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SYNOPSIS OF THE NOTIONS OF MULTISETS AND FUZZY MULTISETS

P. A. EJEGWA

ABSTRACT. This paper is an attempt to summarize the basic concepts of the theories of
multiset and fuzzy multiset. We begin by describing multisets and the operations between
them with some related results. In the same vein, the basic concepts of fuzzy multiset the-
ory as well as the operations between fuzzy multisets are buttressed in relation to multiset
theory. Finally, we present some properties of fuzzy multisets with some related results.

1. INTRODUCTION

In classical set theory, the concept of “well-definedness” is key. This implies that the
collection of objects must be distinct and definite. Zadeh [36] violated the fact that the
elements/members of a set must be definite to propose the concept of fuzzy sets with de-
gree of membership. By relaxing the restriction on the distinctiveness of the elements in
classical set, the notion of multiset sprung out. The term multiset was first suggested by De
Bruijn [5] to Knuth in a private correspondence as a generalisation of classical set theory
as noted in [10]. Because of the appropriateness of the term multiset, it has replaced terms
like bag, heap, bunch, sample, etc. which were hitherto used in different literature [29].

Multisets are very important structures applicable in real-life situations such as in data-
base queries, information retrieval on the web, multicriteria decision making, knowledge
representation in database systems, biological systems, membrane computing, musical
note, frequency, chemical compositions, processes in an operating system, etc [21, 23, 28].
In mathematics, the prime factorisation of an integer n > 0 is a multiset whose ele-
ments are primes [31]. In fact, the relevance of multisets can not be over emphasised.
A complete account on the theory of multiset and its categorical models can be found in
[3, 4, 7, 8, 9, 11, 18, 20, 22, 28, 29, 30, 31, 32, 34].

The concept of fuzzy multisets or fuzzy bags proposed by Yager [35] combines both
the relaxations captured in fuzzy sets and multisets. A fuzzy multiset is a collection which
simultaneously deals with quantities and degrees of membership of the elements it contains
[25]. Thus, it is meet to say that a fuzzy multiset is a fuzzy set in multiset framework. In
fact, fuzzy multiset generalises fuzzy set in such a way that every fuzzy set is a fuzzy
multiset but the converse is not true. Some basic operations between fuzzy multisets were
discussed in [12]. An outline on the development of the concept of fuzzy multisets can
be found in [27]. More studies on the theory of fuzzy multisets have been carried out in
literature as seen in [6, 13, 14, 19, 33]. The idea of fuzzy mutisets is very applicable in
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real-life problems, like in data analysis, decision making, clustering, information retrieval,
flexible querying, etc [1, 2, 15, 16, 17, 24, 23, 25, 26].

Many works have been done in multisets and fuzzy multisets in literature. Notwith-
standing, the aim of this paper is to provide a handy and an abridge document that suc-
cinctly discusses the concepts of multisets and fuzzy multisets at glance. This paper is a
survey of the literature on multisets and fuzzy multisets which extends through time, with
clarity. This account is certainly not a history of the concepts, but it is more than simply an
annotated bibliography. It is most certainly appropriate to write a comprehensive account
of multisets and fuzzy multisets due to the applicative important of the notions. In fact, the
relevant and interplay of the notions suggest that the time is right to consolidate the con-
cepts (as much as that is possible) into a single survey that permits access to the literature
from a single source. In a nut shell, this paper presents some fundamentals of the theories
of multiset and fuzzy multiset in details. The basic operations between multisets and fuzzy
multisets are explicitly discussed and exemplified. Some algebraic properties of multisets
and fuzzy multisets are explicated with some related results.

2. CONCEPT OF MULTISETS

This section explicitly presents some basic definitions in multiset theory, its representa-
tions and operations. We review multiset theory [3, 7, 9, 18, 29, 31], exemplify and deduce
some relevant results.

2.1. Some basic definitions in multiset theory. The definitions in this subsection are
either taken from [3, 7, 8, 9, 18, 28, 29, 30, 31] or adapted with more expository note.

Definition 2.1. Let a set X = {x1, ..., xn} for simplicity. A multiset Ã of X is character-
ized by a function CÃ(xi) defined by

CÃ : X → N
such that the nonnegative integer N = {0, 1, ...} corresponds to each xi ∈ X , for i =

1, ..., n. whereby an element, say xi of X may appear more than once in Ã.
The number of appearance of an element, say xi in Ã is called the count or multiplicity

of xi in Ã.
We denote the set of all multisets drawn from X by MS(X) unless otherwise stated.

Definition 2.2. Let Ã ∈ MS(X). We say Ã is an empty or a null multiset if and only if
CÃ(xi) = 0 ∀xi ∈ X .

Example 2.3. Let Ã ∈MS(X). Suppose X = {a, b, c, d} such that

CÃ(a) = 2, CÃ(b) = 1, CÃ(c) = 3, CÃ(d) = 0.

Thus, Ã = {a, a, b, c, c, c} impying a, b, c and d appear 2, 1, 3 and 0 times, respectively in
Ã.

Definition 2.4. If Ã and B̃ are two multisets over X . Then Ã and B̃ are equal if and only
if CÃ(x) = CB̃(x) ∀x ∈ X .

Definition 2.5. Let Ã and B̃ be two multisets over X . We say Ã is a submultiset of B̃
denoted by Ã ⊆ B̃ if CÃ(x) ≤ CB̃(x) ∀x ∈ X . Also, if Ã ⊆ B̃ and Ã 6= B̃, then Ã is
called a proper submultiset of B̃ and denoted by Ã ⊂ B̃. A multiset is called the parent
in relation to its submultiset. Ã and B̃ are comparable to each other or equal if Ã ⊆ B̃ or
B̃ ⊆ Ã.



SYNOPSIS OF THE NOTIONS OF MULTISETS AND FUZZY MULTISETS 103

Example 2.6. Let X = {a, b, c, d}. Suppose Ã = {a, a, a, b, b, c, c, c, d, d} and B̃ =

{a, a, a, a, b, b, c, c, c, d, d, d} are multisets drawn fromX . Clearly, Ã ⊆ B̃. In fact, Ã ⊂ B̃
since Ã 6= B̃.

Definition 2.7. A multiset Ã over X is a regular multiset if all of its objects occur with
the same multiplicity, and such common multiplicity is called its height. Ã is irregular if
otherwise.

Example 2.8. If X = {a, b, c, }. Then Ã = {a3, b3, c3} is a regular multiset of height 3.

Definition 2.9. Suppose Ã ∈MS(X), the subset Ã∗ of X is called the support or root of
Ã if for every x ∈ X such that CÃ(x) > 0, ∃ x ∈ Ã, and if for every x ∈ X such that
CÃ(x) = 0, ∃ x /∈ Ã. That is,

Ã∗ = {x ∈ X|CÃ(x) > 0}.
A multiset is called finite if its root set is finite and the multiplicity of each of its object

is finite; infinite otherwise.

Example 2.10. From Example 2.3, Ã∗ = {a, b, c}.

Definition 2.11. A multiset Ã over a set X is called simple if all its elements are the
same. That is, [a3] is a simple multiset. It follows that the root set of a simple multiset is a
singleton.

A submultiset of a given multiset is called whole if it contains all multiplicities of
the common objects. That is, if X = {a, b, c}, then [a2, b3] is a whole submultiset of
[a2, b3, c4]. Whereas, a submultiset of a given multiset is called full if it contains all ob-
jects of the parent multiset. For example, [a, b2, c3] is a full submultiset of [a2, b3, c4] over
X = {a, b, c}.

Definition 2.12. Let Ã be a multiset over X . The cardinality of Ã denoted by |Ã| or
card(Ã) is defined by

|Ã| =
∑
x∈X

CÃ(x).

If Ã is a submultiset of B̃, then |B̃| ≥ |Ã|. The cardinality of the root set of a multiset is
called its dimension.

Example 2.13. From Example 2.3, |Ã| = 6.

Remark. Two multisets Ã and B̃ drawn from a nonempty set X are said to be equivalent
if and only if |Ã| = |B̃|.

2.2. Representations of multiset. We have been making use of a particular form of mul-
tiset representation so far. Here, we enumerate other forms of multiset representations as
found in literature.

Let X = {x1, x2, x3..., xn}. Suppose Ã is a multiset over X such that

CÃ(x1) = k1, CÃ(x2) = k2, CÃ(x3) = k3, ..., CÃ(xn) = kn.

Thus, Ã can be represented as follows;

Ã = {k1
x1
,
k2
x2
,
k3
x3
, ...,

kn
xn
},

Ã = {x1
k1
,
x2
k2
,
x3
k3
, ...,

xn
kn
}
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Ã = [xk11 , x
k2
2 , x

k3
3 , ..., x

kn
n ],

Ã = [x1, x2, x3, ..., xn]k1,k2,k3,...,kn
and

Ã = [x1k1, x2k2, x3k3, ..., xnkn].

Example 2.14. Let X = {w, x, y, z}. Suppose Ã is a multiset over X such that

CÃ(w) = 5, CÃ(x) = 4, CÃ(y) = 7, CÃ(z) = 3.

Then Ã can be represented by

Ã = { 5

w
,

4

x
,

7

y
,

3

z
},

Ã = {w
5
,
x

4
,
y

7
,
z

3
}

Ã = [w5, x4, y7, z3],

Ã = [w, x, y, z]5,4,7,3

and
Ã = [w5, x4, y7, z3].

2.3. Operations between multisets. This subsecion deals with operations between mul-
tisets and exemplifies the operations in a tabular form.

2.3.1. Union and intersection.

Definition 2.15. Let Ã, B̃ ∈ MS(X). Then, their union is a multiset Ã ∪ B̃ such that ∀
x ∈ X ,

CÃ∪B̃(x) = CÃ(x) ∨ CB̃(x),

where ∨ is a maximum operation.

Definition 2.16. Let Ã, B̃ ∈ MS(X). Then, their intersection is a multiset Ã ∩ B̃ such
that ∀ x ∈ X ,

CÃ∩B̃(x) = CÃ(x) ∧ CB̃(x),

where ∧ is a minimum operation.

2.3.2. Sum and difference.

Definition 2.17. Let Ã, B̃ ∈ MS(X). Then, their sum is a multiset Ã ⊕ B̃ such that ∀
x ∈ X ,

CÃ⊕B̃(x) = CÃ(x) + CB̃(x).

Definition 2.18. Let Ã, B̃ ∈ MS(X). Then, the difference of B̃ from Ã is a multiset
Ã	 B̃ such that ∀ x ∈ X ,

CÃ	B̃(x) = CÃ(x)− CB̃(x) ∨ 0.

2.3.3. Scalar multiplication and complementation.

Definition 2.19. If Ã ∈ MS(X). Then, the scalar multiplication of Ã is a multiset αÃ
such that ∀ x ∈ X ,

CαÃ(x) = αCÃ(x),

where α is a positive integer.

We shall present the notion of complement in multiset setting in two perspectives.
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Definition 2.20. Let Ã, B̃ ∈ MS(X). Then, the complement of B̃ with respect to Ã is a
multiset B̃′ such that ∀ x ∈ X ,

CB̃′(x) = CÃ(x)− CB̃(x) ∨ 0.

Before we consider the second perspective of complementation, the following state-
ments are helpful.

Let X be the set from which mulisets are constructed. The multiset Xk is the set of all
multisets of X such that no element occurs more than k times. Likewise, the multiset X∞

is the set of all multisets of X such that there is no limit on the number of occurrences of
an element.

If X = {x1, x2, ..., xn}, then we define

Xk = {k1
x1
,
k2
x2
, ...,

kn
xn
}

for i = 1, 2, ..., n, ki ∈ N = {0, 1, ...}, and

X∞ = {k1
x1
,
k2
x2
, ...,

kn
xn
, ...}

for i = 1, 2, ..., n, ..., ki ∈ N = {0, 1, ...}.

Definition 2.21. Let X be a nonempty set and Xk be the multiset space defined over X .
Then for any Ã ∈ Xk, the complement of Ã in Xk denoted by Ã′ is a multiset such that ∀
x ∈ X ,

CÃ′(x) = k − CÃ(x).

Example 2.22. Let X = {a, b, c, d} and Xk be a multiset space defined over X , where
multisets Ã and B̃ are drawn from. Suppose k = 10, α = 2,

Ã = {4

a
,

3

b
,

5

c
,

4

d
}

and
B̃ = {7

a
,

4

b
,

2

c
,

10

d
}.

We verify the aforesaid operations with this example in a tabular form below.
TABLE 1. Demonstration of the operations on multisets

Operations Multisets of X10 Multisets of X∞

Ã′ { 6a ,
7
b ,

5
c ,

6
d} { 3a ,

1
b ,

6
d} wrt B̃

B̃′ { 3a ,
6
b ,

8
c} { 3c} wrt Ã

2Ã { 8a ,
6
b ,

10
c ,

8
d} same

2B̃ { 8b ,
4
c} { 14a ,

8
b ,

4
c ,

20
d }

Ã ∩ B̃ { 4a ,
3
b ,

2
c ,

4
d} same

Ã ∪ B̃ { 7a ,
4
b ,

5
c ,

10
d } same

Ã	 B̃ { 3c} same
B̃ 	 Ã { 3a ,

1
b ,

6
d} same

Ã⊕ B̃ { 7b ,
7
c} { 11a ,

7
b ,

7
c ,

14
d }

We recall some properties of multisets with respect to their operations.

Proposition 2.1. Let Ã, B̃, C̃ ∈MS(X). Then, the following properties hold:
(i) Ã ∩ B̃ = B̃ ∩ Ã,

(ii) (Ã ∩ B̃) ∩ C̃ = Ã ∩ (B̃ ∩ C̃),
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(iii) Ã ∩ Ã = Ã,
(iv) A ∩ ∅ = ∅.

Proof. Straightforward. �

Proposition 2.2. Let Ã, B̃, C̃ ∈MS(X). Then, the following properties hold:

(i) Ã ∪ B̃ = B̃ ∪ Ã,
(ii) (Ã ∪ B̃) ∪ C̃ = Ã ∪ (B̃ ∪ C̃),

(iii) Ã ∪ Ã = Ã,
(iv) A ∪ ∅ = A.

Proof. Straightforward. �

Proposition 2.3. Let Ã, B̃, C̃ ∈MS(X). Then, the following properties hold:

(i) Ã⊕ B̃ = B̃ ⊕ Ã,
(ii) (Ã⊕ B̃)⊕ C̃ = Ã⊕ (B̃ ⊕ C̃),

(iii) Ã⊕ Ã 6= Ã,
(iv) A⊕ ∅ = A.

Proof. Straightforward. �

Proposition 2.4. Let Ã, B̃, C̃ ∈MS(X). Then, the following properties hold:

(i) Ã ∪ (B̃ ∩ C̃) = (Ã ∪ B̃) ∩ (Ã ∪ C̃),
(ii) Ã ∩ (B̃ ∪ C̃) = (Ã ∩ B̃) ∪ (Ã ∩ C̃),

(iii) Ã⊕ (B̃ ∪ C̃) = (Ã⊕ B̃) ∪ (Ã⊕ C̃),
(iv) Ã⊕ (B̃ ∩ C̃) = (Ã⊕ B̃) ∩ (Ã⊕ C̃).

Proof. Straightforward. �

Proposition 2.5. Let Ã, B̃ ∈ MS(X) such that B̃ ⊆ Ã. Then, the following properties
hold:

(i) Ã	 B̃ = Ã	 (Ã ∩ B̃),
(ii) Ã	 Ã = ∅.

Proof. Straightforward. �

Having gone through the above stated properties of multisets’ operations, we deduce
the following results.

Proposition 2.6. Let Ã, B̃, C̃ ∈MS(X). Then, the following properties hold:

(i) Ã ∩ (Ã⊕ B̃) = Ã,
(ii) Ã ∪ (Ã⊕ B̃) = Ã⊕ B̃,

(iii) Ã⊕ B̃ = (Ã ∪ B̃)⊕ (Ã ∩ B̃).

Proof. For all x ∈ X , we have
(i)

CÃ∩(Ã⊕B̃)(x) = CÃ(x) ∧ CÃ⊕B̃(x)

= CÃ(x) ∧ [CÃ(x) + CB̃(x)]

= CÃ(x).

Hence, Ã ∩ (Ã⊕ B̃) = Ã.
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(ii)

CÃ∪(Ã⊕B̃)(x) = CÃ(x) ∨ CÃ⊕B̃(x)

= CÃ(x) ∨ [CÃ(x) + CB̃(x)]

= CÃ(x) + CB̃(x).

Hence, Ã ∪ (Ã⊕ B̃) = Ã⊕ B̃.
(iii)

CÃ⊕B̃(x) = CÃ(x) + CB̃(x)

= [CÃ(x) ∨ CB̃(x)] + [CÃ(x) ∧ CB̃(x)]

= CÃ∪B̃(x) + CÃ∩B̃(x).

Hence, Ã⊕ B̃ = (Ã ∪ B̃)⊕ (Ã ∩ B̃). �

Proposition 2.7. Suppose Ã and B̃ are drawn from Xk. Then (Ã′)′ = Ã.

Proof. Given that Ã, B̃ ∈ Xk. Then, for all x ∈ X , it follows that

CÃ′(x) = k − CÃ(x).

Certainly,
C(Ã′)′(x) = k − [k − CÃ(x)] = CÃ(x).

Thus (Ã′)′ = Ã. �

Remark. Let Ã, B̃ ∈MS(X) such that Ã ⊆ B̃. It still follows that (Ã′)′ = Ã.

Proposition 2.8. Suppose Ã and B̃ are drawn from Xk. Then

(i) (Ã ∩ B̃)′ = Ã′ ∪ B̃′.
(ii) (Ã ∪ B̃)′ = Ã′ ∩ B̃′.

Proof.
(i) Given that Ã, B̃ ∈ Xk. For all x ∈ X , we have

C(Ã∩B̃)′(x) = k − CÃ∩B̃(x)

= k − [CÃ(x) ∧ CB̃(x)]

= [k − CÃ(x)] ∨ [k − CB̃(x)]

= C(Ã′∪B̃′)(x).

Hence (Ã ∩ B̃)′ = Ã′ ∪ B̃′.
(ii) Straightforward from (i). �

Remark. Let Ã, B̃ ∈MS(X) such that Ã ⊆ B̃. Then, it still follow that

(i) (Ã ∩ B̃)′ = Ã′ ∪ B̃′.
(ii) (Ã ∪ B̃)′ = Ã′ ∩ B̃′.

Proposition 2.9. Let Ã, B̃ ∈MS(X). Then Ã ∩ (Ã ∪ B̃) = Ã ∪ (Ã ∩ B̃).
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Proof. For all x ∈ X , we get

CÃ∩(Ã∪B̃)(x) = CÃ(x) ∧ CÃ∪B̃(x)

= CÃ(x) ∧ [CÃ(x) ∨ CB̃(x)]

= [CÃ(x) ∧ CÃ(x)] ∨ [CÃ(x) ∧ CB̃(x)]

= CÃ(x) ∨ CÃ∩B̃(x)

= CÃ∪(Ã∩B̃)(x)

⇒ Ã ∩ (Ã ∪ B̃) ⊆ Ã ∪ (Ã ∩ B̃).
Again,

CÃ∪(Ã∩B̃)(x) = CÃ(x) ∨ CÃ∩B̃(x)

= CÃ(x) ∨ [CÃ(x) ∧ CB̃(x)]

= [CÃ(x) ∨ CÃ(x)] ∧ [CÃ(x) ∨ CB̃(x)]

= CÃ(x) ∧ CÃ∪B̃(x)

= CÃ∩(Ã∪B̃)(x)

⇒ Ã ∪ (Ã ∩ B̃) ⊆ Ã ∩ (Ã ∪ B̃). These complete the result. �

Theorem 2.10. Suppose Ã and B̃ are submultisets of C̃ ∈MS(X) such that Ã = B̃′ and
B̃ = Ã′. Then

(i) (Ã′ ∪ B̃) ∩ (Ã ∪ B̃′) = (Ã′ ∩ B̃′) ∪ (Ã ∩ B̃).
(ii) (Ã′ ∩ B̃) ∪ (Ã ∩ B̃′) = (Ã′ ∪ B̃′) ∩ (Ã ∪ B̃).

Proof. Given that Ã = B̃′ and B̃ = Ã′.

(i) For all x ∈ X , we have

CÃ′∪B̃(x) = CB̃∪B̃(x) = CB̃(x) and CÃ∪B̃′(x) = CÃ∪Ã(x) = CÃ(x).

Thus,
C(Ã′∪B̃)∩(Ã∪B̃′)(x) = CÃ∪B̃(x).

Also,
CÃ′∩B̃′(x) = CÃ∩B̃(x).

Thus,
C(Ã′∩B̃′)∪(Ã∩B̃)(x) = CÃ∩B̃(x).

Hence (Ã′ ∪ B̃) ∩ (Ã ∪ B̃′) = (Ã′ ∩ B̃′) ∪ (Ã ∩ B̃).
(ii) Using the same logic in (i), we get

C(Ã′∩B̃)∪(Ã∩B̃′)(x) = C(B̃∩B̃)∪(Ã∩Ã)(x) = C(Ã∪B̃)(x)

and similarly,

C(Ã′∪B̃′)∩(Ã∪B̃)(x) = C(Ã∪B̃)∩(Ã∪B̃)(x) = CÃ∪B̃(x).

Hence (Ã′ ∩ B̃) ∪ (Ã ∩ B̃′) = (Ã′ ∪ B̃′) ∩ (Ã ∪ B̃).

�
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Theorem 2.11. Let Ã1, Ã2, Ã3, Ã4 ∈MS(X). Then

|Ã1 ∪ Ã2 ∪ Ã3 ∪ Ã4| = |Ã1|+ |Ã2|+ |Ã3|+ |Ã4| − |Ã1 ∩ Ã2| − |Ã1 ∩ Ã3|
− |Ã1 ∩ Ã4| − |Ã2 ∩ Ã3| − |Ã2 ∩ Ã4| − |Ã3 ∩ Ã4|
+ |Ã1 ∩ Ã3 ∩ Ã4|+ |Ã2 ∩ Ã3 ∩ Ã4|
+ |Ã1 ∩ Ã2 ∩ (Ã3 ∪ Ã4)|.

Proof. Firstly, we show that

|Ã1 ∪ Ã2| = |Ã1|+ |Ã2| − |Ã1 ∩ Ã2|
and

|Ã1∪Ã2∪Ã3| = |Ã1|+ |Ã2|+ |Ã3|−|Ã1∩Ã2|−|Ã2∩Ã3|−|Ã1∩Ã3|+ |Ã1∩Ã2∩Ã3|.
Thus,

|Ã1 ∪ Ã2|+ |Ã1 ∩ Ã2| = Σx∈XCÃ1∪Ã2
(x) + Σx∈XCÃ1∩Ã2

(x) ∀x ∈ X
= Σx∈XCÃ1

(x) ∨ CÃ2
(x) + Σx∈XCÃ1

(x) ∧ CÃ2
(x)

= Σx∈X [CÃ1
(x) ∨ CÃ2

(x) + CÃ1
(x) ∧ CÃ2

(x)]

= Σx∈X [CÃ1
(x) + CÃ2

(x)]

= Σx∈XCÃ1
(x) + Σx∈XCÃ2

(x)

= |Ã1|+ |Ã2|.
Hence, |Ã1 ∪ Ã2| = |Ã1|+ |Ã2| − |Ã1 ∩ Ã2|.

Again,

|Ã1 ∪ Ã2 ∪ Ã3| = |Ã1|+ |Ã2 ∪ Ã3| − |Ã1 ∩ (Ã2 ∪ Ã3)|
= |Ã1|+ |Ã2|+ |Ã3|
− |Ã2 ∩ Ã3| − |(Ã1 ∩ Ã2) ∪ (Ã1 ∩ Ã3)|
= |Ã1|+ |Ã2|+ |Ã3| − |Ã2 ∩ Ã3|
− (|Ã1 ∩ Ã2|+ |Ã1 ∩ Ã3| − |(Ã1 ∩ Ã2) ∩ (Ã1 ∩ Ã3)|)
= |Ã1|+ |Ã2|+ |Ã3| − |Ã2 ∩ Ã3|
− |Ã1 ∩ Ã2| − |Ã1 ∩ Ã3|+ |Ã1 ∩ (Ã2 ∩ Ã3)|
= |Ã1|+ |Ã2|+ |Ã3| − |Ã1 ∩ Ã2|
− |Ã2 ∩ Ã3| − |Ã1 ∩ Ã3|+ |Ã1 ∩ Ã2 ∩ Ã3|.
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Now,

|Ã1 ∪ Ã2 ∪ Ã3 ∪ Ã4| = |Ã1|+ |Ã2 ∪ Ã3 ∪ Ã4| − |Ã1 ∩ (Ã2 ∪ Ã3 ∪ Ã4)|
= |Ã1|+ |Ã2|+ |Ã3 ∪ Ã4|
− |Ã2 ∩ (Ã3 ∪ Ã4)| − |Ã1 ∩ (Ã2 ∪ Ã3 ∪ Ã4)|
= |Ã1|+ |Ã2|+ |Ã3|+ |Ã4| − |Ã3 ∩ Ã4|
− |(Ã2 ∩ Ã3) ∪ (Ã2 ∩ Ã4)| − |Ã1 ∩ (Ã2 ∪ Ã3 ∪ Ã4)|
= |Ã1|+ |Ã2|+ |Ã3|+ |Ã4| − |Ã3 ∩ Ã4|
− (|Ã2 ∩ Ã3|+ |Ã2 ∩ Ã4| − |(Ã2 ∩ Ã3) ∩ (Ã2 ∩ Ã4)|)
− |Ã1 ∩ (Ã2 ∪ Ã3 ∪ Ã4)|
= |Ã1|+ |Ã2|+ |Ã3|+ |Ã4| − |Ã3 ∩ Ã4|
− |Ã2 ∩ Ã3| − |Ã2 ∩ Ã4|+ |Ã2 ∩ Ã3 ∩ Ã4|
− |Ã1 ∩ (Ã2 ∪ Ã3 ∪ Ã4)|.

By simplifying |Ã1 ∩ (Ã2 ∪ Ã3 ∪ Ã4)|, we get

|Ã1 ∩ (Ã2 ∪ Ã3 ∪ Ã4)| = |(Ã1 ∩ Ã2) ∪ (Ã1 ∩ Ã3) ∪ (Ã1 ∩ Ã4)|
= |Ã1 ∩ Ã2|+ |(Ã1 ∩ Ã3) ∪ (Ã1 ∩ Ã4)|
− |(Ã1 ∩ Ã2) ∩ ((Ã1 ∩ Ã3) ∪ (Ã1 ∩ Ã4))|
= |Ã1 ∩ Ã2|+ |Ã1 ∩ Ã3|+ |Ã1 ∩ Ã4|
− |(Ã1 ∩ Ã3) ∩ (Ã1 ∩ Ã4)|
− |(Ã1 ∩ Ã2) ∩ ((Ã1 ∩ Ã3) ∪ (Ã1 ∩ Ã4))|
= |Ã1 ∩ Ã2|+ |Ã1 ∩ Ã3|+ |Ã1 ∩ Ã4|
− |Ã1 ∩ Ã3 ∩ Ã4| − |(Ã1 ∩ Ã2) ∩ (Ã1 ∩ (Ã3 ∪ Ã4))|
= |Ã1 ∩ Ã2|+ |Ã1 ∩ Ã3|+ |Ã1 ∩ Ã4|
− |Ã1 ∩ Ã3 ∩ Ã4| − |Ã1 ∩ Ã2 ∩ (Ã3 ∪ Ã4)|.

Hence,

|Ã1 ∪ Ã2 ∪ Ã3 ∪ Ã4| = |Ã1|+ |Ã2|+ |Ã3|+ |Ã4| − |Ã1 ∩ Ã2| − |Ã1 ∩ Ã3|
− |Ã1 ∩ Ã4| − |Ã2 ∩ Ã3| − |Ã2 ∩ Ã4| − |Ã3 ∩ Ã4|
+ |Ã1 ∩ Ã3 ∩ Ã4|+ |Ã2 ∩ Ã3 ∩ Ã4|
+ |Ã1 ∩ Ã2 ∩ (Ã3 ∪ Ã4)|

as required. �

3. CONCEPT OF FUZZY MULTISETS

This section discusses some basic definitions in fuzzy multiset theory, its representations
and operations. We review fuzzy multiset theory [2, 24, 23, 12, 33, 35] and thereby deduce
some relevant results.

3.1. Some fundamentals of fuzzy multiset theory. The ideas in this subsection are taken
from [2, 24, 23, 12, 33, 35] with lucid explanations.
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Definition 3.1. Assume X is a set of elements. Then, a fuzzy bag/multiset A drwan from
X can be characterised by a count membership function CMA such that

CMA : X → Q,

where Q is the set of all crisp bags or multisets from the unit interval I = [0, 1].
A fuzzy multiset can also be characterised by a high-order function. In particular, a

fuzzy multiset A can be characterised by a function

CMA : X → N I or CMA : X → [0, 1]→ N,

where I = [0, 1] and N = N ∪ {0}.
It implies that CMA(x) for x ∈ X is given as

CMA(x) = {µ1
A(x), µ2

A(x), ..., µnA(x), ...},
where µ1

A(x), µ2
A(x), ..., µnA(x), ... ∈ [0, 1] such that µ1

A(x) ≥ µ2
A(x) ≥ ... ≥ µnA(x) ≥

..., whereas in a finite case, we write

CMA(x) = {µ1
A(x), µ2

A(x), ..., µnA(x)},
for µ1

A(x) ≥ µ2
A(x) ≥ ... ≥ µnA(x).

A fuzzy multiset A can be represented in the form

A = {〈CMA(x)

x
〉 | x ∈ X} orA = {〈x,CMA(x)〉 | x ∈ X}.

In a simple term, a fuzzy multiset A of X is characterised by the count membership
function CMA(x) for x ∈ X , that takes the value of a multiset of a unit interval I = [0, 1].
We denote the set of all fuzzy multisets by FMS(X).

Example 3.2. Assume that X = {a, b, c} is a set. Then for CMA(a) = {1, 0.5, 0.5},
CMA(b) = {0.9, 0.7, 0}, CMA(c) = {0, 0, 0}, A is a fuzzy multiset of X written as

A = {〈1, 0.5, 0.5
a

〉, 〈0.9, 0.7, 0
b

〉, 〈0, 0, 0
c
〉}.

Definition 3.3. Let A,B ∈ FMS(X). Then, A is called a fuzzy submultiset of B written
as A ⊆ B if CMA(x) ≤ CMB(x)∀x ∈ X . Also, if A ⊆ B and A 6= B, then A is called
a proper fuzzy submultiset of B and denoted as A ⊂ B.

Suppose for X = {a, b, c},

A = {〈0.5, 0.4, 0.3
a

〉, 〈0.6, 0.4, 0.4
b

〉, 〈0.7, 0.4, 0.2
c

〉}

and
B = {〈0.6, 0.6, 0.4

a
〉, 〈0.6, 0.5, 0.45

b
〉, 〈0.7, 0.5, 0.4

c
〉}

are fuzzy multisets of X . Then it is easy to see that A ⊆ B.

Definition 3.4. Let A,B ∈ FMS(X). A and B are comparable to each other if and only
if A ⊆ B or B ⊆ A, and A = B ⇔ CMA(x) = CMB(x)∀x ∈ X .

Definition 3.5. LetA ∈ FMS(X). Then, the cardinality ofA denoted by |A| is the length
of the membership sequence CMA(x) = µ1

A(x), µ2
A(x), ..., µmA (x). We define the length

L(x;A), that is, the length of µiA(x), i = 1, ...,m as

L(x;A) = ∨{i| µiA(x) 6= 0},
where ∨ stands for maximum.
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The cardinality between two fuzzy multisets, say A and B of X , is the lengths of the
membership sequences

CMA(x) = µ1
A(x), µ2

A(x), ..., µmA (x)

and
CMB(x) = µ1

B(x), µ2
B(x), ..., µnB(x)

defined as L(x;A,B) = ∨{L(x;A), L(x;B)}. Where no ambiguity arises, we write
L(x) = L(x;A,B) for simplicity.

For example, let

A = {〈0.3, 0.2
x
〉, 〈1, 0.5, 0.5

y
〉} andB = {〈0.7, 0.1

w
〉, 〈0.6

x
〉, 〈0.8, 0.6

y
〉}.

Then L(w;A) = 0, L(x;A) = 2, L(y;A) = 3, L(w;B) = 2, L(x;B) = 1 and L(y;B) =
2. Also, L(w) = 2, L(x) = 2 and L(y) = 3. Then |A| = 3 and |B| = 2.

We can rewrite A and B as

A = {〈0, 0, 0
w
〉, 〈0.3, 0.2, 0

x
〉, 〈1, 0.5, 0.5

y
〉} andB = {〈0.7, 0.1

w
〉, 〈0.6, 0

x
〉, 〈0.8, 0.6

y
〉}

by completing the membership sequences.

Definition 3.6. Let A ∈ FMS(X). Then, the set A∗ defined by

A∗ = {x ∈ X | CMA(x) > 0}
is called the support or root of A.

Definition 3.7. Let A ∈ FMS(X). Then, for α ∈ [0, 1], the sets A[α] and A(α) defined
by

A[α] = {x ∈ X | CMA(x) ≥ α}
and

A(α) = {x ∈ X | CMA(x) > α}
are called strong and weak upper α–cuts of A.

Whenever the count membership values of x is greater than or equal to α, that is,

CMA(x) = {µ1, µ2, ..., µn} ≥ α,
the strong upper α–cut of A exist for such x ∈ X . Likewise the weak upper α–cut of A
can be listed.

For example, let X = {a, b, c, d} be a set. Then,

A = {〈1, 0.8
a
〉, 〈0.7, 0.6

b
〉, 〈0.6, 0.5

c
〉, 〈0.6, 0.5

d
〉}

is a fuzzy multiset of X . Let α = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, then

A[0.4] = {a, b, c, d}
A[0.5] = {a, b, c, d}
A[0.6] = {a, b}
A[0.7] = {a}
A[0.8] = {a}
A[0.9] = ∅

and
A(0.4) = {a, b, c, d}
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A(0.5) = {a, b}
A(0.6) = {a}
A(0.7) = {a}
A(0.8) = ∅
A(0.9) = ∅.

Definition 3.8. Let A ∈ FMS(X). Then, for α ∈ [0, 1], the sets A[α] and A(α) defined
by

A[α] = {x ∈ X | CMA(x) ≤ α}
and

A(α) = {x ∈ X | CMA(x) < α}
are called strong and weak lower α–cuts of A.

The strong and weak lower α–cuts of A can be constructed similarly as in the case of
strong and weak upper α–cuts of A.

Remark. Let A ∈ FMS(X) and take any α ∈ [0, 1] such that A[α] and A[α] exist. Then,
it follows that

(i) A(α) ⊆ A[α] and A(α) ⊆ A[α].
(ii) A[α] = B[α], A(α) = B(α), A

[α] = B[α] and A(α) = B(α) iff A = B.

3.2. Representations of fuzzy multiset. Here, we enumerate some forms of fuzzy multi-
set representations to enhance the study of its algebraic properties.

Let X = {y1, y2, y3..., yn}. Suppose A is a fuzzy multiset over X such that

CMA(y1) = µ1(y1), µ2(y1), ..., µn(y1),

CMA(y2) = µ1(y2), µ2(y2), ..., µn(y2),

CMA(y3) = µ1(y3), µ2(y3), ..., µn(y3),

...
...

...
...

CMA(yn) = µ1(yn), µ2(yn), ..., µn(yn).

Thus, A can be represented as follows;

A = {〈µ
1(y1), ..., µn(y1)

y1
〉, 〈µ

1(y2), ..., µn(y2)

y2
〉, ..., 〈µ

1(yn), ..., µn(yn)

yn
〉},

A = {〈 y1
µ1(y1), ..., µn(y1)

〉, 〈 y2
µ1(y2), ..., µn(y2)

〉, ..., 〈 yn
µ1(yn), ..., µn(yn)

〉}

and
A = {〈yµ

1(y1),...,µ
n(y1)

1 〉, 〈yµ
1(y2),...,µ

n(y2)
2 〉, ..., 〈yµ

1(yn),...,µ
n(yn)

n 〉}.

Example 3.9. Let X = {a, b, c, d}. Suppose A is a fuzzy multiset over X such that

CMA(a) = 0.7, 0.6, 0.6,

CMA(b) = 0.8, 0.5, 0.4,

CMA(c) = 0.9, 0.7, 0.6,

CMA(d) = 1.0, 0.8, 0.5.

Then, A can be represented by either

A = {〈0.7, 0.6, 0.6
a

〉, 〈0.8, 0.5, 0.4
b

〉, 〈0.9, 0.7, 0.6
c

〉, 〈1.0, 0.8, 0.5
d

〉},
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A = {〈 a

0.7, 0.6, 0.6
〉, 〈 b

0.8, 0.5, 0.4
〉, 〈 c

0.9, 0.7, 0.6
〉, 〈 d

1.0, 0.8, 0.5
〉}

or
A = {〈a0.7,0.6,0.6〉, 〈b0.8,0.5,0.4〉, 〈c0.9,0.7,0.6〉, 〈d1.0,0.8,0.5〉}.

3.3. Operations between fuzzy multisets. This subsecion deals with some operations
between fuzzy multisets with their verifications.

3.3.1. Union and intersection.

Definition 3.10. Let A,B ∈ FMS(X). Then, the intersection and union of A and B,
denoted by A ∩B and A ∪B, are defined by the rules that for any object x ∈ X ,

(i) CMA∩B(x) = CMA(x) ∧ CMB(x),
(ii) CMA∪B(x) = CMA(x) ∨ CMB(x),

where ∧ and ∨ denote minimum and maximum operations.

3.3.2. Sum and difference.

Definition 3.11. Let A,B ∈ FMS(X). Then, the sum of A and B denoted as A⊕ B, is
defined by the addition operation in X × [0, 1] for crisp multiset. That is,

CMA⊕B(x) = CMA(x) + CMB(x)∀x ∈ X.
The meaning of the addition operation here is not as in the case of crisp multiset, it is by
merging the membership degrees in a decreasing order. For example, if

A = {〈0.7, 0.5
x
〉, 〈1, 0.5

y
〉, 〈0.5, 0.4

z
〉}

and
B = {〈0.8, 0.6

x
〉, 〈0.9, 0.3

y
〉, 〈1, 0.7

z
〉}

for X = {x, y, z}. Then,

A⊕B = {〈0.8, 0.7, 0.6, 0.5
x

〉, 〈1, 0.9, 0.5, 0.3
y

〉, 〈1, 0.7, 0.5, 0.4
z

〉}.

Definition 3.12. Let A,B ∈ FMS(X). Then, the difference of B from A is a multiset
A	B such that ∀ x ∈ X ,

CMA	B(x) = CMA(x)− CMB(x) ∨ 0.

3.3.3. Complementation.

Definition 3.13. Let A ∈ FMS(X). Then, the complement of A is a fuzzy multiset A′

such that ∀ x ∈ X ,
CMA′(x) = 1− CMA(x).

It follows from Definition 3.1 that, CMA′(x) for x ∈ X is given as

CMA′(x) = {µ1
A′(x), µ2

A′(x), ..., µnA′(x)},
where µ1

A′(x), µ2
A′(x), ..., µnA′(x) ∈ [0, 1] such that

µ1
A′(x) ≤ µ2

A′(x) ≤ ... ≤ µnA′(x).

Example 3.14. Let X = {x, y, z}. Suppose A and B are fuzzy multisets over X such that

A = {〈0.7, 0.6, 0.6
x

〉, 〈0.8, 0.5, 0.4
y

〉, 〈0.9, 0.7, 0.6
z

〉}
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and
B = {〈1.0, 0.8, 0.5

x
〉, 0.8, 0.6, 0.6

y
〉, 〈1.0, 0.5, 0.4

z
〉}.

We verify the aforesaid operations with this example in a tabular form below.

TABLE 2. Demonstration of the operations on fuzzy multisets

Operations Verifications
A′ {〈 0.3,0.4,0.4x 〉, 〈 0.2,0.5,0.6y 〉, 〈 0.1,0.3,0.4z 〉}
B′ {〈 0.0,0.2,0.5x 〉, 〈 0.2,0.4,0.0y 〉, 〈 0.0,0.5,0.6z 〉}
A ∩B {〈 0.7,0.6,0.5x 〉, 〈 0.8,0.5,0.4y 〉, 〈 0.9,0.5,0.4z 〉}
A ∪B {〈 1.0,0.8,0.6x 〉, 〈 0.8,0.6,0.6y 〉, 〈 1.0,0.7,0.6z 〉}
A	B {〈 0.0,0.0,0.1x 〉, 〈 0.0,0.0,0.0y 〉, 〈 0.0,0.2,0.2z 〉}
B 	A {〈 0.3,0.2,0.0x 〉, 〈 0.0,0.1,0.2y 〉, 〈 0.1,0.0,0.0z 〉}
A⊕B {〈 1.0,0.8,0.7,0.6,0.6,0.5x 〉, 〈 0.8,0.8,0.6,0.6,0.5,0.4y 〉, 〈 1.0,0.9,0.7,0.6,0.5,0.4z 〉}
We reveiw some properties of fuzzy multisets with respect to their operations and de-

duce some new results.

Proposition 3.1. Let A ∈ FMS(X). Then, the following properties hold:

(i) A ∩ ∅ = ∅,
(ii) A ∪ ∅ = A,

(iii) A⊕ ∅ = A,
(iv) A	 ∅ = A,
(v) ∅ 	A = ∅.

Proof. Straightforward. �

Proposition 3.2. Let A ∈ FMS(X). Then, the following properties hold:

(i) A ∩A = A,
(ii) A ∪A = A,

(iii) A⊕A 6= A,
(iv) A	A 6= A (A	A = ∅).

Proof. Straightforward. �

Proposition 3.3. Let A,B ∈ FMS(X). Then, the following properties hold:

(i) A ∩B = B ∩A,
(i) A ∪B = B ∪A,

(iii) A⊕B = B ⊕A,
(iv) A	B 6= B ⊕A.

Proof. Straightforward. �

Proposition 3.4. Let A,B,C ∈ FMS(X). Then, the following properties hold:

(i) A ∩ (B ∩ C) = (A ∩B) ∩ C,
(ii) A ∪ (B ∪ C) = (A ∪B) ∪ C,

(iii) A⊕ (B ⊕ C) = (A⊕B)⊕ C,
(iv) A	 (B 	 C) 6= (A	B)	 C.
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Proof. (i) Let x ∈ X . Then, we have

CMA∩(B∩C)(x) = CMA(x) ∧ CMB∩C(x)

= CMA(x) ∧ [CMB(x) ∧ CMC(x)]

= [CMA(x) ∧ CMB(x)] ∧ CMC(x)

= CMA∩B(x) ∧ CMC(x)

= CM(A∩B)∩C(x).

Hence, the result. The proofs of (ii)–(iv) follow from (i). �

Proposition 3.5. Let A,B,C ∈ FMS(X). Then, the following properties hold:

(i) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),
(ii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

(iii) A⊕ (B ∪ C) = (A⊕B) ∪ (A⊕ C),
(iv) A⊕ (B ∩ C) = (A⊕B) ∩ (A⊕ C),
(v) A	 (B ∪ C) = (A	B) ∪ (A	 C),

(vi) A	 (B ∩ C) = (A	B) ∩ (A	 C).

Proof. (i) Let x ∈ X . Then, we have

CMA∪(B∩C)(x) = CMA(x) ∨ CMB∩C(x)

= CMA(x) ∨ [CMB(x) ∧ CMC(x)]

= [CMA(x) ∨ CMB(x)] ∧ [CMA(x) ∨ CMC(x)]

= CMA∪B(x) ∧ CMA∪C(x)

= CM(A∪B)∩(A∪C)(x).

Hence, the result. The proofs of (ii)–(vi) are similar to (i). �

Proposition 3.6. Let A,B ∈ FMS(X) such that B ⊆ A. Then A	B = A	 (A ∩B).

Proof. For x ∈ X , we have

CMA	(A∩B)(x) = [CMA(x)− CMA∩B(x)] ∨ 0

= (CMA(x)− [CMA(x) ∧ CMB(x)]) ∨ 0

= [CMA(x)− CMB(x)] ∨ 0

= CMA	B(x).

This completes the proof. �

Proposition 3.7. Let A,B,C ∈ FMS(X). Then, the following properties hold:

(i) A ∩ (A⊕B) = A,
(ii) A ∪ (A⊕B) = A⊕B,

(iii) A⊕B = (A ∪B)⊕ (A ∩B).

Proof. For all x ∈ X , we have

(i)

CMA∩(A⊕B)(x) = CMA(x) ∧ CMA⊕B(x)

= CMA(x) ∧ [CMA(x) + CMB(x)]

= CMA(x).

Hence, A ∩ (A⊕B) = A.
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(ii)

CMA∪(A⊕B)(x) = CMA(x) ∨ CMA⊕B(x)

= CMA(x) ∨ [CMA(x) + CMB(x)]

= CMA(x) + CMB(x).

Hence, A ∪ (A⊕B) = A⊕B.
(iii)

CMA⊕B(x) = CMA(x) + CMB(x)

= [CMA(x) ∨ CMB(x)] + [CMA(x) ∧ CMB(x)]

= CMA∪B(x) + CMA∩B(x).

Hence, A⊕B = (A ∪B)⊕ (A ∩B). �

Proposition 3.8. Let A,B ∈ FMS(X). Then (A′)′ = A.

Proof. Given that A,B ∈ FMS(X). Then, for all x ∈ X , it follows that

CMA′(x) = 1− CMA(x).

Certainly,
CM(A′)′(x) = 1− [1− CMA(x)] = CMA(x).

Thus (A′)′ = A. �

Proposition 3.9. Let A,B ∈ FMS(X). Then

(i) (A ∩B)′ = A′ ∪B′.
(ii) (A ∪B)′ = A′ ∩B′.

Proof.
(i) Given that A,B ∈ FMS(X). For all x ∈ X , we have

CM(A∩B)′(x) = 1− CMA∩B(x)

= 1− [CMA(x) ∧ CMB(x)]

= [1− CMA(x)] ∨ [1− CMB(x)]

= CM(A′∪B′)(x).

Hence, (A ∩B)′ = A′ ∪B′.
(ii) Straightforward from (i). �

Proposition 3.10. Let A,B ∈ FMS(X). Then A ∩ (A ∪B) = A ∪ (A ∩B).

Proof. For all x ∈ X , we get

CMA∩(A∪B)(x) = CMA(x) ∧ CMA∪B(x)

= CMA(x) ∧ [CMA(x) ∨ CMB(x)]

= [CMA(x) ∧ CMA(x)] ∨ [CMA(x) ∧ CMB(x))

= CMA(x) ∨ CMA∩B(x)

= CMA∪(A∩B)(x)

⇒ A ∩ (A ∪B) ⊆ A ∪ (A ∩B).
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Again,

CMA∪(A∩B)(x) = CMA(x) ∨ CMA∩B(x)

= CMA(x) ∨ [CMA(x) ∧ CMB(x)]

= [CMA(x) ∨ CMA(x)] ∧ [CMA(x) ∨ CMB(x)]

= CMA(x) ∧ CMA∪B(x)

= CMA∩(A∪B)(x)

⇒ A ∪ (A ∩B) ⊆ A ∩ (A ∪B). These complete the result. �

Theorem 3.11. Suppose A and B are fuzzy submultisets of C ∈ FMS(X) such that
A = B′ and B = A′. Then

(i) (A′ ∪B) ∩ (A ∪B′) = (A′ ∩B′) ∪ (A ∩B).
(ii) (A′ ∩B) ∪ (A ∩B′) = (A′ ∪B′) ∩ (A ∪B).

Proof. The proof is comparable to Theorem 2.10. �

Theorem 3.12. Let A1, A2, A3 ∈ FMS(X). Then

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A2 ∩A3| − |A1 ∩A3|+ |A1 ∩A2 ∩A3|.

Proof. Firstly, we show that

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.
Thus,

|A1 ∪A2|+ |A1 ∩A2| = Σx∈XCMA1∪A2
(x) + Σx∈XCMA1∩A2

(x) ∀x ∈ X
= Σx∈XCMA1

(x) ∨ CMA2
(x) + Σx∈XCMA1

(x) ∧ CMA2
(x)

= Σx∈X [CMA1
(x) ∨ CMA2

(x) + CMA1
(x) ∧ CMA2

(x)]

= Σx∈X [CMA1
(x) + CMA2

(x)]

= Σx∈XCMA1
(x) + Σx∈XCMA2

(x)

= |A1|+ |A2|.
Hence, |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.

Now,

|A1 ∪A2 ∪A3| = |A1|+ |Ã2 ∪ Ã3| − |Ã1 ∩ (Ã2 ∪ Ã3)|
= |Ã1|+ |Ã2|+ |Ã3|
− |Ã2 ∩ Ã3| − |(Ã1 ∩ Ã2) ∪ (Ã1 ∩ Ã3)|
= |Ã1|+ |Ã2|+ |Ã3| − |Ã2 ∩ Ã3|
− (|Ã1 ∩ Ã2|+ |Ã1 ∩ Ã3| − |(Ã1 ∩ Ã2) ∩ (Ã1 ∩ Ã3)|)
= |Ã1|+ |Ã2|+ |Ã3| − |Ã2 ∩ Ã3|
− |Ã1 ∩ Ã2| − |Ã1 ∩ Ã3|+ |Ã1 ∩ (Ã2 ∩ Ã3)|
= |Ã1|+ |Ã2|+ |Ã3| − |Ã1 ∩ Ã2|
− |Ã2 ∩ Ã3| − |Ã1 ∩ Ã3|+ |Ã1 ∩ Ã2 ∩ Ã3|.

�
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Theorem 3.13. Let A1, A2, A3, A4 ∈ FMS(X). Then

|A1 ∪A2 ∪A3 ∪A4| = |A1|+ |A2|+ |A3|+ |A4| − |A1 ∩A2| − |A1 ∩A3|
− |A1 ∩A4| − |A2 ∩A3| − |A2 ∩A4| − |A3 ∩A4|
+ |A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|
+ |A1 ∩A2 ∩ (A3 ∪A4)|.

Proof. The result is analogous to Theorem 2.11. �

4. CONCLUSIONS

We have vividly covered an abridge account on the theories of multisets and fuzzy
multisets, which conspicuously juxtaposed the concepts. By describing the operations
between multisets and fuzzy multiset, we established some relevant results. This paper
shall serves as a readily needed material for computer scientists and experts in control, to
mention but a few.
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