where $\mu = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c} + \frac{1}{d} \in \tau_1^{fq\delta o}$ and $\eta = \frac{0.7}{a} + \frac{0.7}{c} + \frac{0}{d} \in \tau_2^{fqeo}$, therefore, λ is fqeo, but it is not $fq\delta so$. (iv) $\lambda = \frac{0}{a} + \frac{0.4}{b} + \frac{1}{c} + \frac{1}{d}$. But $\lambda = \mu \lor \eta$ where $\mu = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c} + \frac{1}{d} \in \tau_1^{fq\delta o}$ and $\eta = \frac{0.7}{a} + \frac{0.7}{c} + \frac{0}{d} \in \tau_2^{fqeo}$, therefore, λ is fqeo, but it is not $fq\delta so$. (iv) $\lambda = \frac{0}{a} + \frac{0.4}{b} + \frac{1}{c} + \frac{1}{d}$. But $\lambda = \mu \lor \eta$ where $\mu = \frac{0}{a} + \frac{0.4}{b} + \frac{1}{c} + \frac{1}{d} \in$

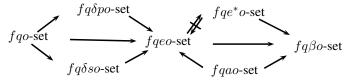
Example 3.3. Let $X = \{a, b, c\}, \tau_1 = \{0, 1, \mu_1, \mu_2, \mu_3, \mu_4\}$ and $\tau_2 = \{0, 1, \eta_1, \eta_2, \eta_3\}$ where $\mu_1, \mu_2, \mu_3, \mu_4, \eta_1, \eta_2, \eta_3 : X \to [0, 1]$ are defined as follows: $\mu_1 = \frac{0.7}{a} + \frac{1}{b} + \frac{0}{c}, \mu_2 = \frac{0.2}{a} + \frac{0}{b} + \frac{1}{c}, \mu_3 = \frac{0.7}{a} + \frac{1}{b} + \frac{1}{c}, \mu_4 = \frac{0.2}{a} + \frac{0}{b} + \frac{0}{c}, \eta_1 = \frac{0}{a} + \frac{0.3}{b} + \frac{0}{c}, \eta_2 = \frac{0}{a} + \frac{0}{b} + \frac{1}{c}, \eta_3 = \frac{0}{a} + \frac{0.3}{b} + \frac{1}{c}$. Then (X, τ_1, τ_2) is a fbts with fuzzy topologies τ_1 and τ_2 . Let λ be a fuzzy set in X defined as $\lambda : X \to [0, 1]$ such that $\lambda = \frac{0.3}{a} + \frac{0}{b} + \frac{0.2}{c}$. But $\lambda = \mu \vee \eta$ where $\mu = \frac{0.2}{a} + \frac{0}{b} + \frac{0.1}{c} \in \tau_1^{fq\beta o}$ and $\eta = \frac{0.3}{a} + \frac{0}{b} + \frac{0.2}{c} \in \tau_2^{fq\beta o}$, therefore, λ is $fq\beta o$, but it is not fqeo.

Remark. Fuzzy quasi *e*-open set and fuzzy quasi *e**-open sets are independent.

Example 3.4. In Example 3.2, $\lambda = \frac{1}{a} + \frac{0.4}{b} + \frac{0.4}{c} + \frac{0.4}{d}$. But $\lambda = \mu \vee \eta$ where $\mu = \frac{1}{a} + \frac{0.4}{b} + \frac{0}{c} + \frac{0}{d} \in \tau_1^{fqeo}$ and $\eta = \frac{0}{a} + \frac{0}{b} + \frac{0.4}{c} + \frac{0.4}{d} \in \tau_2^{fqeo}$, therefore, λ is fqeo, but it is not fqe^*o .

Example 3.5. In Example 3.3, $\lambda = \frac{0.3}{a} + \frac{0}{b} + \frac{0.2}{c}$. But $\lambda = \mu \lor \eta$ where $\mu = \frac{0.2}{a} + \frac{0}{b} + \frac{0.1}{c} \in \tau_1^{fe^*o}$ and $\eta = \frac{0.3}{a} + \frac{0}{b} + \frac{0.2}{c} \in \tau_2^{fe^*o}$, therefore, λ is fqe^*o , but it is not fqeo.

All above discussed interrelation can be put together in an arrow diagram is given as follows.



220

Proposition 3.1. A fuzzy set λ in a fbts (X, τ_1, τ_2) is

- (i) f qeo iff $\lambda = eInt_{\tau_1}(\lambda) \vee eInt_{\tau_2}(\lambda)$.
- (ii) fqe^*o iff $\lambda = e^*Int_{\tau_1}(\lambda) \vee e^*Int_{\tau_2}(\lambda)$.
- (iii) f qao iff $\lambda = aInt_{\tau_1}(\lambda) \vee aInt_{\tau_2}(\lambda)$.
- (iv) $fq\beta o$ iff $\lambda = \beta Int_{\tau_1}(\lambda) \vee \beta Int_{\tau_2}(\lambda)$.
- (v) $fq\delta so$ iff $\lambda = \delta sInt_{\tau_1}(\lambda) \lor \delta sInt_{\tau_2}(\lambda)$.
- (vi) $fq\delta po$ iff $\lambda = \delta pInt_{\tau_1}(\lambda) \vee \delta pInt_{\tau_2}(\lambda)$.

Proof. Prove the first part only the other cases are similar.

(i) Suppose λ is f qeo set in fbts (X, τ_1, τ_2) . Then, by definition, we have

$$\lambda = \mu \lor \eta \tag{3.1}$$

for some $\mu \in \tau_1^{feo}$ and $\eta \in \tau_2^{feo}$.

From (3.1), $\mu = eInt_{\tau_1}(\lambda), \eta = eInt_{\tau_2}(\lambda)$ and so $\lambda = eInt_{\tau_1}(\lambda) \lor eInt_{\tau_2}(\lambda)$.

Conversely, suppose that $\lambda = eInt_{\tau_1}(\lambda) \lor eInt_{\tau_2}(\lambda) = \lambda_1 \lor \lambda_2$ (say) where $\lambda_1 =$ $eInt_{\tau_1}(\lambda)$ and $\lambda_2 = eInt_{\tau_2}(\lambda)$. Clearly λ_1 and λ_2 are τ_1 -fuzzy e-open and τ_2 -fuzzy *e*-open sets respectively. Therefore λ is fqeo set. \square

Remark.

- (i) Every τ_1 -fuzzy e-open (or τ_2 -fuzzy e-open) sets is f qeo set.
- (ii) Every τ_1 -fuzzy *a*-open (or τ_2 -fuzzy *a*-open) sets is fqao set.
- (iii) Every τ_1 -fuzzy e^* -open (or τ_2 -fuzzy e^* -open) sets is fqe^*o set.
- (iv) Every τ_1 -fuzzy β -open (or τ_2 -fuzzy β -open) sets is $fq\beta o$ set.
- (v) Every τ_1 -fuzzy δp -open (or τ_2 -fuzzy δp -open) sets is $fq\delta po$ set.
- (vi) Every τ_1 -fuzzy δs -open (or τ_2 -fuzzy δs -open) sets is $fq\delta so$ set.

But the converse is not true as shown in the following Example ??.

Example 3.6. In Example 3.2, let λ be a fuzzy set in X defined as $\lambda : X \to [0, 1]$ such that $\lambda = \frac{0}{a} + \frac{0.7}{b} + \frac{1}{c} + \frac{1}{d}$. But $\lambda = \mu_5 \vee \eta_4$ where $\mu_5 \in \tau_1^{feo}$ and $\eta_4 \in \tau_2^{feo}$, therefore, λ is fqeo, but it is not τ_2 -fuzzy e-open set.

Example 3.7. In Examples 3.3 and 3.9, let λ be a fuzzy set in X defined as $\lambda: X \to [0, 1]$ such that (i) $\lambda = \frac{0.6}{a} + \frac{1}{b} + \frac{1}{c}$. But $\lambda = \mu_5 \lor \eta_4$ where $\mu_5 \in \tau_1^{fe^*o}$ and $\eta_4 \in \tau_2^{fe^*o}$, therefore, λ is fqe^*o , but it is not τ_2 -fuzzy e^* -open set. (ii) $\lambda = \frac{0.5}{a} + \frac{1}{b} + \frac{1}{c}$. But $\lambda = \mu_6 \lor \eta_5$ where $\mu_6 \in \tau_1^{f\beta o}$ and $\eta_5 \in \tau_2^{f\beta o}$, therefore, λ is $fq\beta o$, but it is not τ_2 -fuzzy β -open set.

(iii) $\lambda = \frac{0.1}{a} + \frac{0}{b} + \frac{1}{c}$. But $\lambda = \mu_7 \vee \eta_2$ where $\mu_7 \in \tau_1^{fao}$ and $\eta_2 \in \tau_2^{fao}$, therefore, λ is fqao, but it is not τ_2 -fuzzy a-open set.

(iv) $\lambda = \frac{0.5}{a} + \frac{1}{b} + \frac{1}{c}$. But $\lambda = \mu_6 \vee \eta_6$ where $\mu_6 \in \tau_1^{f\delta po}$ and $\eta_6 \in \tau_2^{f\delta po}$, therefore, λ is $fq\delta po$, but it is not τ_2 -fuzzy δp -open set.

(v) $\lambda = \frac{0.1}{a} + \frac{0}{b} + \frac{1}{c}$. But $\lambda = \mu_6 \vee \eta_2$ where $\mu_6 \in \tau_1^{f\delta so}$ and $\eta_2 \in \tau_2^{f\delta so}$, therefore, λ is $fq\delta so$, but it is not τ_2 -fuzzy δs -open set.

Proposition 3.2. Arbitrary union of fqeo (resp. fqe^*o , fqao, $fq\beta o$, $fq\delta so$, $fq\delta po$) sets is a fqeo (resp. fqe^*o , fqao, $fq\beta o$, $fq\delta so$, $fq\delta po$) set.

Proof. Let $\lambda_i, i \in I$ be figeo sets in a fts X. To prove that $\bigvee_{i \in I} \lambda_i$ is figeo set. Let $\bigvee_{i \in I} \lambda_i = \lambda_1 \vee \lambda_2 \vee \cdots = (\mu_1 \vee \eta_1) \vee (\mu_2 \vee \eta_2) \cdots = \bigvee_{i \in I} (\mu_i \vee \eta_i)$ as $\lambda_1, \lambda_2, \ldots$ are fqeo set. Then $\bigvee_{i \in I} \lambda_i = \bigvee_{i \in I} (\mu_i \vee \eta_i) = (\bigvee_{i \in I} \mu_i) \vee (\bigvee_{i \in I} \eta_i)$ for some $\bigvee_{i \in I} \mu_i \in T_1^{feo}$ and $\bigvee_{i \in I} \eta_i \in T_2^{feo}. \text{ Hence } \bigvee_{i \in I} \lambda_i \text{ is } fqeo \text{ set. Thus arbitrary union of } fqeo \text{ sets is a fqeo sets } is a fqeo \text{ set.}$

The proof of the other cases are similar.

Remark. If λ_1 and λ_2 are two fqeo (resp. fqe^{*}o, fqao, fq β o, fq δ so, fq δ po) sets in a fbts (X, τ_1, τ_2) then $\lambda_1 \wedge \lambda_2$ need not be fqeo (resp. fqe^{*}o, fqao, fq β o, fq δ so, fq δ po) as shown in the following Examples 3.8 and 3.9.

Example 3.8. In Example 3.2, let λ_1 , λ_2 , μ_5 , μ_6 , η_4 and η_5 be two fuzzy sets on X and are defined as λ_1 , λ_2 , μ_5 , μ_6 , η_4 , $\eta_5 : X \to [0, 1]$ such that $\lambda_1 = \frac{0}{a} + \frac{0.7}{b} + \frac{1}{c} + \frac{1}{d}$, $\lambda_2 = \mu_6 = \frac{0.1}{a} + \frac{0.5}{b} + \frac{1}{c} + \frac{1}{d}$, $\mu_5 = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c} + \frac{1}{d}$, $\eta_4 = \frac{0}{a} + \frac{0.7}{b} + \frac{0}{c} + \frac{0}{d}$ and $\eta_5 = \frac{0}{a} + \frac{0.4}{b} + \frac{0}{c} + \frac{1}{d}$. As $\lambda_1 = \mu_5 \lor \eta_4$, $\mu_5 \in \tau_1^{feo}$ and $\eta_4 \in \tau_2^{feo}$, and $\lambda_2 = \mu_6 \lor \eta_5$, $\mu_6 \in \tau_1^{feo}$, and $\eta_5 \in \tau_2^{feo}$, λ_1 and λ_2 are fuzzy quasi e-open (fqeo) sets in X. However $\lambda_1 \land \lambda_2 = \lambda$ (say) where $\lambda = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c} + \frac{1}{d}$, is not equal to $\mu \lor \eta$ for some $\mu \in \tau_1^{feo}$ and $\eta \in \tau_2^{feo}$, which shows that $\lambda_1 \land \lambda_2$ is not fqeo set in X. Hence the Remark 3

Example 3.9. In Example 3.3, let $\lambda_1 = \mu_3$, $\lambda_2 = \mu_5$, μ_6 , μ_7 , μ_8, μ_9 , η_4 , η_5 and η_6 be two fuzzy sets on X and are defined as λ_1 , λ_2 , $\eta_4 : X \to [0, 1]$ such that $\lambda_2 = \mu_5 = \frac{0.6}{a} + \frac{1}{b} + \frac{1}{c}$, $\mu_6 = \frac{0.5}{a} + \frac{1}{b} + \frac{1}{c}$, $\mu_7 = \frac{0.1}{a} + \frac{0}{b} + \frac{0}{c}$, $\mu_8 = \frac{0.9}{a} + \frac{1}{b} + \frac{0}{c}$, $\mu_9 = \frac{0.1}{a} + \frac{0}{b} + \frac{1}{c}$, $\eta_4 = \frac{0.2}{a} + \frac{0.1}{b} + \frac{0}{c}$, $\eta_5 = \frac{0.3}{a} + \frac{0.2}{b} + \frac{0}{c}$ and $\eta_6 = \frac{0}{a} + \frac{0.2}{b} + \frac{0}{c}$. (i) As $\lambda_1 = \mu_3 \lor \eta_4$, $\mu_3 \in \tau_1^{fe^*o}$ and $\eta_4 \in \tau_2^{fe^*o}$, and $\lambda_2 = \mu_5 \lor \eta_4$, $\mu_5 \in \tau_1^{fe^*o}$, and $\eta_4 \in \tau_2^{fe^*o}$, λ_1 and λ_2 are fuzzy quasi e^* -open (fqe^*o) sets in X. However $\lambda_1 \land \lambda_2 = \lambda$ (say) where $\lambda = \frac{0.6}{a} + \frac{1}{b} + \frac{1}{c}$, is not equal to $\mu \lor \eta$ for some $\mu \in \tau_1^{fe^*o}$ and $\eta \in \tau_2^{fe^*o}$, which shows that $\lambda_1 \land \lambda_2$ is not fqe^*o set in X.

(ii) As $\lambda_1 = \mu_3 \vee \eta_5$, $\mu_3 \in \tau_1^{f\beta o}$ and $\eta_5 \in \tau_2^{f\beta o}$, and $\lambda_2 = \mu_6 \vee \eta_5$, $\mu_6 \in \tau_1^{f\beta o}$, and $\eta_5 \in \tau_2^{f\beta o}$, λ_1 and λ_2 are fuzzy quasi β -open $(fq\beta o)$ sets in X. However $\lambda_1 \wedge \lambda_2 = \lambda$ (say) where $\lambda = \frac{0.5}{a} + \frac{1}{b} + \frac{1}{c}$, is not equal to $\mu \vee \eta$ for some $\mu \in \tau_1^{f\beta o}$ and $\eta \in \tau_2^{f\beta o}$, which shows that $\lambda_1 \wedge \lambda_2$ is not $fq\beta o$ set in X. (iii) As $\lambda_1 = \mu_7 \vee \eta_2$, $\mu_7 \in \tau_1^{fa o}$ and $\eta_2 \in \tau_2^{fa o}$, and $\lambda_2 = \mu_2 \vee \eta_2$, $\mu_2 \in \tau_1^{fa o}$, and

(iii) As $\lambda_1 = \mu_7 \vee \eta_2$, $\mu_7 \in \tau_1^{fao}$ and $\eta_2 \in \tau_2^{fao}$, and $\lambda_2 = \mu_2 \vee \eta_2$, $\mu_2 \in \tau_1^{fao}$, and $\eta_2 \in \tau_2^{fao}$, λ_1 and λ_2 are fuzzy quasi *a*-open (*fqao*) sets in *X*. However $\lambda_1 \wedge \lambda_2 = \lambda$ (say) where $\lambda = \frac{0.1}{a} + \frac{0}{b} + \frac{1}{c}$, is not equal to $\mu \vee \eta$ for some $\mu \in \tau_1^{fao}$ and $\eta \in \tau_2^{fao}$, which shows that $\lambda_1 \wedge \lambda_2$ is not *fqao* set in *X*. (iv) As $\lambda_1 = \mu_3 \vee \eta_6$, $\mu_3 \in \tau_1^{f\delta po}$ and $\eta_6 \in \tau_2^{f\delta po}$, and $\lambda_2 = \mu_6 \vee \eta_6$, $\mu_6 \in \tau_1^{f\delta po}$,

(iv) As $\lambda_1 = \mu_3 \vee \eta_6$, $\mu_3 \in \tau_1^{f\delta po}$ and $\eta_6 \in \tau_2^{f\delta po}$, and $\lambda_2 = \mu_6 \vee \eta_6$, $\mu_6 \in \tau_1^{f\delta po}$, and $\eta_6 \in \tau_2^{f\delta po}$, λ_1 and λ_2 are fuzzy quasi δp -open ($fq\delta po$) sets in X. However $\lambda_1 \wedge \lambda_2 = \lambda$ (say) where $\lambda = \frac{0.5}{a} + \frac{1}{b} + \frac{1}{c}$, is not equal to $\mu \vee \eta$ for some $\mu \in \tau_1^{f\delta po}$ and $\eta \in \tau_2^{f\delta po}$, which shows that $\lambda_1 \wedge \lambda_2$ is not $fq\delta po$ set in X. (v) As $\lambda_1 = \mu_8 \vee \eta_2$, $\mu_8 \in \tau_1^{f\delta so}$ and $\eta_2 \in \tau_2^{f\delta so}$, and $\lambda_2 = \mu_9 \vee \eta_2$, $\mu_9 \in \tau_1^{f\delta so}$,

(v) As $\lambda_1 = \mu_8 \vee \eta_2$, $\mu_8 \in \tau_1^{f\delta so}$ and $\eta_2 \in \tau_2^{f\delta so}$, and $\lambda_2 = \mu_9 \vee \eta_2$, $\mu_9 \in \tau_1^{f\delta so}$, and $\eta_2 \in \tau_2^{f\delta so}$, λ_1 and λ_2 are fuzzy quasi δs -open $(fq\delta so)$ sets in X. However $\lambda_1 \wedge \lambda_2 = \lambda$ (say) where $\lambda = \frac{0.1}{a} + \frac{0}{b} + \frac{1}{c}$, is not equal to $\mu \vee \eta$ for some $\mu \in \tau_1^{f\delta so}$ and $\eta \in \tau_2^{f\delta so}$, which shows that $\lambda_1 \wedge \lambda_2$ is not $fq\delta so$ set in X. Hence the Remark 3

Definition 3.10. A fuzzy set λ in a fbts (X, τ_1, τ_2) is said to be fuzzy quasi e (resp. e^* , a, β , δp and δs)-closed (in short fqec) (resp. in short, fqe^*c , $fq\beta c$, fqac, $fq\delta sc$, $fq\delta pc$) iff its complement $1 - \lambda$ or λ' is fqeo (in short fqe^*o , $fq\beta o$, fqao, $fq\delta so$, $fq\delta po$) set.

Remark. Every τ_1 -fuzzy e (resp. e^* , a, β , δp and δs)-closed (or τ_2 -fuzzy e (resp. e^* , a, β , δp and δs)-closed) set in any fbts (X, τ_1, τ_2) is fuzzy quasi e (resp. e^* , a, β , δp and δs)-closed.

Remark. Finite intersection of fqec (resp. fqe^*c , fqac, $fq\beta c$, $fq\delta pc$ and $fq\delta sc$) sets is also a fqec (resp. fqe^*c , fqac, $fq\beta c$, $fq\delta pc$ and $fq\delta sc$) set.

Definition 3.11. Let λ be a fuzzy set in fbts (X, τ_1, τ_2) . Then fuzzy quasi *e*-closure and fuzzy quasi *e*-interior of λ , denoted by $fqeCl(\lambda)$ and $fqeInt(\lambda)$ respectively, are defined as follows:

- (1) $fqeCl(\lambda) = \wedge \{\delta : \delta \text{ is } fqec \text{ set and } \delta \ge \lambda\}$
- (2) $fqeInt(\lambda) = \lor \{\eta : \eta \text{ is } fqeo \text{ set and } \eta \le \lambda\}$
- In fact a fuzzy set λ in a fbts (X, τ_1, τ_2) is
- (1) fqec iff $\lambda = fqeCl(\lambda)$,
- (2) $fqeo \text{ iff } \lambda = fqeInt(\lambda).$

In a similar way we can define fqe^*Cl , fqaCl, $fq\beta Cl$, $fq\delta pCl$ and $fq\delta sCl$ (resp. fqe^*Int , fqaInt, $fq\beta Int$, $fq\delta pInt$ and $fq\delta sInt$).

Remark. The interrelation between $fqeCl(\lambda)$ and $fqeInt(\lambda)$ are given as follows: (i) $1 - fqeCl(\lambda) = 1 - \wedge \{\delta : \delta \text{ is } fqec \text{ set and } \delta \geq \lambda \}$

 $= \vee \{\delta^{'} : \delta^{'} \text{ is } fqeo \text{ set and } \delta^{'} \leq \lambda^{'} \}.$

Thus $1 - fqeCl(\lambda) = fqeInt(\lambda')$.

(ii) $1 - fqeInt(\lambda) = 1 - \forall \{\eta : \eta \text{ is } fqeo \text{ set and } \eta \leq \lambda \}$

 $= \wedge \{\eta' : \eta' \text{ is } fqec \text{ set and } \eta' \geq \lambda' \}.$

Thus $1 - fqInt(\lambda) = fqeCl(\lambda')$. In a similar way we relate the interrelation between other generalized sets also.

Definition 3.12. A fuzzy set λ in a fbts (X, τ_1, τ_2) is said to be (τ_1, τ_2) -fuzzy e (resp. e^* , $a, \beta, \delta p$ and δs)-clopen (resp. (τ_2, τ_1) -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-clopen) set if it is τ_1 -fuzzy e (resp. e^* , $a, \beta, \delta p$ and δs)-closed and τ_2 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-closed and τ_1 -fuzzy e (resp. $e^*, a, \beta, \delta p$ and δs)-open).

Definition 3.13. A fuzzy set λ in a fbts (X, τ_1, τ_2) is said to be fuzzy e (resp. e^* , a, β , δp and δs)-biclopen if it is both (τ_1, τ_2) -fuzzy e (resp. e^* , a, β , δp and δs)-clopen as well as (τ_2, τ_1) -fuzzy e (resp. e^* , a, β , δp and δs)-clopen set.

Definition 3.14. In a fbts (X, τ_1, τ_2) a fuzzy quasi e (resp. e^* , a, β , δp and δs)clopen set means a set which is both fuzzy quasi e (resp. e^* , a, β , δp and δs)-closed as well as fuzzy quasi e (resp. e^* , a, β , δp and δs)-closed.

Remark. Every (τ_1, τ_2) -fuzzy e (resp. e^* , a, β , δp and δs)-clopen (resp., (τ_2, τ_1) -fuzzy e (resp. e^* , a, β , δp and δs)-clopen) set is fuzzy quasi e (resp. e^* , a, β , δp and δs)-clopen. But the converse is not true as shown by Example ??

Example 3.15. In Example 3.2, let μ be a fuzzy set on X defined as $\mu : X \to [0, 1]$ such that $\mu = \frac{0}{a} + \frac{0.7}{b} + \frac{1}{c} + \frac{1}{d}$. Then μ is fuzzy quasi *e*-clopen in the fbts (X, τ_1, τ_2) . But it is not (τ_1, τ_2) -fuzzy *e*-clopen.

Example 3.16. In Example 3.3, let μ be a fuzzy set on X defined as $\mu : X \to [0, 1]$ such that (i) $\mu = \frac{0.6}{a} + \frac{1}{b} + \frac{1}{c}$. Then μ is fuzzy quasi e^* -clopen in the fbts (X, τ_1, τ_2) . But it is not (τ_1, τ_2) -fuzzy e^* -clopen.

(ii) $\mu = \frac{0.5}{a} + \frac{1}{b} + \frac{1}{c}$. Then μ is fuzzy quasi β (resp. δp)-clopen in the fbts (X, τ_1, τ_2) . But it is not (τ_1, τ_2) -fuzzy β (resp. δp)-clopen. (iii) $\mu = \frac{0.1}{a} + \frac{0}{b} + \frac{1}{c}$. Then μ is fuzzy quasi a (resp. δs)-clopen in the fbts (X, τ_1, τ_2) . But it is not (τ_1, τ_2) -fuzzy a(resp. δs)-clopen.

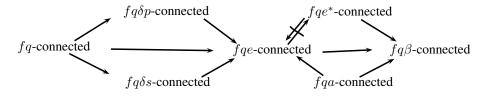
4. FUZZY QUASI e (RESP. e^* , a, β , δp AND δs)-CONNECTEDNESS BETWEEN FUZZY SETS

Definition 4.1. A fbts (X, τ_1, τ_2) is said to be (τ_1, τ_2) -fuzzy e (resp. e^* , a, β , δp and δs)-connected between some fuzzy sets λ_1 and λ_2 if there exists no (τ_1, τ_2) -fuzzy e (resp. e^* , a, β , δp and δs)-clopen set μ such that $\lambda_1 \leq \mu \leq 1 - \lambda_2$. Further (X, τ_1, τ_2) is said to be pairwise fuzzy e (resp. e^* , a, β , δp and δs) -connected between the fuzzy sets λ_1 and λ_2 if it is (τ_1, τ_2) -fuzzy e (resp. e^* , a, β , δp and δs) -connected between the fuzzy sets λ_1 and λ_2 if it is (τ_1, τ_2) -fuzzy e (resp. e^* , a, β , δp and δs) -connected between λ_1 and λ_2 .

Example 4.2. In Examples 3.8 and 3.9 is an example of pairwise fuzzy *e*-connected.

Definition 4.3. A fbts (X, τ_1, τ_2) is said to be fuzzy quasi e (resp. e^* , $a, \beta, \delta p$ and δs) -connected between its fuzzy sets λ_1 and λ_2 , if it has no fuzzy quasi e (resp. e^* , $a, \beta, \delta p$ and δs) -clopen set μ such that $\lambda_1 \leq \mu \leq 1 - \lambda_2$.

Remark. The implications contained in the following diagram are true and the reverse implications need not be true as shown in the following examples.



Example 4.4. In Example 3.3, let λ_1 and λ_2 be two fuzzy sets on X defined as λ_1 , $\lambda_2 : X \to [0, 1]$ such that (i) $\lambda_1(x) = \frac{0.7}{a} + \frac{0.8}{b} + \frac{0}{c}$ and $\lambda_2(x) = \frac{0.2}{a} + \frac{0}{b} + \frac{1}{c}$. We note that $\mu = \frac{0.7}{a} + \frac{0.9}{b} + \frac{0}{c}$ is fuzzy quasi e (resp. δs and δp)-connected but not fuzzy quasi (resp. e^*)-connected. Since $\lambda_1 \le \mu \le 1 - \lambda_2$, we can conclude that (X, τ_1, τ_2) is not (τ_1, τ_2) fuzzy quasi connected between λ_1 and λ_2 . But, as there is no (τ_1, τ_2) -fuzzy clopen set μ satisfying $\lambda_1 \le \mu \le 1 - \lambda_2$, (X, τ_1, τ_2) is not fuzzy quasi (resp. e^*)-connected.

(ii) $\lambda_1(x) = \frac{0.4}{a} + \frac{0}{b} + \frac{0.6}{c}$ and $\lambda_2(x) = \frac{0.3}{a} + \frac{0}{b} + \frac{0.2}{c}$. We note that $\mu = \frac{0.6}{a} + \frac{0}{b} + \frac{0.8}{c}$ is fuzzy quasi e^* (resp. β)-connected but not fuzzy quasi e-connected. Since $\lambda_1 \leq \mu \leq 1 - \lambda_2$, we can conclude that (X, τ_1, τ_2) is not (τ_1, τ_2) fuzzy quasi e-connected between λ_1 and λ_2 .

(iii) $\lambda_1(x) = \frac{0.7}{a} + \frac{0.5}{b} + \frac{0}{c}$ and $\lambda_2(x) = \frac{0.2}{a} + \frac{0.3}{b} + \frac{0.9}{c}$. We note that $\mu = \frac{0.7}{a} + \frac{0.6}{b} + \frac{0}{c}$ is fuzzy quasi *e*-connected but not fuzzy quasi δp -connected. Since $\lambda_1 \leq \mu \leq 1 - \lambda_2$, we can conclude that (X, τ_1, τ_2) is not (τ_1, τ_2) fuzzy quasi δp -connected between λ_1 and λ_2 .

(iv) $\lambda_1(x) = \frac{0.5}{a} + \frac{0.2}{b} + \frac{0.3}{c}$ and $\lambda_2(x) = \frac{0.3}{a} + \frac{0.5}{b} + \frac{0.5}{c}$. We note that $\mu = \frac{0.5}{a} + \frac{0.4}{b} + \frac{0.3}{c}$ is fuzzy quasi β -connected but not fuzzy quasi e^* -connected. Since $\lambda_1 \leq \mu \leq 1 - \lambda_2$, we can conclude that (X, τ_1, τ_2) is not (τ_1, τ_2) fuzzy quasi e^* -connected between λ_1 and λ_2 .

Example 4.5. Let $X = \{a, b, c, d\}$, $\tau_1 = \{0, 1, \mu_1, \mu_2, \mu_3, \mu_4\}$ and $\tau_2 = \{0, 1, \eta_1, \eta_2, \eta_3\}$ where $\mu_1, \mu_2, \mu_3, \mu_4, \eta_1, \eta_2, \eta_3 : X \to [0,1]$ are defined as follows: $\mu_1 = \frac{0}{a} + \frac{0.1}{b} + \frac{1}{c} + \frac{1}{d}, \mu_2 = \frac{0}{a} + \frac{0.4}{b} + \frac{0}{c} + \frac{0}{d}, \mu_3 = \frac{0}{a} + \frac{0.4}{b} + \frac{1}{c} + \frac{1}{d}, \mu_4 = \frac{0}{a} + \frac{0.1}{b} + \frac{0}{c} + \frac{0}{d}, \eta_1 = \frac{1}{a} + \frac{0.7}{b} + \frac{1}{c} + \frac{1}{d}, \eta_2 = \frac{1}{a} + \frac{1}{b} + \frac{0}{c} + \frac{0}{d}, \eta_3 = \frac{1}{a} + \frac{0.7}{b} + \frac{0}{c} + \frac{0}{d}.$ Then (X, τ_1, τ_2) is a fbts with fuzzy topologies τ_1 and τ_2 . Let λ_1 and λ_2 be two fuzzy sets on X defined as $\lambda_1, \lambda_2 : X \to [0, 1]$ such that $\lambda_1(x) = \frac{0}{a} + \frac{0.4}{b} + \frac{0}{c} + \frac{0}{d}$ and $\lambda_2(x) = \frac{0}{a} + \frac{0.2}{b} + \frac{0.8}{c} + \frac{0.8}{d}$. We note that $\mu = \frac{1}{a} + \frac{0.6}{b} + \frac{0}{c} + \frac{0}{d}$ is fuzzy quasi e (resp. β)-connected but not fuzzy quasi a-connected. Since $\lambda_1 \leq \mu \leq 1 - \lambda_2$, we can conclude that (X, τ_1, τ_2) is not (τ_1, τ_2) fuzzy quasi e (resp. β)-connected between λ_1 and λ_2 .

Example 4.6. Let $X = \{a, b\}, \tau_1 = \{0, 1, \mu_1, \mu_2\}$ and $\tau_2 = \{0, 1, \eta_1, \eta_2\}$ where $\mu_1, \mu_2, \eta_1, \eta_2 : X \to [0, 1]$ are defined as follows: $\mu_1 = \frac{0.2}{a} + \frac{0.1}{b}, \mu_2 = \frac{0}{a} + \frac{0.1}{b}, \eta_1 = \frac{0.3}{a} + \frac{0.1}{b}, \eta_2 = \frac{0.2}{a} + \frac{0.1}{b}$. Then (X, τ_1, τ_2) is a fbts with fuzzy topologies τ_1 and τ_2 . Let λ_1 and λ_2 be two fuzzy sets on X defined as $\lambda_1, \lambda_2 : X \to [0, 1]$ such that $\lambda_1(x) = \frac{0.4}{a} + \frac{0.4}{b}$ and $\lambda_2(x) = \frac{0.2}{a} + \frac{0.3}{b}$. We note that $\mu = \frac{0.6}{a} + \frac{0.7}{b}$ is fuzzy quasi *e*-connected but not fuzzy quasi δs -connected.

Proposition 4.1. If a fbts (X, τ_1, τ_2) is fuzzy quasi *e*-connected between its fuzzy sets λ_1 and λ_2 and if $\lambda_1 \leq \eta_1$ and $\lambda_2 \leq \eta_2$, then (X, τ_1, τ_2) is fuzzy quasi *e*-connected between fuzzy sets η_1 and η_2 .

Proof. Suppose (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between fuzzy sets η_1 and η_2 . Then it has fuzzy quasi *e*-clopen set μ such that

$$\eta_1 \le \mu \le 1 - \eta_2. \tag{4.1}$$

By construction we have, $\lambda_1 \leq \eta_1$ and $\lambda_2 \leq \eta_2$. From (1) we get $\lambda_1 \leq \eta_1$ implies

$$\lambda_1 \le \mu. \tag{4.2}$$

And also $\lambda_2 \leq \eta_2$ gives

$$1 - \lambda_2 \ge 1 - \eta_2 \ge \mu \Rightarrow 1 - \lambda_2 \ge \mu$$

$$(i.e) \ \mu \le 1 - \lambda_2. \tag{4.3}$$

From (4.1) and (4.2) we get $\lambda_1 \leq \mu \leq 1-\lambda_2$. This shows (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between fuzzy sets λ_1 and λ_2 , a contradiction. Hence the proposition is proved.

Proposition 4.2. If a fbts (X, τ_1, τ_2) is fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-connected between its fuzzy sets λ_1 and λ_2 and if $\lambda_1 \leq \eta_1$ and $\lambda_2 \leq \eta_2$, then (X, τ_1, τ_2) is fuzzy quasi e (resp. $a, \beta, \delta p$ and δs)-connected between fuzzy sets η_1 and η_2 .

Proof. Follows from Proposition 4.1

Proposition 4.3. A fbts (X, τ_1, τ_2) is fuzzy quasi *e*-connected between fuzzy sets λ_1 and λ_2 iff it is fuzzy quasi *e*-connected between $fqeCl(\lambda_1)$ and $fqeCl(\lambda_2)$.

Proof. Sufficiency: Suppose (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between fuzzy sets λ_1 and λ_2 . Then X has fuzzy quasi *e*-clopen set μ such that $\lambda_1 \leq \mu \leq 1 - \lambda_2$.

Thus we have, $\lambda_1 \leq \mu$ and $\mu \leq 1 - \lambda_2$. Now $\lambda_1 \leq \mu$ implies $fqeCl(\lambda_1) \leq fqeCl(\mu) = \mu$, as μ is fuzzy quasi *e*-closed.

$$i.e \ fqeCl(\lambda_1) \le \mu. \tag{4.4}$$

Also $\mu \leq 1 - \lambda_2$ implies $\mu = fqeInt(\mu) \leq fqeInt(1 - \lambda_2) = 1 - fqeCl(\lambda_2)$ as μ is fuzzy quasi *e*-open.

$$i.e \ \mu \le 1 - fqeCl(\lambda_2). \tag{4.5}$$

From 4.4 and 4.5 we get $fqeCl(\lambda_1) \leq \mu \leq 1 - fqeCl(\lambda_2)$. This shows that (X, T_1, T_2) is not fuzzy quasi *e*-connected between fuzzy sets $fqeCl(\lambda_1)$ and $fqCl(\lambda_2)$.

Necessity: Suppose (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between $fqeCl(\lambda_1)$ and $fqeCl(\lambda_2)$. Then X has fuzzy quasi *e*-clopen set μ such that $fqeCl(\lambda_1) \leq \mu \leq 1 - fqeCl(\lambda_2)$

Now $\lambda_1 \leq fqeCl(\lambda_1) \leq \mu$ implies

$$\lambda_1 \le \mu. \tag{4.6}$$

Also, $\mu \leq 1 - fqeCl(\lambda_2)$. But $fqeCl(\lambda_2) \geq \lambda_2$ which implies $1 - fqeCl(\lambda_2) \leq 1 - \lambda_2$. Therefore, $\mu \leq 1 - fqeCl(\lambda_2) \leq 1 - \lambda_2$

$$i.e \ \mu \le 1 - \lambda_2 \tag{4.7}$$

Combining (4.6) and (4.7) we get $\lambda_1 \leq \mu \leq 1 - \lambda_2$. This shows that (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between λ_1 and λ_2 .

Proposition 4.4. A fbts (X, τ_1, τ_2) is fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs) -connected between fuzzy sets λ_1 and λ_2 iff it is fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs) -connected between $fqe^*Cl(\lambda_1)$ and $fqe^*Cl(\lambda_2)$ (resp. $fqaCl(\lambda_1)$ and $fqaCl(\lambda_2), fq\beta Cl(\lambda_1)$ and $fq\beta Cl(\lambda_2), fq\delta pCl(\lambda_1)$ and $fq\delta sCl(\lambda_2)$).

Proof. Follows from Proposition 4.3

Proposition 4.5. If a fbts (X, τ_1, τ_2) is fuzzy quasi *e*-connected neither between λ_1 and η_1 nor between λ_1 and η_2 then it is not fuzzy quasi *e*-connected between λ_1 and $\eta_1 \vee \eta_2$.

Proof. Suppose (X, τ_1, τ_2) is fuzzy quasi *e*-connected neither between λ_1 and η_1 nor between λ_1 and η_2 . Then it has fuzzy quasi *e*-clopen sets μ_1, μ_2 such that

$$\lambda_1 \le \mu_1 \le 1 - \eta_1 \text{ and } \lambda_1 \le \mu_2 \le 1 - \eta_2.$$
 (4.8)

Now, put $\mu_1 \wedge \mu_2 = \mu$. Then, $\lambda_1 \wedge \lambda_1 \leq \mu_1 \wedge \mu_2 \leq (1 - \eta_1) \wedge (1 - \eta_2), \Rightarrow \lambda_1 \leq \mu \leq 1 - (\eta_1 \vee \eta_2)$, which shows that (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between λ_1 and $\eta_1 \vee \eta_2$.

Proposition 4.6. If a fbts (X, τ_1, τ_2) is fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs) -connected neither between λ_1 and η_1 nor between λ_1 and η_2 then it is not fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs) -connected between λ_1 and $\eta_1 \vee \eta_2$.

Proof. Follows from Proposition 4.5

Definition 4.7. A fbts (X, τ_1, τ_2) is said to be fuzzy quasi e (resp. e^* , a, β , δp and δs) -connected iff it has no proper fuzzy set which is both fuzzy quasi e (resp. e^* , a, β , δp and δs) -open and fuzzy quasi e (resp. e^* , a, β , δp and δs)-closed.

226

Equivalently, a fbts (X, τ_1, τ_2) is said to be fuzzy quasi e (resp. e^* , $a, \beta, \delta p$ and δs)-connected iff it has no proper fuzzy quasi e (resp. e^* , $a, \beta, \delta p$ and δs)-clopen set.

Proposition 4.7. A fbts (X, τ_1, τ_2) is fuzzy quasi *e*- connected iff X has no proper fuzzy sets λ_1 and λ_2 , which are fuzzy quasi *e*-open sets such that $\lambda_1 + \lambda_2 = 1$.

Proof. Necessity: Suppose (X, τ_1, τ_2) is not fuzzy quasi *e*-connected. Then X has proper fuzzy set λ_1 , which is both fuzzy quasi *e*-open and fuzzy quasi *e*-closed. Take $1 - \lambda_1 = \lambda_2$. Since λ_1 is fuzzy quasi *e*-closed λ_2 is fqeo set. Then $\lambda_1 + \lambda_2 = 1$.

Sufficiency: Suppose that fbts (X, τ_1, τ_2) has fqeo sets λ_1 and λ_2 , such that $\lambda_1 + \lambda_2 = 1$. Then $\lambda_1 = 1 - \lambda_2$ is fuzzy quasi *e*-closed set. Similarly, λ_2 is also fuzzy quasi *e*-closed. Hence (X, τ_1, τ_2) is not fuzzy quasi *e*-connected. \Box

Proposition 4.8. A fbts (X, τ_1, τ_2) is fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs) - connected iff X has no proper fuzzy sets λ_1 and λ_2 , which are fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-open sets such that $\lambda_1 + \lambda_2 = 1$.

Proof. Follows from Proposition 4.7

Proposition 4.9. A fbts (X, τ_1, τ_2) is said to be fuzzy quasi *e*-connected iff it is fuzzy quasi *e*-connected between each pair of its non-zero fuzzy sets λ_1 and λ_2 .

Proof. Necessity: Let λ_1 and λ_2 be any a pair of non-zero fuzzy sets on X. Suppose (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between λ_1 and λ_2 . Then it has fuzzy quasi *e*-clopen set μ such that $\lambda_1 \leq \mu \leq 1 - \lambda_2$. Since $\lambda_1, \lambda_2 \neq 0$ then $\mu \neq 0, 1$ is a proper fuzzy quasi *e*-clopen set of X. This shows that X has a proper fuzzy quasi *e*-clopen set. Therefore (X, τ_1, τ_2) is not fuzzy quasi *e*-connected.

Sufficiency: Suppose that (X, τ_1, τ_2) is not fuzzy quasi *e*-connected. Then there exists a proper fuzzy set μ , (say) in X such that μ is fuzzy quasi *e*-clopen. Since μ is proper it is easy to find non-zero fuzzy sets λ_1, λ_2 in X such that $\lambda_1 \leq \mu \leq 1 - \lambda_2$. This implies that (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between λ_1 and λ_2 . \Box

Proposition 4.10. A fbts (X, τ_1, τ_2) is said to be fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-connected iff it is fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-connected between each pair of its non-zero fuzzy sets λ_1 and λ_2 .

Proof. Follows from Proposition 4.9

Proposition 4.11. For a non-empty subset Y of X let $(Y, \tau_1/Y, \tau_2/Y)$ be a subspace of the fbts (X, τ_1, τ_2) and let λ_1 and λ_2 be fuzzy sets of Y. If $(Y, \tau_1/Y, \tau_2/Y)$ is fuzzy quasi e (resp. e^* , a, β , δp and δs) -connected between the fuzzy sets λ_1 and λ_2 then (X, τ_1, τ_2) is also fuzzy quasi e (resp. e^* , a, β , δp and δs) -connected between its fuzzy sets λ_1^* and λ_2^* , where $\lambda_1^* : X \to [0, 1]$ is such that

$$\lambda_1^*(x) = \lambda_1(x) \text{ if } x \in Y$$
$$= 0 \text{ if } x \in X \setminus Y$$

and $\lambda_2^*: X \to [0, 1]$ is such that

 $\lambda_2^*(x) = \lambda_2(x) \text{ if } x \in Y$ $= 0 \text{ if } x \in X \setminus Y.$

Proposition 4.12. In a fbts (X, τ_1, τ_2) let $(Y, \tau_1/Y, \tau_2/Y)$ be a fuzzy subspace for a non-empty subset Y of X such that χ_Y is fuzzy e-clopen set in (X, τ_1, τ_2) and let δ_1 and δ_2 be fuzzy sets of Y. If $(Y, \tau_1/Y, \tau_2/Y)$ is fuzzy quasi e-connected between δ_1 and δ_2 then (X, τ_1, τ_2) is also fuzzy quasi e-connected between δ_1 and δ_2 . Proof. Suppose (X, τ_1, τ_2) is not fuzzy quasi *e*-connected between δ_1 and δ_2 . By construction χ_Y is fuzzy *e*-clopen in (X, τ_1, τ_2) and hence it is fuzzy quasi *e*-clopen in (X, τ_1, τ_2) . Then by our supposition on X we have

$$\delta_1 \le \chi_Y \le 1 - \delta_2 \tag{4.9}$$

holds true. Obviously, χ_Y is fuzzy *e*-clopen in $(Y, \tau_1/Y, \tau_2/Y)$, and it is fuzzy quasi *e*-clopen in $(Y, \tau_1/Y, \tau_2/Y)$.

As χ_Y in fuzzy quasi *e*-clopen in $(Y, \tau_1/Y, \tau_2/Y)$, the existence of the inequality (4.9) for fuzzy sets δ_1 and δ_2 in Y implies that $(Y, \tau_1/Y, \tau_2/Y)$ is not fuzzy quasi *e*-connected between δ_1 and δ_2 .

Proposition 4.13. In a fbts (X, τ_1, τ_2) let $(Y, \tau_1/Y, \tau_2/Y)$ be a fuzzy subspace for a non-empty subset Y of X such that χ_Y is fuzzy e^* (resp. $a, \beta, \delta p$ and δs)-clopen set in (X, τ_1, τ_2) and let δ_1 and δ_2 be fuzzy sets of Y. If $(Y, \tau_1/Y, \tau_2/Y)$ is fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-connected between δ_1 and δ_2 then (X, τ_1, τ_2) is also fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-connected between δ_1 and δ_2 .

Proof. Follows from Proposition 4.12

Proposition 4.14. Let (X, τ_1, τ_2) be a fuzzy bitopological space and let $Y \subset X$ be a non-empty subset of X such that χ_Y is fuzzy e (resp. e^* , a, β , δp and δs) -biopen set in (X, τ_1, τ_2) . Suppose that $(Y, \tau_1/Y, \tau_2/Y)$ be a fuzzy subspace of (X, τ_1, τ_2) . If (X, τ_1, τ_2) is fuzzy quasi e (resp. e^* , a, β , δp and δs) -connected between its fuzzy sets λ_1 and λ_2 , then $(Y, \tau_1/Y, \tau_2/Y)$ is also fuzzy quasi e (resp. e^* , a, β , δp and δs)-connected between λ_1/Y and λ_2/Y .

5. FUZZY QUASI e (RESP. $e^*,\,a,\,\beta,\,\delta p,\,\delta s)\text{-}SEPARATED SETS IN FUZZY BITOPOLOGICAL SPACES$

Definition 5.1. In a fbts (X, τ_1, τ_2) two fuzzy sets λ_1 and λ_2 are termed as

- (i) fuzzy quasi e-separated if $\lambda_1 \wedge fqeC1(\lambda_2) = 0 = fqeC1(\lambda_1) \wedge \lambda_2$.
- (ii) fuzzy quasi e^* -separated if $\lambda_1 \wedge fqe^*C1(\lambda_2) = 0 = fqe^*C1(\lambda_1) \wedge \lambda_2$.
- (iii) fuzzy quasi a-separated if $\lambda_1 \wedge fqaC1(\lambda_2) = 0 = fqaC1(\lambda_1) \wedge \lambda_2$.
- (iv) fuzzy quasi β -separated if $\lambda_1 \wedge fq\beta C1(\lambda_2) = 0 = fq\beta C1(\lambda_1) \wedge \lambda_2$.
- (v) fuzzy quasi δp -separated if $\lambda_1 \wedge fq\delta pC1(\lambda_2) = 0 = fq\delta pC1(\lambda_1) \wedge \lambda_2$.
- (vi) fuzzy quasi δs -separated if $\lambda_1 \wedge fq \delta sC1(\lambda_2) = 0 = fq \delta sC1(\lambda_1) \wedge \lambda_2$.

Proposition 5.1. Let λ_1 and λ_2 be *fqeo* sets in a fbts (X, τ_1, τ_2) . If λ_1 and λ_2 are fuzzy quasi *e*-separated then $\lambda_1 \wedge \lambda_2 = 0$.

Proof. Suppose $\lambda_1 \wedge \lambda_2 \neq 0$. Then $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$, and so $fqeC1(\lambda_1) \neq 0$, $fqeC1(\lambda_2) \neq 0$.

Therefore $\lambda_1 \wedge fqeC1(\lambda_2) \neq 0$ and $fqeC1(\lambda_1) \wedge \lambda_2 \neq 0$.

Thus we get $\lambda_1 \wedge fqeC1(\lambda_2) \neq 0 \neq fqeC1(\lambda_1) \wedge \lambda_2$ which shows that λ_1 and λ_2 are not fuzzy quasi *e*-separated.

Proposition 5.2. Let λ_1 and λ_2 be fqe^*o (resp. $a, \beta, \delta p$ and δs) sets in a fbts (X, τ_1, τ_2) . If λ_1 and λ_2 are fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-separated then $\lambda_1 \wedge \lambda_2 = 0$.

Proof. Follows from Proposition 5.1

Proposition 5.3. If λ and μ , are fuzzy quasi *e*-separated sets and $\lambda \vee \mu$ is fuzzy biopen in a fbts (X, τ_1, τ_2) , then λ and μ , are fuzzy quasi *e*-open sets in (X, τ_1, τ_2) .

Proof. Since λ and μ are fuzzy quasi *e*-separated sets, $\lambda \wedge \mu = 0$. Then

$$\lambda = (\lambda \lor \mu) \land (1 - fqeC1(\lambda)).$$
(5.1)

Since $\lambda \lor \mu$ is fuzzy biopen set and $(1 - fqeCl(\lambda))$ is fqeo set then, by Proposition 5.1, $(\lambda \lor \mu) \land (1 - fqeCl(\lambda))$ is fuzzy quasi *e*-open set and equivalently, λ is fuzzy quasi *e*-open set.

Similarly, from $\mu = (\lambda \lor \mu) \land (1 - fqeCl(\mu))$, we can prove that μ , is fqeo set. Thus we get λ and μ , are fqeo sets in (X, τ_1, τ_2) .

Proposition 5.4. If λ and μ , are fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-separated sets and $\lambda \lor \mu$ is fuzzy biopen in a fbts (X, τ_1, τ_2) , then λ and μ , are fuzzy quasi e^* (resp. $a, \beta, \delta p$ and δs)-open sets in (X, τ_1, τ_2) .

Proof. Follows from Proposition 5.3

Proposition 5.5. Let $Y \subset X$ and ψ_Y be fuzzy biopen in (X, τ_1, τ_2) . If λ is fuzzy quasi e (resp. e^* , a, β , δp and δs)-open in (X, τ_1, τ_2) then $\lambda \wedge \psi_Y$ is fuzzy quasi e (resp. e^* , a, β , δp and δs)-open in the fuzzy subspace $(Y, \tau_1/Y, \tau_2/Y)$ of (X, τ_1, τ_2) .

Proposition 5.6. Let $(Y, \tau_1/Y, \tau_2/Y)$ be a fuzzy subspace of a fbts (X, τ_1, τ_2) . If λ is fuzzy quasi e (resp. e^* , a, β , δp and δs)-open in $(Y, \tau_1/Y, \tau_2/Y)$ and ψ_Y is fuzzy biopen in (X, τ_1, τ_2) then λ is fuzzy quasi e (resp. e^* , a, β , δp and δs)-open in (X, τ_1, τ_2) .

Proposition 5.7. Let $Y \subset X$ such that ψ_Y is fuzzy biopen in fbts (X, τ_1, τ_2) and $(Y, \tau_1/Y, \tau_2/Y)$ be fuzzy subspace of (X, τ_1, τ_2) and let λ_1 and λ_1 are two fuzzy sets on Y. Then λ_1 and λ_2 are fuzzy quasi e (resp. e^* , a, β , δp and δs)-separated in (X, τ_1, τ_2) iff they are fuzzy quasi e (resp. e^* , a, β , δp and δs)-separated in the subspace $(Y, \tau_1/Y, \tau_2/Y)$.

6. CONCLUSION

In this paper, we have introduced and studied fuzzy quasi e (resp. e^* , a, β , δs and δp)-open sets, fuzzy quasi e (resp. e^* , a, β , δs and δp)-closed sets, fuzzy quasi e (resp. e^* , a, β , δs and δp)-connectedness between fuzzy sets fuzzy quasi e (resp. e^* , a, β , δs and δp)-separated sets in fuzzy bitopological spaces and some properties and characterizations of them are investigated.

7. ACKNOWLEDGEMENTS

The authors would like to thank from the anonymous reviewers for carefully reading of the manuscript and giving useful comments, which will help us to improve the paper.

References

- [1] Anjana Bhattacharyya and M. N. Mukherjee. On fuzzy δ -almost continuous and δ^* -almost continuous functions, J. Tripura Math. Soc. 2 (2000), 45-57.
- K. K. Azad. On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1) (1981), 14-32.
- [3] A. S. Bin Shahna. On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy sets and systems, 44 (1991), 303-308.
- [4] G. Balasubramanian. On extension of fuzzy topological spaces, Kybernetika, 28 (1992), 234-144.

- [5] G. Balasubramanian and V. Chandrasekar, Contribution to the study on some aspects of fuzzy bitopological structures, Ph.D. Thesis (2003), Periyar University, India
- [6] C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [7] M. C. Datt., Contribution to the theory of bitopological spaces, Ph. D. Thesis (1971), B.I.T and Sci., Pilani, (Rajasthan), India.
- [8] K. K. Dube, O. S. Panwar and R. K. Tiwari. Some properties of set-quasi connected mappings, Bull. Cal. Math. Soc., 83 (1991), 531-536.
- [9] E. Ekici. On *e*-open sets, DP^* -sets and $DP\epsilon^*$ -sets and decompositions of continuity, Arabian Journal for Science and Engineering, 33 (2A)(2008), 269-282.
- [10] E. Ekici. On e^* -open sets and $(D, S)^*$ -sets, Mathematica Moravica, 13 (1) (2009), 29-36.
- [11] E. Ekici. On a-open sets A*-sets and decompositions of continuity and super-continuity, Annales Univ. Sci. Dudapest. Eotvos Sect. Math., bf 51 (2008), 39-51.
- [12] U. V. Fatteh, and D. S. Bassan. Fuzzy connectedness and its stronger forms, J. Math. Anal. Appl., 111 (1985), 449-464.
- [13] P. C. Jain. Generalizations of certain topological concepts, Ph.D. Thesis (1982) University of saugar, sagar, M.P., India.
- [14] A. Kandil. Biproximities and fuzzy bitopological spaces, Simen Stevin., 63 (1989), 45-66.
- [15] A. Kandil, A. A. Nour and S. A. EL-Sheikh. On fuzzy bitopological spaces, Fuzzy sets and systems, 74(3) (1995), 353-363.
- [16] J. C. Kelly. Bitopological Spaces, Proc. London Math. Soc., (3) Vol. 13 (1963), 71-89.
- [17] A. Mukherjee and S. Debnath, $\delta\text{-semi}$ open sets in fuzzy setting, J. Tripura. Math. Soc., $\, 8 \,$ (2006), 51-54.
- [18] S. E. Rodabaugh. Separation axioms and the fuzzy real lines, Fuzzy sets and systems, 11 (1983), 163-183.
- [19] S. E. Rodabaugh. A lattice of continuities for fuzzy topological spaces, J. Math. Anal. Appl., 79 (1981), 244-255.
- [20] S. E. Rodabaugh. The Hausdorff separation axioms for fuzzy topological spaces, Topology Appl. (1980), 319-334.
- [21] S. Sampathkumar. Connectedness and semi-connectedness in fuzzy bitopological spaces, National conference on fuzzy sets and their applications, July 9-10, (1997) IIT Madras.
- [22] V. Seenivasan and K. Kamala. Some aspects of fuzzy e-closed set, Ann. Fuzzy Math. Inform., 9(6) (2015) 1019-1027.
- [23] P. Smets. The degree of belief in a fuzzy event, Information sciences 25 (1981), 1-19.
- [24] M. Sugeno. An introductory survey of fuzzy control, Information sciences 36 (1985), 59-83.
 [25] U. D. Tapi and S. S. Thakur. Quasi pre-connectedness in bitopological spaces, Appl. Sci.
- [25] C. D. Tapi and S. S. Thakir. Quasi pre-connectedness in bitopological spaces, Appl. Sci. periodical (India), VOI.IV, (2002) 53-56.
- [26] A. Vadivel and M. Palanisamy. Fuzzy quasi semiopen sets and connectedness between fuzzy sets in fuzzy bitopological spaces, The Journal of Fuzzy Mathematics, 24 (2) (2016), 359-372.
- [27] N. Velico. H-closed topological spaces, Amer. Math. Soc. Transl., 78(2) (1968), 103-118.
- [28] R. H. Warren. Neighbourhoods, bases and continuity in fuzzy topological spaces, Rocky. Mount. J. Math., 8 (1978), 459-470.
- [29] L. A. Zadeh. Fuzzy sets, Inform and Control, 8 (1965), 338-353.

G. Saravanakumar

Department of Mathematics, M.Kumarasamy College of Engineering (Autonomous) Karur, Tamilnadu -639 113, India.

Email address: saravananguru2612@gmail.com

A. Vadivel

Department of Mathematics, Govt Arts College (Autonomous), Karur, Tamil Nadu-639005,India Department of Mathematics, Annamalai University, Annamalainagar 608 002, India. Email address: avmaths@gmail.com

S. Murugambigai

Department of Mathematics, Govt Arts College (Autonomous), Karur, Tamil Nadu-639005, India. Email address: muruga.jb@gmail.com M. Kamaraj

Department of Mathematics, Govt. Arts and Science College, Sivakasi, Virudhunagar, Tamil Nadu-626124,India.

Email address: kamarajan 17366@rediff
mail.com $% \mathcal{C} = \mathcal{C} = \mathcal{C} = \mathcal{C} = \mathcal{C}$