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FUZZY SHORTEST PATH IN AN INTERVAL-VALUED FUZZY
HYPERGRAPH USING SIMILARITY MEASURES

TARASANKAR PRAMANIK∗ AND MADHUMANGAL PAL

ABSTRACT. In this paper, a new approach is introduced to find the shortest path between
two given vertices on interval-valued fuzzy hypergraphs. When only crisp numbers are not
sufficient to measure a real world parameter, fuzzy numbers are considered. But, there are
many types of fuzzy numbers available in literature. Most useful fuzzy number is trape-
zoidal fuzzy numbers. Throughout this paper the interval-valued trapezoidal fuzzy number
is used as the arc length of the interval-valued fuzzy hypergraph. We have measured sim-
ilarity between two interval-valued fuzzy numbers to find the shortest path. An algorithm
is also designed to find all possible hyperpaths in a hypergraph and calculated its time
complexity.

1. INTRODUCTION

The shortest path problem mainly traces on finding minimum distance between two
specified vertices in a graph. The fuzzy shortest path problem was first analysed by
Duboids and Prade [15] using edge weight as fuzzy number instead of a real number.
Later, the concept of degree of possibility in which an arc is a shortest path is introduced
by Okada [24]. Takahashi and Yamakami [43] discussed the shortest path problem from
a specified node to all other nodes on a network. Chuang and Kung introduced several
methods to solve this kind of problem. In [14], they proposed a procedure that can find a
fuzzy shortest path among all possible paths in a network. There is another approach to
find fuzzy shortest path, namely fuzzy linear programming approach, has been found by
Lin and Chern [22]. Nayeem and Pal [23] have designed algorithms to solve fuzzy shortest
path problem on a network with imprecise edge weights. Chuang and Kung [13] have in-
troduced a new algorithm for discrete fuzzy shortest path problem in a network. Recently,
Kumar et. al. [21] have worked on algorithms to find the shortest path in fuzzy graphs with
interval-valued intuitionistic fuzzy edge weights.

Akram and Davvaz [1] discussed strong intuitionistic fuzzy graphs. A novel application
of intuitionistic fuzzy digraphs in decision support systems is given in [2]. Akram and
Dudek [3] discussed intuitionistic fuzzy hypergraphs and provided an application. Also,
Akram and Al-Shehrie defined intuitionistic fuzzy cycles and intuitionistic fuzzy tree [4],
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bipolar fuzzy competition graphs [5] and intuitionistic fuzzy planar graphs [6]. Sahoo and
Pal [31] discussed the concept of intuitionistic fuzzy competition graph. They also discuss
different types of products on intuitionistic fuzzy graphs [30], product of intuitionistic
fuzzy graphs and degree [32], etc.

Many researchers have focused on fuzzy shortest path problem in a network due to
its importance to many applications such as communications, routing, transportation, etc.
In traditional shortest path problems, the arc lengths of the network are taken as precise
numbers, but in the real-world problem, the arc length may represent transportation time or
cost which can be known only approximately due to vagueness of information, and hence it
can be considered as a fuzzy number. Here, we considered a special type of fuzzy numbers
namely, trapezoidal fuzzy number.

A hypergraph is a generalization of a graph in which an edge can connect any number
of vertices. Formally, a hypergraph H is a pair H = (X,E) where X is a set of elements
called nodes or vertices and E is a set of non-empty subsets of X called hyperedges or
edges. Therefore, E is a subset of P (X)\{φ}, where P (X) is the power set (collection
of all subsets) of X . While edges of a graph are pair of nodes or vertices, hyperedges
are arbitrary sets of nodes and therefore contain arbitrary number of nodes. A directed
hypergraph is a generalization of the concept of directed graph. It was first introduced
in [7] to represent functional dependencies in relational data base. A directed hypergraph
is given by a set of nodes V and a set of pairs (T, h) (hyperedges) where T is a subset of
V and h is a single node in V . The most obvious interpretation of a hyperedge (T, h) is
that the information associated to h functionally depends on the information associated to
nodes in T .

A hypergraph is useful in various combinatorial structures that generalize graphs. Di-
rected hypergraph is an extension of directed graphs, and have often used in several areas
such as a modelling and algorithmic tool. A brief introduction to directed hypergraphs is
given by Gallo et al. [17]. Geotschel [18] introduced the concept of fuzzy hypergraphs
and Hebbian structures. Goetschel [19] also explained the coloring of fuzzy hypergraphs.
Intersecting fuzzy hypergraphs are defined by Goetschel [20]. Samanta and Pal have also
worked on bipolar fuzzy hypergraphs and related fuzzy graphs in [26–28,33–42]. Readers
can found many recent works on [25, 29].

Interval valued fuzzy set is a generalization of traditional fuzzy set. So it is more ade-
quate to describe the uncertainty than the traditional fuzzy sets. It is therefore important
to use interval valued fuzzy sets in applications such as fuzzy control, network topology,
transportation, etc. When in a fuzzy graph the arc (edge) weights and/or vertex weights are
considered as the interval-valued fuzzy sets, the resultant graph becomes an interval-valued
fuzzy graph.

There are many real life problems such as communications, routing, transportation, etc.,
finding shortest path is very essential in research purposes. But finding shortest paths in
hypergraphs are too more demanding in recent research areas. Hypergraphs can consider
more complex networks such as protein-protein interaction network, social networks, in-
formation theory, publication data, collaborations, chemical processes, etc. Hypergraphs
are learned to segment or classify the datas. In learning of distances between two nodes in a
hypergraph, first create a normal graph by connecting nodes with weighted edges. Weight
is the sum of the weights of hyperedges traversed in the shortest path. An example is given
here.

Suppose there are seven cities, say, A, B, C, D, E, F , G in a country. The hyper-
graph relation of these cities are given in Figure 1. We can construct the normal graph
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FIGURE 1. Hypergraph of seven cities

by specifying connections to each cities which are connected by roads such as A −→ B,
A −→ C, A −→ D, B −→ E, C −→ E, C −→ F , D −→ F , E −→ G, F −→ G. The
corresponding graph is shown in Figure 2.

FIGURE 2. Graph of Figure 1

The population of G has demand of some products. The city A has a supplier to supply
the products but wants the minimum cost of transportation to supply. Each road has cost
of transportaion. Depending on many parameters (such as toll taxes, levies, security taxes,
etc.) costs of transportation varies road by road and also time by time. So the costs can
be treated as interval-valued trapezoidal fuzzy numbers where left end trapezoidal fuzzy
number is the minimum cost and right end trapezoidal fuzzy number is the maximum cost
to transport by that road. So this problem can be modelled as the interval-valued fuzzy
hypernetwork with edge weights as trapezoidal fuzzy numbers. Being motivated from this
essence, an algorithm is designed to find shortest path of interval-valued fuzzy hypernet-
work. Though there are many research articles to find shortest paths, here we have gen-
eralized the fuzziness by introducing interval-valued fuzzy numbers and trapezoidal fuzzy
numbers together. The interval-valued trapezoidal fuzzy numbers are the generalization
of interval-valued fuzzy numbers, trapezoidal fuzzy numbers and also fuzzy numbers. All
these numbers can be obtained by considering particular cases.

In this paper, we have designed an algorithm to find the fuzzy shortest path on a fuzzy
hypernetwork. The membership values of the edges are taken as interval-valued trapezoidal
fuzzy number. The remaining part of the paper is organized as follows:
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In Section 2, preliminaries of the main work is introduced. In Section 3, an algorithm
based on BFS (Breadth-First Search) technique is described to find all the paths between
two nodes. Section 4 computes the fuzzy shortest hyperpaths of a network. At the end of
the paper, conclusion has been drawn.

2. PRELIMINARIES

In this section, the definition of interval-valued fuzzy hypergraph, directed interval-
valued fuzzy hypergraph, interval-valued trapezoidal fuzzy number, similarity measures
of two interval-valued trapezoidal fuzzy numbers are given. These are the basic concepts
required to design the algorithm to find the fuzzy shortest hyperpath.

A fuzzy set F on a universal set X is defined by a mapping m : X → [0, 1], which is
called the membership function. A fuzzy set is denoted by F = (X,m). A fuzzy graph
G = (V, σ, µ) is a non-empty set V together with a pair of functions σ : V → [0, 1]
and µ : V × V → [0, 1] such that for all x, y ∈ V, µ(x, y) ≤ min{σ(x), σ(y)}, where
σ(x) represents the membership values of the vertex x and µ(x, y) represents membership
values of the edge (x, y) in G. A loop at a vertex x in a fuzzy graph is represented by
µ(x, x) 6= 0. An edge is non-trivial if µ(x, y) 6= 0. A fuzzy graph G = (V, σ, µ) is
complete if µ(x, y) = min{σ(x), σ(y)} for all x, y ∈ V , where (x, y) denotes the edge
between the vertices x and y.

An interval-valued fuzzy set A on a set X is defined by A = {(x, [σL(x), σU (x)] :
x ∈ X} where the membership functions σL(x), σU (x) are such that σL(x) ≤ σU (x) and
σL(x), σU (x) ∈ [0, 1] for all x ∈ X .

An interval-valued fuzzy graph ξ is denoted by ξ = (V,A,B), whereA = (V, [σL, σU ])
is an interval-valued fuzzy set on V andB = (V ×V, [µL, µU ]) is an interval-valued fuzzy
set on V×V , such that µL(x, y) ≤ min{σL(x), σL(y)} and µU (x, y) ≤ min{σU (x), σU (y)}
for all x, y ∈ V . We callA as the interval-valued fuzzy vertex set of ξ andB as the interval-
valued fuzzy edge set of ξ respectively.

A hypergraph is a generalization of a graph in which an edge can connect any number
of vertices. Formal definition is as follows:

Definition 2.1 (Hypergraph). Let X = {x1, x2, . . . , xn} be a finite set. A hypergraph on
X is a family H = {E1, E2, . . . , Em} of subsets of X such that

(i) Ei 6= φ, (i = 1, 2, . . . ,m) and

(ii)
m⋃
i=1

Ei = X .

The elements x1, x2, . . . , xn are called the vertices and the sets E1, E2, . . . , Em are called
the hyperedges (or, simply edges) of the hypergraph.

A simple hypergraph is a hypergraph H = {E1, E2, . . . , Em} such that Ei ⊂ Ej ⇒
i = j. A graph is a simple hypergraph each of whose edges has cardinality 2.

Let X be a finite set and let E be a family of non-empty fuzzy subsets of X such that
X =

⋃
{suppA|A ∈ E}. Then the pair H = (X,E) is called a fuzzy hypergraph on X .

Let X be a finite set and let E be a family of non-empty interval-valued fuzzy subsets
of X such that X =

⋃
{suppA|A ∈ E}. Then the pair H = (X,E) is called an interval-

valued fuzzy hypergraph on X .
In classical graph theory, parameters are measured by a single number e.g., 5 km (for

distances), 30 kg (for weights), etc. But in practical situation, a single number could not
give enough information of the parameters. It may come in an imprecise way like ‘about 5



52 TARASANKAR PRAMANIK AND MADHUMANGAL PAL

km’, ‘between 10-15 yards’, etc. In this paper, the arc lengths of a hypergraph are taken as
interval number.

In general, an interval number is defined as I = [aL, aR] = {a : aL ≤ a ≤ aR}
where aL and aR are the real numbers called the left end point and the right end point of
the interval I respectively. Besides interval number there are so many fuzzy numbers viz.
triangular fuzzy number, trapezoidal fuzzy number, etc.

A trapezoidal fuzzy number Ã = [a1, a2, a3, a4;wÃ], a1 ≤ a2 ≤ a3 ≤ a4 and 0 ≤
wÃ ≤ 1 is represented by the membership function (shown in Figure 3) as

µÃ(x) =


0, x ≤ a1
x−a1
a2−a1wÃ, a1 < x ≤ a2

wÃ, a2 < x ≤ a3
a4−x
a4−a3wÃ, a3 < x ≤ a4

0, x ≥ a4.

Chen [8, 9] defines the generalized trapezoidal fuzzy number Ã = [a1, a2, a3, a4;wÃ],
a1 ≤ a2 ≤ a3 ≤ a4 and 0 ≤ wÃ ≤ 1 where, wÃ represents the degree of confidence
of the liguistic opinion. Chen and Chen [10] introduces the Simple Center of Gravity
Method (SCGM) to calculate the Center of Gravity (COG) point (x∗

Ã
, y∗
Ã

) of a generalized
trapezoidal fuzzy number as

y∗
Ã

=

{
wÃ×

(
a3−a2
a4−a1

+2
)

6 , if a1 6= a4
wÃ
2 , if a1 = a4.

x∗
Ã

=
y∗
Ã

(a3 + a2) + (a4 + a1)(wÃ − y
∗
Ã

)

2wÃ
.

-

6

1
wÃ

a1 a2 a3 a4

FIGURE 3. Trapezoidal fuzzy number

Yao and Lin [45] studied the interval-valued trapezoidal fuzzy number
≈
A = [ÃL, ÃU ] as

shown in Figure 4, where each ÃL = (aL1 , a
L
2 , a

L
3 , a

L
4 ;wÃL) and ÃU = (aU1 , a

U
2 , a

U
3 , a

U
4 ;wÃU )

are trapezoidal fuzzy numbers and ÃL ⊆ ÃU .
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Definition 2.2 (Interval-valued trapezoidal fuzzy number). An interval-valued trapezoidal

fuzzy number (IVTFN)
≈
A is denoted by

≈
A = {(µL

Ã
(x), µU

Ã
(x))|µL

Ã
(x) ≤ µU

Ã
(x), x ∈ X},

where

µL
Ã

(x) =



0, x ≤ aL1
x−aL1
aL2−aL1

wÃL , aL1 < x ≤ aL2
wÃL , aL2 < x ≤ aL3
aL4−x
aL4−aL3

wÃL , aL3 < x ≤ aL4
0, x ≥ aL4 ,

and µU
Ã

(x) =



0, x ≤ aU1
x−aU1
aU2 −aU1

wÃU , aU1 < x ≤ aU2
wÃU , aU2 < x ≤ aU3
aU4 −x
aU4 −aU3

wÃU , aU3 < x ≤ aU4
0, x ≥ aU4 .

aL1 aL2 aL3 a
L
4aU1 aU2 aU3 aU4

E
E
E
E
E
E

X

µ≈
A

(x)

wÃL

wÃU

1

FIGURE 4. Interval-valued trapezoidal fuzzy number

Since µLA(x) ≤ µUA(x), therefore aL1 ≥ aU1 , a
L
2 ≥ aU2 and aL3 ≤ aU3 , a

L
4 ≤ aU4 must

hold.
Interval-valued fuzzy numbers is used by Lin [16] to represent vague processing time

in job-shop scheduling problems. Wang and Li [44] present the correlation coefficient of
interval valued fuzzy numbers and some of their properties. Yao and Lin used interval-
valued fuzzy numbers to represent unknown job processing time for constructing a fuzzy
flow-shop sequencing model. Some methods have been proposed in [10,11] for measuring
the degree of similarity between interval-valued fuzzy numbers. In [12], Chen et al. repre-
sents a method to measure the similarity between two IVTFNs. In this paper, we used the
method to compare two IVTFNs.

Consider two IVTFNs
≈
A and

≈
B, where

≈
A = [ÃL, ÃU ] = [(aL1 , a

L
2 , a

L
3 , a

L
4 ;wÃL),

(aU1 , a
U
2 , a

U
3 , a

U
4 ; wÃU )] and

≈
B = [B̃L, B̃U ] = [(bL1 , b

L
2 , b

L
3 , b

L
4 ; wB̃L), (bU1 , b

U
2 , b

U
3 , b

U
4 ;

wB̃U )]. The degree of similarity [12] between IVTFNs is denoted by S(
≈
A,
≈
B) and is de-

fined by

S(
≈
A,
≈
B) =

S(ÃU , B̃U )× (1 + S(Ã∆, B̃∆))

2
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where, S(Ã∆, B̃∆) = degree of similarity between the distance values of the two IVTFNs

∆ai = |aUi − aLi | and ∆bi = |bUi − bLi |

=

1−

√∑4
i=1(∆ai −∆bi)2

2

× [1−
√
|∆Sa −∆Sb|

2

]

×
∣∣∣∣1− |wÃL − wB̃L ||wÃU − wB̃U |

∣∣∣∣× T∆.

Here ∆Sa = |SÃU−SÃL | and ∆Sb = |SB̃U−SB̃L |. T
∆ denotes map distance between

the lower and upper trapezoidal fuzzy numbers ÃL and ÃU of IVTFN
≈
A. The parameters

SÃL , SÃU , SB̃L , SB̃U and T∆ can be calculated as follows:

SÃL =

√∑4
i=1(aLi − āL)2

n− 1
, SB̃L =

√∑4
i=1(bLi − b̄L)2

n− 1

SÃU =

√∑4
i=1(aUi − āU )2

n− 1
, SB̃U =

√∑4
i=1(bUi − b̄U )2

n− 1

and T∆ =

[(
2− 1+max{|∆a2−∆a1|,|∆b2−∆b1|}

1+min{|∆a2−∆a1|,|∆b2−∆b1|}

)
+
(

2− 1+max{|∆a4−∆a3|,|∆b4−∆b3|}
1+min{|∆a4−∆a3|,|∆b4−∆b3|}

)]
2

where āU denotes the average of the four values aU1 , a
U
2 , a

U
3 , a

U
4 at the upper trapezoidal

fuzzy number ÃU and the similar concept is used for the notations āL, b̄U and b̄L and

S(ÃU , B̃U ) =

1−

√∑4
i=1(aUi − bUi )2

2

× [1−
√
|SÃU − SB̃U |

2

]
×

min{wÃU , wB̃U }
max{wÃU , wB̃U }

× TU

where TU =

[(
2− 1+max{|aU2 −a

U
1 |,|b

U
2 −b

U
1 |}

1+min{|aU2 −aU1 |,|bU2 −bU1 |}

)
+
(

2− 1+max{|aU4 −a
U
3 |,|b

U
4 −b

U
3 |}

1+min{|aU4 −aU3 |,|bU4 −bU3 |}

)]
2

.

The larger the value of S(
≈
A,
≈
B), the greater the similarity between the IVTFNs

≈
A and

≈
B.

Next, we consider the addition of two IVTFNs.

Definition 2.3 (Addition of two IVTFNs). Let
≈
A = [ÃL, ÃU ] = [(aL1 , a

L
2 , a

L
3 , a

L
4 ;wÃL),

(aU1 , a
U
2 , a

U
3 , a

U
4 ; wÃU )] and

≈
B = [B̃L, B̃U ] = [(bL1 , b

L
2 , b

L
3 , b

L
4 ; wB̃L), (bU1 , b

U
2 , b

U
3 , b

U
4 ;

wB̃U )] be two IVTFNs then the addition of these IVTFNs is denoted by
≈
A +

≈
B and is

defined by
≈
A+

≈
B = [(aL1 + bL1 , aL2 + bL2 , aL3 + bL3 , aL4 + bL4 ; max{wÃL , wB̃L}), (aU1 + bU1 ,

aU2 + bU2 , aU3 + bU3 , aU4 + bU4 ; max{wÃU , wB̃U })].

In general, networks are directed graphs. So directed interval-valued fuzzy hypergraphs
are considered. In a directed network, two nodes may connect with two different edges
each with opposite direction but in a simple undirected network, two nodes are connected
by only one edge. Now, we define following terms:

Definition 2.4 (Directed interval-valued fuzzy hypergraph). A directed interval-valued
fuzzy hypergraph

−→
G is a pair (V,

−→
E ) where V is a non-empty set of vertices (called nodes)

and
−→
E is the set of interval-valued fuzzy hyperarcs; an interval-valued fuzzy hyperarc
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e ∈
−→
E is defined as a pair (T (e), h(e)), where T (e) is a subset of V , with T (e) 6= φ is its

tail and h(e) is a vertex in V −T (e) is its head. A node s is a source node in
−→
G if h(e) 6= s

for every e ∈
−→
E and a node d is said to be a destination node if d /∈ T (e) for every e ∈

−→
E .

Definition 2.5 (Valid ordering in a fuzzy hypergraph). Let G = (V,
−→
E ) be a directed

fuzzy hypergraph. A valid ordering in G is a lexicographic ordering of nodes V =
{v1, v2, · · · , vn}, such that for any e ∈ E

(vi ∈ T (e)) and (h(e) = vj)⇒ i < j.

For example, the hypergraph shown in Figure 5 has a valid ordering of nodes namely,
{1, 2, 3, 4, 5, 6, 7, 8}.

m1

m2

m4
m5

m3 m6

m7
m8�

�
�
�
�
��

1

q

~

q
z

-j:

HHH
HHHj
-

e1

e2

e3

e4

e5

e6

e7

e8

FIGURE 5. An example of hypernetwork

Definition 2.6 (Minimal fuzzy hypergraph). A minimal fuzzy hypergraph is a fuzzy hy-
pergraph in which after deletion of a fuzzy vertex (node) or fuzzy hyperarc, the resultant
graph is not a fuzzy hypergraph.

Definition 2.7 (Fuzzy hyperpath). Consider a directed fuzzy hypergraph G = (V,
−→
E ). A

fuzzy hyperpath Πst of source s and destination t is a minimal fuzzy hypergraph Gπ =
(Vπ, Eπ) with valid ordering of nodes satisfying the following conditions:

(1) Eπ ⊆ E and Vπ =
⋃
e∈Eπ

(T (e) ∪ {h(e)}),

(2) s, t ∈ Vπ ,
(3) u ∈ Vπ\{s} ⇒ u is connected to s in Gπ .

For example, in Figure 5, 1→ 3→ 7→ 8 is a fuzzy hyperpath.

3. ENUMERATION OF ALL HYPERPATHS IN A HYPERGRAPH

In this section, we describe an algorithm based on BFS technique to find the paths
between two nodes.

For the sake of algorithm we use some notations. Let Pq be a queue of edges forming
the path and Vq is a queue of vertices. enqueue(v) adds the vertex v to the queue Vq and
dequeue removes a vertex from the queue Vq .

In this algorithm, we use the following functions:
i) Array(v): array of vertices associated to a vertex v.
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ii) Arrays(v): array of elements associated to a vertex v; an element of Arrays(v) is
either an array or a single vertex.

iii) CreateArray(arrays, vertex to add): creates a new array by adding a vertex vertex to add
to the existing array arrays.

iv) AddArray(arrays, vertex to add): adds a vertex vertex to add to the associated array
arrays.

Initially, every vertex is labeled as ‘not visited’. After each iteration when a vertex is
picked up and assigned to an array the vertex is immediately being labeled as ‘visited’.
In this algorithm vertex.visited denotes the label of a vertex as either ‘visited’ or ‘not
visited’.
Algorithm PF

Input:: Source node s and the destination node t of the directed fuzzy hypergraph
G = (V,

−→
E ).

Output:: All hyperpaths.
Step 1.: Create an array with one element s and set it to the vertex s. Each time we

call this array by Array(s), the associated array for the vertex s. If a vertex has
two or more arrays then all the arrays are stored in a single array calledArrays(s).

Step 2.: For each e ∈
−→
E

if s ∈ T (e) then
Vq ← enqueue(h(e))
if h(e).visited =‘visited’ then

CreateArray(Arrays(s), h(e))
\\ Create a new array for the vertex s\\.

else
AddArray(Arrays(s), h(e))
\\ Add the vertex h(e) to Arrays(s)\\.

end if;
Set h(e).visited =‘visited’.

end if;
end for;

Step 3.: s← dequeue(Vq).
Step 4.: If Vq is not empty, then go to Step 2 otherwise Stop the process.

end PF.
At the end of the algorithm an array is created for each vertex. We find the arrays of

the destination vertex t from Arrays(t). All the arrays Array(t) of Arrays(t) are all the
possible hyperpaths.

3.1. Proof of correctness of the algorithm. In Algorithm PF, every vertex v is associated
with an array Arrays(v), where Arrays(v) contain some array of vertices Array(v1),Array(v2), . . . ,Array(vk).
Each of these arrays determines path from source node to the vertex v. We claim that Al-
gorithm PF determines all the hyperpaths between two given nodes.

First, Algorithm PF sets an array Arrays(v) with only one element swhich is the source
node. In a hypergraph all the paths are of the form

s ∈ T (e1)→ h(e1)→ T (e2)→ h(e2)→ · · · → T (em)→ h(em) = t,

where t is the destination node. Step 2 determines all these paths by checking each e if
s ∈ T (e). s ∈ T (e) implies that there exist a path from s to h(e) along the edge e. This
h(e) is the next starter of the edge connected to s. This algorithm stores the path traversed
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from s to h(e). In this way, all the paths are traversed and found the path. Since each path
from the source vertex to a vertex is stored along with that vertex then Arrays(t) of the
destination vertex t has all the paths from source node to destination node.

Theorem 3.1. The Algorithm PF runs in O(mn) time, where m is the number of edges
and n is the number of vertices.

Proof. Let the processor takes unit time to perform a single instruction. Step 1 of the
Algorithm PF takes O(1) time. The algorithm consists of a loop from Step 2 to Step 4.
This loop carry over O(n) times as Vq contains only the vertices of the graph. Within this
loop we see that a loop occurs in Step 2 which is terminated after m times. Hence the
overall time complexity of the Algorithm PF is of O(mn). �

Illustration of algorithm PF. Consider a directed hypergraph (hypernetwork) shown in
Figure 5.
Step 1: Consider the source vertex as 1 and the destination vertex as 8. Assign an array (1)
with only one entry 1 to the vertex 1.
Step 2: 1 ∈ T (e1), 1 ∈ T (e2), 1 ∈ T (e3) and 1 ∈ T (e4).
Step 3: h(e1) = 2. So the vertex 2 is enqueued to the queue Vq .
Step 4: The vertex 2 is marked as visited and we create an array (1, 2).
Step 5: Similarly, the vertices 3 and 4 are marked as visited and queued to Vq and we set
the arrays (1, 3) and (1, 4) associated to 3 and 4 respectively.
Step 6: Dequeue the vertex 2 from the queue Vq and see that 2 ∈ T (e5). Then h(e5) = 6.
Step 7: The vertex 6 is marked as visited and queued to Vq . Assign an array (1, 2, 6) to the
vertex 6.
Step 8: For the vertex 3 of Vq , we see that h(e5) = 6 is visited then we create a new array
(1, 3, 6) and assigned to 6.
Step 9: Proceeding in the similar way we assign arrays to each vertices. And observe
that the destination vertex 8 is assigned with the arrays (1, 2, 6, 8), (1, 3, 6, 8), (1, 3, 7, 8),
(1, 4, 7, 8), (1, 5, 7, 8).

Therefore all the possible hyperpaths in the given hypernetwork are
P-1: 1→ 2→ 6→ 8,
P-2: 1→ 3→ 6→ 8,
P-3: 1→ 3→ 7→ 8,
P-4: 1→ 4→ 7→ 8,
P-5: 1→ 5→ 7→ 8.

The length of a hyperpath of a network is the sum of the lengths of all hyperarcs on the
hyperpath.

Here, we describe an algorithm to find the minimum length of all fuzzy hyperpaths of
the interval-valued fuzzy hypergraph from a given source node to a destination node.
Algorithm MLIVFH

: \\This algorithm determines the minimum weighted (trapezoidal fuzzy) hyper-
paths of an interval-valued fuzzy hypergraph between two given nodes.\\

Input: Weights (
≈
Ai) (i = 1, 2, 3, . . .) of all fuzzy hyperedges of the fuzzy hyper-

graph.

Output: Minimum weighted fuzzy hyperpath (
≈
Wmin) among all fuzzy hyperpaths

from source to destination.
Step 1.: Find all fuzzy hyperpaths and compute weights (

≈
W i) (i = 1, 2, 3, . . .) of

each fuzzy hyperpaths by the rule of addition of two IVTFNs.
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Let each
≈
W i is of the form
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Step 3.: Set i = 2.
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U ;w
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Step 5.: Set
≈
Wmin = [(a1

L, a2
L, a3

L, a4
L;w

W̃L), (a1
U , a2

U , a3
U , a4

U ;w
W̃U )] as

calculated in Step 4.
Step 6.: Increase the value of i by 1.
Step 7.: If i < n+ 1 go to Step 4, otherwise stop the procedure.

end MLIVFH.



FUZZY SHORTEST PATH IN IVFHG 59

Illustrative example for the Algorithm MLIVFH:. Consider the hypernetwork shown in
Figure 5. Now the weights of all hyperarcs of this hypernetwork are taken as follows:

e1 : [(0.4, 0.6, 0.7, 0.8; 0.7), (0.3, 0.5, 0.7, 0.9; 0.8)],

e2 : [(0.4, 0.8, 0.10, 0.12; 0.6), (0.2, 0.8, 0.13, 0.15; 0.8)],

e3 : [(0.9, 0.15, 0.16, 0.22; 0.6), (0.7, 0.13, 0.17, 0.23; 0.7)],

e4 : [(0.13, 0.16, 0.18, 0.27; 0.8), (0.10, 0.12, 0.19, 0.28; 0.87)],

e5 : [(0.11, 0.11, 0.21, 25; 0.82), (0.1, 0.1, 21, 0.26; 0.9)],

e6 : [(0.9, 0.17, 0.19, 0.23; 0.87), (0.6, 0.12, 0.21, 0.25; 0.92)],

e7 : [(0.6, 0.8, 0.11, 0.15; 0.5), (0.3, 0.5, 0.12, 0.17; 0.7)],

e8 : [(0.3, 0.5, 0.7, 0.11; 0.65), (0.1, 0.4, 0.11, 0.18; 0.78)].

In Section 3 we see that all the hyperpaths are
P-1: 1→ 2→ 6→ 8,
P-2: 1→ 3→ 6→ 8,
P-3: 1→ 3→ 7→ 8,
P-4: 1→ 4→ 7→ 8,
P-5: 1→ 5→ 7→ 8.

The weights of these hyperpaths are respectively

P-1:
≈
W 1 = [(0.21, 0.25, 0.37, 0.48; 0.87), (0.13, 0.18, 0.40, 0.52; 0.92)],

P-2:
≈
W 2 = [(0.21, 0.27, 0.40, 0.52; 0.87), (0.12, 0.21, 0.42, 0.57; 0.92)],

P-3:
≈
W 3 = [(0.16, 0.30, 0.36, 0.45; 0.7), (0.9, 0.22, 0.40, 0.58; 0.8)],

P-4:
≈
W 4 = [(0.18, 0.28, 0.33, 0.45; 0.8), (0.11, 0.22, 0.39, 0.56; 0.87)],

P-5:
≈
W 5 = [(0.22, 0.29, 0.35, 0.52; 0.82), (0.14, 0.21, 0.41, 0.63; 0.9)].

Now, the value of
≈
Wmin is given by

≈
Wmin = [(0.16, 0.21, 0.22, 0.33; 0.7), (0.9, 0.13,

0.17, 0.39; 0.8)].

4. COMPUTATION OF FUZZY SHORTEST HYPERPATH

In this section, we compute similarity measures [12] S(
≈
A,
≈
B) to compare two IVTFNs

≈
A and

≈
B. An algorithm is designed to find the fuzzy shortest hyperpath using similarity

measurements.

Algorithm FSHP
Input:: An interval-valued fuzzy hypergraph with a source node and a destination

node.
Output:: Fuzzy shortest hyperpath of the given interval-valued fuzzy hypergraph.
Step 1.: Find out all possible fuzzy hyperpaths from source node to destination node

by the Algorithm PF.

Step 2.: Compute
≈
Wmin by using Algorithm MLIVFH.

Step 3.: Find the similarity measures S(
≈
W i,

≈
Wmin) for i = 1, 2, . . . , p (p being the

number of all possible fuzzy hyperpaths) of
≈
W i and

≈
Wmin.

Step 5.: Decide k-th hyperpath as the fuzzy shortest hyperpath having the highest

similarity measure S(
≈
W k,

≈
Wmin) among all i’s.
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end FSHP.

Correctness and time complexity of the Algorithm FSHP:. Step 1 of Algorithm FSHP

determines all the hyperpaths of a given hypergraph. Now,
≈
Wmin is minimum among

all IVTFNs associated to hyperpaths. By calculating similarity measures between two
IVTFNs we have decided that which IVTFN is nearly equal to the minimum most IVTFN
≈
Wmin and hence it is claimed that the hyperpath associating that IVTFN is the best shortest
path.

Theorem 4.1. The Algorithm FSHP runs in O(mn) time, where m is the number of edges
and n is the number of vertices.

Proof. Step 1 takes O(mn) time. Algorithm MLIVFH takes O(m) time as number of
paths cannot be greater than the number of edges in a hypergraph. By the same reason
Step 3, Step 4 and Step 5 takes O(m) time. So, overall worse case time complexity of the
Algorithm FSHP is O(mn). �

5. APPLICATION TO FIND FUZZY SHORTEST HYPERPATH IN RAILWAYS NETWORK

Here, we have considered the railways network to find the shortest time require to tra-
verse from a source station to a destination station. The railways networks are connected
through more than 7000 stations in India although, we consider a simple structure to un-
derstand the work presented in this paper. Assume there are 11 stations A, B, C, D, E, F ,
G, H , I , J , K. In hypergraph model we take these stations as vertices of the hypergraph
and each train as a hyperedge. Since, a train can traverse more than two stations, so this
is a hypergraph. The hypergraph of this proposed model is shown in Figure 6. In Figure
6, it is seen that, there are five trains and these trains traverse the stations A, B, C, D,
E; B, C, F , G; D, E, H , I , J ; G, H , K; J , K. Depending on the real phenomenon,
the time required to traverse a train can be considered as fuzzy number. To generalize the
proposed problem, here we have considered the time required to traverse the stations is
interval-valued trapezoidal fuzzy number. Now, to find the shortest time require to traverse
the destination from a source station, hypergraph model is drawn in normal graph model
as shown in Figure 7.

FIGURE 6. Hypergraph of railways network

The time (in hrs.) required to traverse the train between the stations are given in Table
1. For computations, time is converted in terms of 100.
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Edge Edge weight
(A,B) [(0.15, 0.16, 0.18, 0.22; 0.8), (0.13, 0.14, 0.19, 0.23; 0.9)]
(A,C) [(0.18, 0.19, 0.20, 0.21; 0.7), (0.14, 0.17, 0.22, 0.25; 0.9)]
(A,D) [(0.16, 0.17, 0.18, 0.19; 0.6), (0.15, 0.16, 0.19, 0.22; 0.9)]
(A,E) [(0.15, 0.17, 0.19, 0.20; 0.7), (0.12, 0.13, 0.19, 0.22; 0.8)]
(B,C) [(0.17, 0.18, 0.20, 0.22; 0.8), (0.16, 0.17, 0.22, 0.23; 0.9)]
(C,D) [(0.16, 0.18, 0.19, 0.20; 0.8), (0.15, 0.16, 0.19, 0.21; 0.9)]
(D,E) [(0.15, 0.16, 0.17, 0.20; 0.5), (0.14, 0.16, 0.19, 0.20; 0.7)]
(B,D) [(0.33, 0.36, 0.39, 0.42; 0.8), (0.31, 0.33, 0.41, 0.44; 0.9)]
(B,E) [(0.48, 0.52, 0.56, 0.62; 0.8), (0.45, 0.49, 0.60, 0.63; 0.9)]
(B,F ) [(0.18, 0.19, 0.21, 0.22; 0.6), (0.14, 0.16, 0.20, 0.23; 0.9)]
(B,G) [(0.19, 0.20, 0.21, 0.22; 0.7), (0.16, 0.18, 0.22, 0.23; 0.8)]
(C,F ) [(0.17, 0.18, 0.19, 0.21; 0.5), (0.12, 0.14, 0.19, 0.23; 0.7)]
(C,G) [(0.14, 0.15, 0.18, 0.20; 0.7), (0.13, 0.14, 0.19, 0.22; 0.8)]
(D,H) [(0.15, 0.16, 0.19, 0.23; 0.8), (0.12, 0.15, 0.20, 0.25; 0.9)]
(D, I) [(0.17, 0.18, 0.19, 0.25; 0.5), (0.14, 0.16, 0.22, 0.27; 0.8)]
(D,J) [(0.16, 0.17, 0.18, 0.20; 0.6), (0.13, 0.14, 0.19, 0.21; 0.7)]

(E,H) [(0.16, 0.17, 0.18, 0.20; 0.6), (0.13, 0.14, 0.19, 0.21; 0.7)]
(E, I) [(0.18, 0.19, 0.20, 0.22; 0.7), (0.16, 0.17, 0.22, 0.23; 0.8)]
(E, J) [(0.16, 0.17, 0.19, 0.20; 0.8), (0.13, 0.14, 0.19, 0.21; 0.9)]
(F,G) [(0.15, 0.17, 0.18, 0.21; 0.6), (0.13, 0.14, 0.19, 0.21; 0.8)]
(H, I) [(0.16, 0.18, 0.18, 0.20; 0.5), (0.13, 0.16, 0.19, 0.21; 0.7)]
(I, J) [(0.14, 0.16, 0.18, 0.20; 0.7), (0.13, 0.14, 0.19, 0.21; 0.8)]
(H,J) [(0.30, 0.34, 0.36, 0.40; 0.7), (0.26, 0.30, 0.38, 0.42; 0.8)]
(G,K) [(0.16, 0.17, 0.18, 0.21; 0.6), (0.13, 0.14, 0.19, 0.21; 0.7)]
(H,K) [(0.16, 0.18, 0.19, 0.22; 0.6), (0.13, 0.14, 0.19, 0.23; 0.8)]
(J,K) [(0.16, 0.17, 0.18, 0.20; 0.6), (0.13, 0.15, 0.19, 0.21; 0.7)]

TABLE 1. Edge weights of the graph shown in Figure 7

FIGURE 7. Graph of railways network to find the shortest time to tra-
verse the station K from the station A

Now, among all the hyperpaths the shortest paths and their weights between the stations
A and K are as follows:
P-1: A −→ B −→ G −→ K;

≈
W 1 = [(0.50, 0.53, 0.57, 0.65; 0.8), (0.42, 0.46, 0.60, 0.67; 0.9)]
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P-2: A −→ C −→ G −→ K;
≈
W 2 = [(0.48, 0.51, 0.56, 0.62; 0.7), (0.40, 0.45, 0.60, 0.68; 0.9)]

P-3: A −→ D −→ H −→ K;
≈
W 3 = [(0.47, 0.51, 0.56, 0.64; 0.8), (0.40, 0.45, 0.58, 0.70; 0.9)]

P-4: A −→ D −→ J −→ K;
≈
W 4 = [(0.48, 0.51, 0.54, 0.59; 0.6), (0.41, 0.45, 0.57, 0.64; 0.9)]

P-5: A −→ E −→ H −→ K;
≈
W 5 = [(0.47, 0.52, 0.56, 0.62; 0.7), (0.38, 0.41, 0.57, 0.66; 0.8)]

P-6: A −→ E −→ J −→ K;
≈
W 6 = [(0.47, 0.51, 0.56, 0.60; 0.8), (0.38, 0.42, 0.57, 0.64; 0.9)]

After usual computations, one can find
≈
Wmin = [(0.47, 0.48, 0.49, 0.54; 0.6), (0.38,

0.38, 0.42, 0.57; 0.8)].

Routine computations can be done and the results are S(
≈
W 1,

≈
Wmin) = 0.87, S(

≈
W 2,

≈
Wmin) =

0.46, S(
≈
W 3,

≈
Wmin) = 0.88, S(

≈
W 4,

≈
Wmin) = 0.90, S(

≈
W 5,

≈
Wmin) = 0.47, S(

≈
W 6,

≈
Wmin) =

0.88.
So, the shortest path from A to K is A −→ D −→ J −→ K.

6. CONCLUSION

Several methods have been found in literature to find the fuzzy shortest path in a hyper-
network. Here we proposed a method using similarity measure to find the fuzzy shortest
path in a network with imprecise arc lengths which are IVTFNs. Here BFS technique
is used to find all hyperpaths in a hypernetwork. Our proposed algorithm takes O(mn)
time, where m and n represent the number of edges and vertices of a fuzzy hypernetwork.
Since the IVTFN is more general fuzzy number, our algorithm can be used to solve more
generalized shortest path problem on a fuzzy hypernetwork.
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