

A NEW VIEW ON (2,2)-REGULAR AG-GROUPOID VIA DFS SETS WITH APPLICATIONS IN DECISION MAKING

T. ASIF, M. KHAN, M. M. AL-SHAMIRI, M. M. KHALAF* AND R. ISMAIL

Abstract

In this paper, we study DFS left (right, two-sided) ideals, DFS (generalized) bi-ideals, DFS interior ideals and DFS (1,2)-ideals of (2,2)-regular AG-Groupoid over an initial universe set U . We have shown that these DFS ideals are coincides in a (2,2)-regular unitary AG-Groupoid. Further we investigate some useful conditions for an AG-Groupoid to become a (2,2)-regular AG-Groupoid and characterize a $(2,2)$-regular AG-Groupoid in terms of DFS ideals. Finally we apply DFS expert sets to develop a decision making scheme for everyday problems.

1. Introduction

The (crisp) set theory is a main mathematical approach to deal with a class of problems that are characterized by precision, exactness, specificity, perfection, and certainty. However, many problems in the real-life inherently involve inconsistency, imprecision, ambiguity, and uncertainties. In particular, such classes of problems arise in engineering, economics, medical sciences, environmental sciences, social sciences, and many different scopes. The crisp (classical) mathematical tools fail to model or solve these types of problems.

In the course of time, mathematicians, engineers, and scientists, particularly those who focus on artificial intelligence, are seeking for alternative mathematical approaches to solve the problems that contain uncertainty or vagueness. They initiated several set theories such as probability theory, fuzzy set, intuitionistic fuzzy set, and rough set.

In 1999, Molodtsov [29] proposed the concept of soft sets, which has wide range applications in artificial intelligence, computer engineering, control engineering, robotices, medical diagnosis, forcasting, operation research, management science and many more. The theory of soft sets is a novel mathematical approach as concerns with the uncertainties. Now a days, the concept of soft sets obtain a lot of reputation for its parameteric nature. Due to its dynamical behaviour, the soft sets victoriously made its place and now comprehensively used in many applied areas. For example, soft sets are applied in decision making problems [7, 11, 25], soft integrals, soft derivatives and soft numbers along with

[^0]their applications in [35]. In international business, soft sets are applied for forecasting the import and export volumes [35]. Maji et al. [27]. Maji et al. [26] gives many operations of algebraic structures in the form of soft sets that is further elaborated by Ali et al. [1, 2]. The major areas of application of soft computing are: robotics and machine control (path planning, control, coordination, and decision making [6]), natural language processing (representation and understanding), speech and character recognition (understanding, image processing, and biometrics [43]), biomedical systems and bioinformatics (Santos-Buitrago et al. [36] define a real-life application for decision making under incomplete information in the field of symbolic computational biology [39]), and big data and data mining (extract rules, features, analysis, and trends from large databases, e.g. social networks or financial series).

Currently, Jun et al. [16] further extend the notion of soft set into double-framed soft sets and apply double-framed soft set to BCK/BCI algebra and studied its related properties. Jun et al. [16] also introduced the concept of a double-framed soft ideal (briefly, DFS ideal) of a BCK/BCI-algebra and produce much valuable results. In [18], Khan et al. have applied the idea of double-framed soft set to LA-semigroup and defined double-framed soft LA-semigroup (briefly. DFS-LA-semigroup). Khan et al. have also characterized different classes of LA-semigroups by using different DFS ideals. Iftikhar and Mahmood [14] produced several results on lattice ordered double-framed soft semirings, Bordar et al. [5] applied the said concept to hyper BCK-algebra. In addition, Jayaraman et al. [15] introduced double-framed soft lattices, distributive double-framed soft lattice and doubleframed soft chain. Khan and Mahmood [21] developed the concept of double-framed T-soft fuzzy set and applied the concept into BCK/BCI-algebra. Park [33] developed, double-framed soft deductive system in subtraction algebra and Hussain [12] produced the applications of double-framed soft ideal in gamma near-rings. Also, Hussain at al. [13] introduced double-framed fuzzy quotient lattices. For further study on double-famed soft sets, the readers refer to [4, 20, 22, 23, 32].

In this paper, we investigate the notions of $D F S$ left (right, two-sided) ideals, $D F S$ (generalized) bi-ideals, $D F S$ interior ideals and $D F S$ (1, 2)-ideals over an initial universe set U. We study the relationship between these $D F S$ ideals in a $(2,2)$-regular class of an AG-Groupoid in detail. An application of our results we get characterizations of a (2,2)regular AG-Groupoids in terms of $D F S$ left (right, two-sided) ideals, $D F S$ (generalized) bi-ideals, $D F S$ interior ideals and $D F S(1,2)$-ideals over U. Moreover, we apply $D F S$ expert sets to develop a decision making scheme for everyday problems.

2. Preliminaries

2.1. AG-Groupoids. An AG-Groupoid is a non-associative and non-commutative algebraic structure lying in between a groupoid and a commutative semigroup. Commutative law is given by $a b c=c b a$ in ternary operations. By putting brackets on the left of this equation, i.e. $(a b) c=(c b) a$, in 1972, M. A. Kazim and M. Naseeruddin introduced a new algebraic structure called a left almost semigroup abbreviated as an $L A$-semigroup [17]. This identity is called the left invertive law. P. V. Protic and N. Stevanovic called the same structure an Abel-Grassmann's groupoid abbreviated as an AG-Groupoid [34].

This structure is closely related to a commutative semigroup because a commutative AG-Groupoid is a semigroup [30]. It was proved in [17] that an AG-Groupoid S is medial, that is, $(a b)(c d)=(a c)(b d)$ holds for all $a, b, c, d \in S$. An AG-Groupoid may or may not contain a left identity. The left identity of an AG-Groupoid permits the inverses of elements in the structure. If an AG-Groupoid contains a left identity, then this left identity
is unique [30]. In an AG-Groupoid S with left identity, the paramedial law $(a b)(c d)=$ $(d c)(b a)$ holds for all $a, b, c, d \in S$. By using medial law with left identity, we get $a(b c)=$ $b(a c)$ for all $a, b, c \in S$. We should genuinely acknowledge that much of the ground work has been done by M. A. Kazim, M. Naseeruddin, Q. Mushtaq, M. S. Kamran, P. V. Protic, N. Stevanovic, M. Khan, W. A. Dudek and R. S. Gigon. One can be referred to [8, 9, 19, 30, 31, 34, 37] in this regard.

- A non-empty subset A of an AG-Groupoid S is sub-AG-Groupoid of S if $A^{2} \subseteq A$;
- A non-empty subset A of an AG-Groupoid S is called a left (right) ideal of S if $S A \subseteq A(A S \subseteq A) ;$
- By a two-sided ideal or simply ideal, we mean a non-empty subset of an AG-Groupoid S which is both left and right ideal of S.
- By an interior ideal of S, we means a non-empty subset A of S such that $(S A) S \subseteq A$.
- By a bi-ideal of S, we means an sub-AG-Groupoid A of S such that $(A S) A \subseteq A$.
2.2. Double framed soft sets. In [38], Sezgin and Atagun introduce few new operations on soft set and defined soft sets in the following way:

Suppose a universal set is U, set of parameters is E, power set of U is $P(U)$ and $A \subseteq E$. Then a soft set K_{A} over U is a mapping described by:

$$
K_{A}: E \rightarrow P(U) \text { such that } K_{A}(u)=\emptyset, \text { if } u \notin A .
$$

Here K_{A} is known as approximate mapping. A soft set over U is denoted by the set of ordered pairs as:

$$
K_{A}=\left\{\left(u, K_{A}(u)\right): u \in E, K_{A}(u) \in P(U)\right\}
$$

Note that a soft set is a parameterized family of subsets of U. By $S(U)$ means set of all soft sets.

- Suppose $K_{A}, K_{B} \in S(U)$. Then K_{A} is a soft subset of K_{B}, represented by $K_{A} \widetilde{\simeq}$ K_{B} if $K_{A}(u) \subseteq K_{B}(u) \forall u \in S$. Two soft sets K_{A}, K_{B} are called equal, if $K_{A} \simeq K_{B}$ and $K_{B} \simeq \widetilde{\subseteq}^{\sim} K_{A}$ and is represented by $K_{A} \cong K_{B}$. The union of K_{A} and K_{B} is defined by $K_{A} \tilde{\cup} K_{B}=K_{A \cup B}$, where $K_{A \cup B}(u)=K_{A}(u) \cup K_{B}(u), \forall u \in E$. The intersection of K_{A} and K_{B} is defined in similar way.
- Suppose S is an AG-Groupoid, and let $K_{A}, L_{B} \in S(U)$. The soft product [38] of K_{A} and L_{B}, represented by $K_{A} \sim L_{B}$, is defined as:

$$
\left(K_{A} \tilde{\circ} L_{B}\right)(u)=\left\{\begin{array}{cc}
\bigcup_{u=v w}\left\{K_{A}^{-}(v) \cap L_{B}(w)\right\} & \text { if } u=v w \text { for } u, v \in S \\
\emptyset & \text { otherwise }
\end{array},\right.
$$

- A double-framed soft pair $\left\langle\left(K_{A}^{+}, K_{A}^{-} ; A\right\rangle\right.$ is called a double-framed soft set (briefly, $D F S S$) [16] of A over U denoted by K_{A}, where K_{A}^{+}and K_{A}^{-}are mappings from A to $P(U)$. The set of all $D F S S$ s of A over U is denoted by $D F S(U)$.
- Suppose $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ and $L_{A}=\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$ be two DFSSs of an AG-Groupoid S over U. The soft uni-int product [42], represented by $K_{A} \diamond L_{A}=$ $\left\langle\left(K_{A}^{+} \approx L_{A}^{+}, K_{A}^{-} \tilde{\star} L_{A}^{-}\right) ; A\right\rangle$ is defined as a DFSS of S over U, in which $K_{A}^{+} \approx L_{A}^{+}$and $K_{A}^{-} \approx L_{A}^{-}$are mapping from S to $P(U)$, as:
$K_{A}^{+} \sim L_{A}^{+}: S \longrightarrow P(U), u \longmapsto\left\{\begin{array}{cc}\bigcup_{u=v w}\left\{K_{A}^{+}(v) \cap L_{A}^{+}(w)\right\} & \text { if } u=v w \text { for } v, w \in S \\ \emptyset & \text { otherwise }\end{array}\right.$,
$K_{A}^{-} \approx L_{A}^{-}: S \longrightarrow P(U), u \longmapsto\left\{\begin{array}{cc}\bigcap_{u=v w}\left\{K_{A}^{-}(v) \cup L_{A}^{-}(w)\right\} & \text { if } u=v w \text { for } v, w \in S \\ U & \text { otherwise }\end{array}\right.$.
- Suppose $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ and $L_{A}=\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$ be two DFSS s over U. Then $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is known as a DFS subset [42] of $\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$, denote by $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle \sqsubseteq\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$ if
(i) $A \subseteq B$,
(ii) $(\forall e \in A)\binom{K_{A}^{+}$and L_{A}^{+}are same approximations $\left(K_{A}^{+}(e) \subseteq L_{A}^{+}(e)\right)}{K_{A}^{-}$and L_{A}^{-}are same approximations $\left(K_{A}^{-}(e) \supseteq L_{A}^{-}(e)\right)}$.
- For two $D F S S \mathrm{~s} K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ and $L_{A}=\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$ over U are known as equal, represented by $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle=\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$, if $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle \sqsubseteq$ $\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$ and $\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle \sqsubseteq\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$.
- For two DFSSs $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ and $L_{A}=\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$ over U, the $D F S$ int-uni set [42] of $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ and $\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle$, is defined as a $D F S S$ $\left\langle\left(K_{A}^{+} \cap L_{A}^{+}, K_{A}^{-} \cup L_{A}^{-}\right) ; A\right\rangle$, where $K_{A}^{+} \cap L_{A}^{+}$and $K_{A}^{-} \cup L_{A}^{-}$are mappings as fallow:

$$
\begin{aligned}
& K_{A}^{+} \cap L_{A}^{+} \\
& K_{A}^{-} \cup L_{A}^{-}
\end{aligned} \quad: \quad A \longrightarrow P(U), u \longmapsto K_{A}^{+}(u) \cap L_{A}^{+}(u) ; ~ 子(U), u \longmapsto K_{A}^{-}(u) \cup L_{A}^{-}(u) .
$$

It is denoted by $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle \sqcap\left\langle\left(L_{A}^{+}, L_{A}^{-}\right) ; A\right\rangle=\left\langle\left(K_{A}^{+} \cap L_{A}^{+}, K_{A}^{-} \cup L_{A}^{-}\right) ; A\right\rangle$.

- A double framed soft set (briefly, $D F S S$) $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ of S over U is known as:
(i) a $D F S$-sub-AG-Groupoid if it holds:
$K_{A}^{+}(u v) \supseteq K_{A}^{+}(u) \cap K_{A}^{+}(v)$ and $K_{A}^{-}(u v) \subseteq K_{A}^{-}(u) \cup K_{A}^{-}(v), \forall u, v \in S$.
(ii) a DFS left ideal, (briefly, DFS-LI) if it holds:
$K_{A}^{+}(u v) \supseteq K_{A}^{+}(v)$ and $K_{A}^{-}(u v) \subseteq K_{A}^{-}(v), \forall u, v \in S$.
(iii) a DFS right ideal (briefly, DFS-RI) if it holds:
$K_{A}^{+}(u v) \supseteq K_{A}^{+}(u)$ and $K_{A}^{-}(u v) \subseteq K_{A}^{-}(u), \forall u, v \in S$.
(iv) a DFS two-sided ideal (briefly, DFS-2SI) of S over U, if it is both DFS-LI and $D F S-R I$ of S over U.
(v) a $D F S$ interior ideal (briefly, $D F S-I I$) if it holds:
$K_{A}^{+}((u v) w) \supseteq K_{A}^{+}(v)$ and $K_{A}^{-}((u v) w) \subseteq K_{A}^{-}(v), \forall u, v, w \in S$.
(vi) a $D F S$ generalized bi-ideal (briefly, $D F S-G B I$) if it holds:
$K_{A}^{+}((u v) w) \supseteq K_{A}^{+}(u) \cap K_{A}^{+}(w)$ and $K_{A}^{-}((u v) w) \subseteq K_{A}^{-}(u) \cup K_{A}^{-}(w), \forall u, v, w \in S$.
(vii) a DFS bi-ideal (briefly, DFS-BI) if it holds:
(a) $K_{A}^{+}(u v) \supseteq K_{A}^{+}(u) \cap K_{A}^{+}(v)$ and $K_{A}^{-}(u v) \subseteq K_{A}^{-}(u) \cup K_{A}^{-}(v)$;
(b) $K_{A}^{+}((u v) w) \supseteq K_{A}^{+}(u) \cap K_{A}^{+}(w)$ and $K_{A}^{-}((u v) w) \subseteq K_{A}^{-}(u) \cup K_{A}^{-}(w), \forall u, v$, $w \in S$.
viii) a $D F S$ (1,2)-ideal (briefly, $D F S$-(1,2)-I) if it holds:
(a) $K_{A}^{+}(u v) \supseteq K_{A}^{+}(u) \cap K_{A}^{+}(v)$ and $K_{A}^{-}(u v) \subseteq K_{A}^{-}(u) \cup K_{A}^{-}(v)$;
(b) $K_{A}^{+}((u a)(v w)) \supseteq K_{A}^{+}(u) \cap K_{A}^{+}(v) \cap K_{A}^{+}(w)$ and $K_{A}^{-}\left((u a)(v w) \subseteq K_{A}^{-}(u) \cup\right.$ $K_{A}^{-}(v) \cup K_{A}^{-}(w), \forall u, v, w \in S$.
(iu) a $D F S$ idempotent if it holds: $K_{A} \diamond K_{A}=K_{A}$ i.e., $K_{A}^{+} \sim K_{A}^{+}=K_{A}^{+}$and $K_{A}^{-}{ }^{\sim} K_{A}^{-}=K_{A}^{-}$.
(u) a DFS semiprime if it holds: $a \leq a^{2} \Longrightarrow K_{A}^{+}(a) \supseteq K_{A}^{+}\left(a^{2}\right)$ and $K_{A}^{-}(a) \subseteq$ $K_{A}^{-}\left(a^{2}\right) \forall a \in S$.
- Let $\emptyset \neq A \subseteq S$, where S is an AG-Groupoid. The characteristic DFS-function of A, represented by $\left\langle\left(C_{A}^{+}, C_{A}^{-}\right) ; A\right\rangle=C_{A}$ is described to be a $D F S S$, in which C_{A}^{+}and C_{A}^{-}are soft functions over U, given as follows:

$$
\begin{aligned}
& C_{A}^{+} \quad: \quad S \longrightarrow P(V), w \longmapsto\left\{\begin{array}{rr}
U & \text { if } w \in A \\
\emptyset & \text { if } w \notin A,
\end{array}\right. \\
& C_{A}^{-} \quad: \quad S \longrightarrow P(V), w \longmapsto\left\{\begin{array}{rr}
\emptyset & \text { if } w \in A \\
U & \text { if } w \notin A .
\end{array}\right.
\end{aligned}
$$

Clearly the characteristic function of the whole set S, represented as $C_{S}=\left\langle\left(C_{S}^{+}, C_{S}^{-}\right) ; S\right\rangle$, is known as the identity DFS-function, where $C_{S}^{+}(w)=U$ and $C_{S}^{-}(w)=\emptyset, \forall w \in S$.

- Recall that an AG**-Groupoids is an AG-Groupoid in which $a(b c)=b(a c), \forall$ $a, b, c \in S$.
- Note that an $\mathrm{AG}^{* *}$-Groupoid also satisfies the paramedial law as well.

Now let us introduce the concept of an $\mathrm{AG}^{* * *}$-Groupoid as follows:

- An $\mathrm{AG}^{* *}$-groupoid S is called an $\mathrm{AG}^{* * *}$-Groupoid if $S=S^{2}$.

Lemma 2.1. [42]For DFSS $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ of S over U, the given statements are valid.
(i) $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a DFS-LI- $(D F S-R I)$ of S over $U \Longleftrightarrow$ if $C_{A} \diamond K_{A} \sqsubseteq$ $K_{A}\left(K_{A} \diamond C_{A} \sqsubseteq K_{A}\right)$.
(ii) $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a DFS-sub-AG-Groupoid of S over $U \Longleftrightarrow$ if $K_{A} \diamond$ $K_{A} \sqsubseteq K_{A}$.

Lemma 2.2. [42]For an $A G$-Groupoid S over V, the following conditions holds.
(i) Let A is an sub-AG-Groupoid of $S \Longleftrightarrow C_{A}=\left\langle\left(C_{A}^{+}, C_{A}^{-}\right) ; A\right\rangle$ is a DFS-sub-AGGroupoid of S over V.
(ii) A be right (left, two-sided, bi-, interior) ideal of $S \Longleftrightarrow C_{A}=\left\langle\left(C_{A}^{+}, C_{A}^{-}\right) ; A\right\rangle$ is a DFS-RI- (LI, 2SI, BI, II) of S over V.
(iii) For $\emptyset \neq A, B \subseteq S$, where S is an $A G$-Groupoid, $C_{A} \diamond C_{A}=C_{A B}$ and $C_{A} \sqcap C_{B}=$ $C_{A \cap B}$.

Throughout this paper, suppose $E=S$, where S is an AG-Groupoid, otherwise stated. By a unitary AG-Groupoid mean an AG-Groupoid having left identity.

3. DFS ideals in $(2,2)$-REGULAR AG-Groupoids

A very major conclusion from this section is that $D F S(L I \mathrm{~s}, R I \mathrm{~s}, 2 S I \mathrm{~s}, G B I \mathrm{~s}, B I \mathrm{~s}$, $I I \mathrm{~s},(1,2)-I \mathrm{~s}$) need not to be coincide in an AG-groupoid (an AG ${ }^{* * *}$-Groupoid) S even if S has a unitary AG-groupoid (an $\mathrm{AG}^{* * *}$-Groupoid), but they will coincide in a $(2,2)$ regular class of an unitary AG-groupoid (an AG ${ }^{* * *}$-Groupoid) S.

Definition 3.1. An element a of an ordered AG-Groupoid S is called a (2, 2)-regular element of S, if there exists some x in S such that $a=\left(a^{2} x\right) a^{2}$.

Theorem 3.1. [40]Let S be a unitary AG-groupoid (an AG ***-Groupoid). An element a of S is (2, 2)-regular if and only if for all $a \in S, a=(a y)(a z)$ for some $y, z \in S$ ($a=(a t) a, a t=t a$ for some $t \in S)$.

Theorem 3.2. For a (2,2)-regular unitary AG-Groupoid (an AG ${ }^{* * *-G r o u p o i d) ~ S, t h e ~ f o l-~}$ lowing conditions are equivalent :
(i) $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right)\right.$; $\left.A\right\rangle$ is a DFS-2SI of S over $U \Leftrightarrow C_{A} \diamond K_{A}=K_{A}=K_{A} \diamond C_{A}$.
(ii) $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a $D F S-B I(G B I)$ of S over $U \Leftrightarrow\left(K_{A} \diamond C_{A}\right) \diamond K_{A}=$ $K_{A}=K_{A} \diamond K_{A}$
(iii) $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a DFS-II of S over $U \Leftrightarrow\left(C_{A} \diamond K_{A}\right) \diamond C_{A}=K_{A}$
(iv) $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a $D F S-(1,2)-I$ of S over $U \Leftrightarrow\left(K_{A} \diamond C_{A}\right) \diamond\left(K_{A} \diamond\right.$ $\left.K_{A}\right)=K_{A}=K_{A} \diamond K_{A}$.

Proof. Let S is (2,2)-regular unitary AG-Groupoid.
$(i) \Rightarrow$ Let $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ be a $D F S-2 S I$ of S over U. For $a \in S$, there exists $u \in S$ such that $a=(a x)(a y)$, we have

$$
\begin{aligned}
\left(K_{A}^{+} \sim C_{A}^{+}\right)(a) & =\bigcup_{a=(a x)(a y)}\left\{K_{A}^{+}(u a) \cap C_{A}^{+}(a)\right\} \\
& \supseteq K_{A}^{+}(a x) \cap C_{A}^{+}(a y) \supseteq K_{A}^{+}(a x) \cap U \\
& =K_{A}^{+}(a x) \supseteq K_{A}^{+}(a),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(K_{A}^{-} \tilde{*}_{A}^{-}\right)(a) & =\bigcap_{a=(a x)(a y)}\left\{K_{A}^{-}(a x) \cup C_{A}^{-}(a)\right\} \\
& \subseteq K_{A}^{-}(a x) \cup C_{A}^{-}(a) \subseteq K_{A}^{-}\left(a^{2}\right) \cup \emptyset \\
& =K_{A}^{-}(a x) \subseteq K_{A}^{-}(a)
\end{aligned}
$$

therefore $C_{A}^{+} \stackrel{\sim}{\circ} K_{A}^{+}=K_{A}^{+}$and $C_{A}^{-} \tilde{*} K_{A}^{-}=K_{A}^{-}$, that is $C_{A} \diamond K_{A}=K_{A}$.
\Leftarrow The converse is obvious.
(ii). \Rightarrow Let $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ be a $D F S$-BI of S over U. For $a \in S$, there exists $x, y \in S$ such that $a=(a x)(a y)$, we have

$$
\begin{aligned}
a & =(a x)(a y)=(a x)(a y)=(a a)(x y)=((x y) a) a=((x y)((a x)(a y))) a \\
& =((x y)((a a)(x y))) a=((a a)((x y)(x y))) a=\left((a a)\left(x^{2} y^{2}\right)\right) a=\left(\left(y^{2} x^{2}\right)(a a)\right) a \\
& =\left(\left(a\left(y^{2} x^{2}\right)\right) a\right) a=\left(\left(((a x)(a y))\left(y^{2} x^{2}\right)\right) a\right) a=\left(\left(((a a)(x y))\left(y^{2} x^{2}\right)\right) a\right) a \\
& =\left(\left(\left(\left(x^{2} y^{2}\right)(x y)\right)(a a) a\right) a\right) a=\left(\left(\left(\left(x^{3} y^{3}\right)(a a)\right) a\right) a\right) a=\left(\left(\left(a\left(\left(x^{3} y^{3}\right) a\right)\right) a\right) a\right)
\end{aligned}
$$

where $p=\left(\left(a\left(\left(x^{3} y^{3}\right) a\right)\right) a\right) a$ and $p=q a$ where $q=\left(a\left(\left(x^{3} y^{3}\right) a\right)\right) a$, therefore

$$
\begin{aligned}
\left(\left(K_{A}^{+} \sim C_{A}^{+}\right) \sim K_{A}^{+}\right)(a) & =\bigcup_{a=p a}\left\{\left(K_{A}^{+} \tilde{\circ} C_{A}^{+}\right)(p) \cap K_{A}^{+}(a)\right\} \\
& \supseteq\left(K_{A}^{+} \sim C_{A}^{+}\right)(p) \cap K_{A}^{+}(a) \\
& =\left(\bigcup_{p=q a}\left\{K_{A}^{+}(q) \cap C_{A}^{+}(u)\right\}\right) \cap K_{A}^{+}(a) \\
& \supseteq K_{A}^{+}\left(\left(a\left(\left(x^{3} y^{3}\right) a\right)\right) a\right) \cap U \cap K_{A}^{+}(a) \\
& \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(a) \cap K_{A}^{+}(a)=K_{A}^{+}(a)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(K_{A}^{-}{ }^{*} C_{A}^{-}\right) * K_{A}^{-}\right)(a) & =\bigcup_{a=p a}\left\{\left(K_{A}^{-} \tilde{*}_{A}^{-}\right)(p) \cup K_{A}^{-}(a)\right\} \\
& \subseteq\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right)(p) \cup K_{A}^{-}(a) \\
& =\left(\bigcup_{p=q a}\left\{K_{A}^{-}(q) \cup C_{A}^{-}(u)\right\}\right) \cup K_{A}^{-}(a) \\
& \subseteq K_{A}^{-}\left(\left(a\left(\left(x^{3} y^{3}\right) a\right)\right) a\right) \cup \emptyset \cup K_{A}^{-}(a) \\
& \subseteq K_{A}^{-}(a) \cup K_{A}^{-}(a) \cup K_{A}^{-}(a)=K_{A}^{-}(a)
\end{aligned}
$$

Again, we have

$$
\begin{aligned}
a & =(a x)(a y)=(a a)(x y)=((x y) a) a=((x y)((a x)(a y))) a \\
& =((x y)((a a)(x y))) a=((a a)((x y)(x y))) a=\left((a a)\left(x^{2} y^{2}\right)\right) a \\
& =\left(\left(y^{2} x^{2}\right)(a a)\right) a=\left(a\left(\left(y^{2} x^{2}\right) a\right)\right) a=p a,
\end{aligned}
$$

where $p=a\left(\left(y^{2} x^{2}\right) a\right)$ and $p=a q$, where $q=\left(y^{2} x^{2}\right) a$, therefore

$$
\begin{aligned}
\left(\left(K_{A}^{+} \sim^{\circ} C_{A}^{+}\right) \sim K_{A}^{+}\right)(a) & =\bigcup_{a=p a}\left\{\left(K_{A}^{+} \widetilde{\circ}_{A}^{+}\right)(p) \cap K_{A}^{+}(a)\right\} \\
& =\bigcup_{a=p a}\left(\bigcup_{p=a q}\left\{K_{A}^{+}(a) \cap C_{A}^{+}(q)\right\} \cap K_{A}^{+}(a)\right) \\
& =\bigcup_{a=p a}\left(\bigcup_{p=a q} K_{A}^{+}(a) \cap U \cap K_{A}^{+}(a)\right) \\
& =\bigcup_{a=p a}\left(\bigcup_{p=a q} K_{A}^{+}(a) \cap K_{A}^{+}(a)\right) \\
& =\bigcup_{a=p a}\left(K_{A}^{+}(a) \cap K_{A}^{+}(a)\right) \\
& \subseteq \bigcup_{a=p a}\left\{K_{A}^{+}\left(\left(a\left(\left(y^{2} x^{2}\right) a\right)\right) a\right)\right\}=K_{A}^{+}(a)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right) \tilde{*} K_{A}^{-}\right)(a) & =\bigcap_{a=p a}\left\{\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right)(p) \cup K_{A}^{-}(a)\right\} \\
& =\bigcap_{a=p a}\left(\bigcap_{p=a q}\left\{K_{A}^{-}(a) \cup C_{A}^{-}(q)\right\} \cup K_{A}^{-}(a)\right) \\
& =\bigcap_{a=p a}\left(\bigcap_{p=a q} K_{A}^{-}(a) \cup \emptyset \cup K_{A}^{-}(a)\right) \\
& =\bigcap_{a=p a}\left(\bigcap_{p=a q} K_{A}^{-}(a) \cup K_{A}^{-}(a)\right) \\
& =\bigcap_{a=p a}\left(K_{A}^{-}(a) \cup K_{A}^{-}(a)\right) \\
& \supseteq \bigcap_{a=p a}\left\{K_{A}^{-}\left(\left(a\left(\left(y^{2} x^{2}\right) a\right)\right) a\right)\right\}=K_{A}^{-}(a) .
\end{aligned}
$$

Therefore $\left(K_{A}^{+} \sim C_{A}^{+}\right) \sim K_{A}^{+}=K_{A}^{+}$and $\left(K_{A}^{-} \sim C_{A}^{-}\right) \stackrel{\sim}{*} K_{A}^{-}=K_{A}^{-}$. Thus $\left(K_{A} \diamond C_{A}^{+}\right) \diamond K_{A}=$ K_{A}.

Now, we have

$$
\begin{aligned}
a & =(a x)(a y)=(a x)(a y)=(a a)(x y)=((x y) a) a=((x y)((a x)(a y))) a \\
& =((x y)((a a)(x y))) a=((a a)((x y)(x y))) a=\left((a a)\left(x^{2} y^{2}\right)\right) a \\
& =\left(\left(y^{2} x^{2}\right)(a a)\right) a=\left(\left(a\left(y^{2} x^{2}\right)\right) a\right) a
\end{aligned}
$$

where $p=\left(a\left(y^{2} x^{2}\right)\right) a$, therefore

$$
\begin{aligned}
\left(K_{A}^{+} \sim K_{A}^{+}\right)(a) & =\bigcup_{a=p a}\left\{K_{A}^{+}(p) \cap K_{A}^{+}(a)\right\} \\
& \supseteq K_{A}^{+}\left(\left(a\left(y^{2} x^{2}\right)\right) a\right) \cap K_{A}^{+}(a) \\
& \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(a) \cap K_{A}^{+}(a)=K_{A}^{+}(a) .
\end{aligned}
$$

and

$$
\begin{aligned}
\left(K_{A}^{-} \approx K_{A}^{-}\right)(a) & =\bigcup_{a=p a}\left\{K_{A}^{-}(p) \cap K_{A}^{-}(a)\right\} \\
& \supseteq K_{A}^{-}\left(\left(a\left(y^{2} x^{2}\right)\right) a\right) \cap K_{A}^{-}(a) \\
& \supseteq K_{A}^{-}(a) \cap K_{A}^{-}(a) \cap K_{A}^{-}(a)=K_{A}^{-}(a)
\end{aligned}
$$

so by Lemma 2.1, $K_{A}^{+} \widetilde{ }^{\circ} K_{A}^{+}=K_{A}^{+}$and $K_{A}^{-} \sim K_{A}^{-}=K_{A}^{-}$, Thus $K_{A} \diamond K_{A}=K_{A}$.
\Longleftarrow Assume that $\left(K_{A} \diamond C_{A}\right) \diamond K_{A}=K_{A}=K_{A} \diamond K_{A}$. Since $K_{A} \diamond K_{A}=K_{A}$, so by Lemma 2.1 it follows that K_{A}^{-}is a $D F S$-sub-AG-Groupoid of S over U. Also

$$
\begin{aligned}
K_{A}^{+}((u v) w) & =\left(\left(K_{A}^{+} \sim C_{A}^{+}\right) \sim K_{A}^{+}\right)((u v) w)=\bigcup_{(u v) w=(u v) w}\left\{\left(K_{A}^{+} \sim C_{A}^{+}\right)(u v) \cap K_{A}^{+}(w)\right\} \\
& =\bigcup_{(u v) w=(u v) w}\left(\left\{\bigcup_{u v=u v} K_{A}^{+}(u) \cap C_{A}^{+}(v)\right\} \cap K_{A}^{+}(w)\right) \\
& \supseteq K_{A}^{+}(u) \cap U \cap K_{A}^{+}(w)=K_{A}^{+}(u) \cap K_{A}^{+}(w),
\end{aligned}
$$

and

$$
\begin{aligned}
K_{A}^{-}((u v) w) & =\left(\left(K_{A}^{-} \tilde{*}^{-} C_{A}^{-}\right) * K_{A}^{-}\right)((u v) w)=\bigcap_{(u v) w=(u v) w}\left\{\left(K_{A}^{-} \tilde{*}^{*} C_{A}^{-}\right)(u v) \cup K_{A}^{-}(w)\right\} \\
& =\bigcap_{(u v) w=(u v) w}\left(\left\{\bigcap_{u v=u v} K_{A}^{-}(u) \cup C_{A}^{-}(v)\right\} \cup K_{A}^{-}(w)\right) \\
& \subseteq K_{A}^{-}(u) \cup \emptyset \cup K_{A}^{-}(w)=K_{A}^{-}(u) \cup K_{A}^{-}(w) .
\end{aligned}
$$

Thus by $K_{A} \diamond K_{A}=K_{A}$ and Lemma 2.1 it follows that K_{A} is a $D F S$-sub-AGGroupoid of S over U. Hence K_{A} is a $D F S-B I$ of S over U.
(iii). It is immediate.
(iv). \Rightarrow Let $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ be a $D F S-(1,2)-I$ of S over U. Now for $a \in S$, there exists some $x, y \in S$ such that $a=(a x)(a y)$, we have

$$
\begin{aligned}
a & =(a x)(a y)=(a x)(a y)=(a a)(x y)=((x y) a) a=((x y)((a x)(a y))) a \\
& =((x y)((a a)(x y))) a=((a a)((x y)(x y))) a=\left((a a)\left(x^{2} y^{2}\right)\right) a=\left(a\left(y^{2} x^{2}\right)\right)(a a)=p(a a)
\end{aligned}
$$

where $p=a\left(y^{2} x^{2}\right)=a q$, where $q=y^{2} x^{2}$, therefore

$$
\begin{aligned}
\left(\left(K_{A}^{+} \sim C_{A}^{+}\right) \sim\left(K_{A}^{+} \sim K_{A}^{+}\right)\right)(a) & =\bigcup_{a=p(a a)}\left\{\left(K_{A}^{+} \tilde{\circ}_{A}^{+}\right)(p) \cap\left(K_{A}^{+} \sim K_{A}^{+}\right)(a a)\right\} \\
& \supseteq\left(K_{A}^{+} \sim C_{A}^{+}\right)(p) \cap\left(K_{A}^{+} \sim K_{A}^{+}\right)(a a) \\
& =\bigcup_{p=a q}\left\{K_{A}^{+}(a) \cap C_{A}^{+}(q)\right\} \cap \bigcup_{a a=a a}\left\{K_{A}^{+}(a) \cap K_{A}^{+}(a)\right\} \\
& \supseteq K_{A}^{+}(a) \cap U \cap K_{A}^{+}(a) \cap K_{A}^{+}(a)=K_{A}^{+}(a)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right) \tilde{*}\left(K_{A}^{-} \tilde{*} K_{A}^{-}\right)\right)(a) & =\bigcap_{a=p(a a)}\left\{\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right)(p) \cup\left(K_{A}^{-}{ }_{*} K_{A}^{-}\right)(a a)\right\} \\
& \subseteq\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right)(p) \cup\left(K_{A}^{-} \tilde{*} K_{A}^{-}\right)(a a) \\
& =\bigcap_{p=a q}\left\{K_{A}^{-}(a) \cup C_{A}^{-}(q)\right\} \cup \bigcap_{a a=a a}\left\{K_{A}^{-}(a) \cup K_{A}^{-}(a)\right\} \\
& \subseteq K_{A}^{-}(a) \cup \emptyset \cup K_{A}^{-}(a) \cup K_{A}^{-}(a)=K_{A}^{-}(a)
\end{aligned}
$$

Again, we have

$$
\begin{aligned}
a & =(a x)(a y)=(a x)(a y)=(a a)(x y)=((x y) a) a=((x y)((a x)(a y))) a \\
& =((x y)((a a)(x y))) a=((a a)((x y)(x y))) a=\left((a a)\left(x^{2} y^{2}\right)\right) a \\
& =\left(a\left(x^{2} y^{2}\right)\right)(a a)=p(a a)
\end{aligned}
$$

where $p=a\left(x^{2} y^{2}\right)=a q$, where $q=x^{2} y^{2}$, therefore

$$
\begin{aligned}
\left(\left(K_{A}^{+} \sim C_{A}^{+}\right) \sim\left(K_{A}^{+} \tilde{o}_{A}^{+}\right)\right)(a) & =\bigcup_{a=p(a a)}\left\{\left(K_{A}^{+} \tilde{\circ}_{A}^{+}\right)(p) \cap\left(K_{A}^{+} \sim K_{A}^{+}\right)(a a)\right\} \\
& \left.=\bigcup_{a=p(a a)}\left\{\left(\bigcup_{p=a q}\left\{K_{A}^{+}(a) \cap C_{A}^{+}(q)\right\}\right) \cap\left(\bigcup_{a a=a a}\left\{K_{A}^{+}(a) \cap K_{A}^{+}\right)(a)\right\}\right)\right\} \\
& \left.=\bigcup_{a=p(a a)}\left\{\left(\bigcup_{p=a q}\left\{K_{A}^{+}(a) \cap U\right\}\right) \cap\left(\bigcup_{a a=a a}\left\{K_{A}^{+}(a) \cap K_{A}^{+}\right)(a)\right\}\right)\right\} \\
& =\bigcup_{a=p(a a)}\left\{\left(\bigcup_{p=a q} K_{A}^{+}(a)\right) \cap\left(\bigcup_{a a=a a} K_{A}^{+}(a)\right)\right\} \\
& =\bigcup_{a=p(a a)}\left\{K_{A}^{+}(a) \cap K_{A}^{+}(a)\right\}=\bigcup_{a=p(a a)} K_{A}^{+}(a) \\
& \subseteq \bigcup_{a=p(a a)}\left\{K_{A}^{+}\left(\left(a\left(x^{2} y^{2}\right)\right)(a a)\right)\right\}=K_{A}^{+}(a),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(K_{A}^{-}{ }^{*} C_{A}^{-}\right) \tilde{*}\left(K_{A}^{-} \tilde{*} K_{A}^{-}\right)\right)(a) & =\bigcap_{a=p(a a)}\left\{\left(K_{A}^{-} \tilde{*}^{*} C_{A}^{-}\right)(p) \cup\left(K_{A}^{-}{ }^{*} K_{A}^{-}\right)(a a)\right\} \\
& \left.=\bigcap_{a=p(a a)}\left\{\left(\bigcap_{p=a q}\left\{K_{A}^{-}(a) \cup C_{A}^{-}(q)\right\}\right) \cup\left(\bigcap_{a a=a a}\left\{K_{A}^{-}(a) \cup K_{A}^{-}\right)(a)\right\}\right)\right\} \\
& \left.=\bigcap_{a=p(a a)}\left\{\left(\bigcap_{p=a q}\left\{K_{A}^{-}(a) \cup \emptyset\right\}\right) \cup\left(\bigcap_{a a=a a}\left\{K_{A}^{-}(a) \cup K_{A}^{-}\right)(a)\right\}\right)\right\} \\
& =\bigcap_{(p,(a a)) \in A_{a}}\left\{\left(\bigcap_{p=a q} K_{A}^{-}(a)\right) \cup\left(\bigcap_{a a=a a} K_{A}^{-}(a)\right)\right\} \\
& =\bigcap_{a=p(a a)}\left\{K_{A}^{-}(a) \cup K_{A}^{-}(a)\right\} \\
& \supseteq \bigcap_{a=p(a a)}\left\{K_{A}^{-}\left(\left(a\left(x^{2} y^{2}\right)\right)(a a)\right)\right\}=K_{A}^{-}(a),
\end{aligned}
$$

which implies that $\left(K_{A}^{+} \tilde{\circ} C_{A}^{+}\right) \widetilde{\circ}\left(K_{A}^{+} \sim K_{A}^{+}\right)=K_{A}^{+}$and $\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right) \widetilde{*}\left(K_{A}^{-} \tilde{*} K_{A}^{-}\right)=K_{A}^{-}$.
Thus $\left(K_{A} \diamond C_{A}^{+}\right) \diamond K_{A}=K_{A}=K_{A} \diamond K_{A}$. Now

$$
\begin{aligned}
a & =(a x)(a y)=a((a x) y)=a((y x) a)=a((y x)((a x)(a y)))=a((y x)((a a)(x y))) \\
& =a((a a)((y x)(x y)))=a((a((a x)(a y)))((y x)(x y)))=a((a((a a)(x y)))((y x)(x y))) \\
& =a(((a a)(a(x y)))((y x)(x y)))=a(((y x)(x y)(a(x y)))(a a)) \\
& =a(a((y x)(x y)((x y)))(a a))=a p,
\end{aligned}
$$

where $p=a((y x)(x y)((x y)))(a a)$, therefore

$$
\begin{aligned}
\left(K_{A}^{+} \sim K_{A}^{+}\right)(a) & =\bigcup_{a=a p}\left\{K_{A}^{+}(a) \cap K_{A}^{+}(p)\right\} \\
& \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(p) \\
& =K_{A}^{+}(a) \cap K_{A}^{+}(a((y x)(x y)((x y)))(a a)) \supseteq K_{A}^{+}(a)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(K_{A}^{-} \tilde{*}^{-} K_{A}^{-}\right)(a) & =\bigcap_{a=p a}\left\{K_{A}^{-}(a) \cup K_{A}^{-}(p)\right\} \subseteq K_{A}^{-}(a) \cup K_{A}^{-}(p) \\
& =K_{A}^{-}(a) \cup K_{A}^{-}(a((y x)(x y)((x y)))(a a)) \subseteq K_{A}^{-}(a) .
\end{aligned}
$$

By Lemma 2.1. $K_{A}^{+} \stackrel{\sim}{\circ} K_{A}^{+}=K_{A}^{+}$and $K_{A}^{-} \tilde{*} K_{A}^{-}=K_{A}^{-}$. Thus $K_{A} \diamond K_{A}=K_{A}$.
\Leftarrow Assume that $\left(K_{A} \diamond C_{A}\right) \diamond\left(K_{A} \diamond K_{A}\right)=K_{A}=K_{A} \diamond K_{A}$. Since $K_{A} \diamond K_{A}=K_{A}$, so by Lemma 2.1. it follows that K_{A}^{-}is a $D F S$-sub-AG-Groupoid of S over U, we have

$$
\begin{aligned}
K_{A}^{+}((u a)(v w)) & =\left(\left(K_{A}^{+} \tilde{\circ}_{A}^{+}\right) \sim\left(K_{A}^{+} \sim K_{A}^{+}\right)\right)((u a)(v w)) \\
& =\left(\left(K_{A}^{+} \sim C_{A}^{+}\right) \sim K_{A}^{+}\right)((u a)(v w)) \\
& =\bigcup_{(u a)(v w)=(u a)(v w)}\left\{\left(K_{A}^{+} \sim C_{A}^{+}\right)(u a) \cap K_{A}^{+}(v w)\right\} \\
& \supseteq\left(K_{A}^{+} \sim C_{A}^{+}\right)(u a) \cap K_{A}^{+}(v w) \\
& =\left(\bigcup_{(u, a) \in A_{u a}}\left\{K_{A}^{+}(u) \cap C_{A}^{+}(a)\right\}\right) \cap K_{A}^{+}(v w) \\
& \supseteq K_{A}^{+}(u) \cap U \cap K_{A}^{+}(v) \cap K_{A}^{+}(w)=K_{A}^{+}(u) \cap K_{A}^{+}(v) \cap K_{A}^{+}(w) .
\end{aligned}
$$

and

$$
\begin{aligned}
K_{A}^{-}((u a)(v w)) & =\left(\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right) *\left(K_{A}^{-} \tilde{*}^{-} K_{A}^{-}\right)\right)((u a)(v w)) \\
& =\left(\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right) \tilde{*} K_{A}^{-}\right)((u a)(v w)) \\
& =\bigcap_{(u a)(v w)=(u a)(v w)}\left\{\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right)(u a) \cup K_{A}^{-}(v w)\right\} \\
& \subseteq\left(K_{A}^{-} \tilde{*} C_{A}^{-}\right)(u a) \cup K_{A}^{-}(v w) \\
& =\left(\bigcap_{(u, a) \in A_{u a}}\left\{K_{A}^{-}(u) \cup C_{A}^{-}(a)\right\}\right) \cup K_{A}^{-}(v w) \\
& \subseteq K_{A}^{-}(u) \cup \emptyset \cup K_{A}^{-}(v) \cup K_{A}^{-}(w)=K_{A}^{-}(u) \cup K_{A}^{-}(v) \cup K_{A}^{-}(w) .
\end{aligned}
$$

Hence K_{A} is a $D F S-(1,2)-I$ of S over U.
Theorem 3.3. In a (2,2)-regular unitary $A G$-Groupoid (an $A G^{* * *-G r o u p o i d) ~} S$ over U, the DFS-LIs (RIs, 2SIs, GBIs, BIs, IIs, (1,2)-Is) are coincides.

Proof. Let S is (2,2)-regular unitary AG-Groupoid.
For $a, b \in S$, there exists $u \in S$ such that $a=(a x)(a y)$. Let $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ be a $D F S-L I$ of S, we have

$$
\begin{aligned}
K_{A}^{+}(a b) & =K_{A}^{+}(((a x)(a y)) b)=K_{A}^{+}(((a a)(x y)) b) \\
& \left.=K_{A}^{+}(((x y)) b)(a a)\right) \supseteq K_{A}^{+}(a a) \supseteq K_{A}^{+}(a)
\end{aligned}
$$

and

$$
\begin{aligned}
K_{A}^{-}(a b) & =K_{A}^{-}(((a x)(a y)) b)=K_{A}^{-}(((a a)(x y)) b) \\
& \left.=K_{A}^{-}(((x y)) b)(a a)\right) \subseteq K_{A}^{-}(a a) \subseteq K_{A}^{-}(a)
\end{aligned}
$$

Hence K_{A} is a $D F S-R I$ of S over U. Similarly, every $D F S-R I$ of S is a $D F S-L I$ of S over U.

Clearly a $D F S-B I$ of S is a $D F S-G B I$ of S. For $a, b \in S$, there exists $x, y \in S$ such that $a=(a x)(a y)$. Let $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ be a $D F S-G B I$ of S, we have

$$
\begin{aligned}
K_{A}^{+}(a b) & =K_{A}^{+}(((a x)(a y)) b)=K_{A}^{+}(((a a)(x y)) b)=K_{A}^{+}((((x y) a) a) b) \\
& =K_{A}^{+}((((x y)(a x)(a y)) a) b)=K_{A}^{+}((((x y)(a a)(x y)) a) b \\
& =K_{A}^{+}\left((((a a)((x y)(x y))) a) b=K_{A}^{+}\left(\left(\left((a a)\left(\left(x^{2} y^{2}\right)\right)\right) a\right) b\right.\right. \\
& =K_{A}^{+}\left(\left(\left(\left(y^{2} x^{2}\right)(a a)\right) a\right) b=K_{A}^{+}\left(\left(\left(a\left(\left(y^{2} x^{2}\right) a\right)\right) a\right) b \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(b),\right.\right.
\end{aligned}
$$

and

$$
\begin{aligned}
K_{A}^{-}(a b) & =K_{A}^{-}(((a x)(a y)) b)=K_{A}^{-}(((a a)(x y)) b)=K_{A}^{-}((((x y) a) a) b) \\
& =K_{A}^{-}((((x y)(a x)(a y)) a) b)=K_{A}^{-}((((x y)(a a)(x y)) a) b \\
& =K_{A}^{-}\left((((a a)((x y)(x y))) a) b=K_{A}^{-}\left(\left(\left((a a)\left(\left(x^{2} y^{2}\right)\right)\right) a\right) b\right.\right. \\
& =K_{A}^{-}\left(\left(\left(\left(y^{2} x^{2}\right)(a a)\right) a\right) b=K_{A}^{-}\left(\left(\left(a\left(\left(y^{2} x^{2}\right) a\right)\right) a\right) b \supseteq K_{A}^{-}(a) \cap K_{A}^{-}(b),\right.\right.
\end{aligned}
$$

Hence K_{A} is a $D F S-B I$ of S over U.
It is easy to see that a $D F S-2 S I$ of S is a $D F S-B I(G B I)$ of S over U. For $a, b \in$ S there exist $p, q, x, y \in S$ such that $a=(a p)(a q)$ and $b=(b x)(b y)$. Let $K_{A}=$ $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a $D F S-B I$ of S over U, we have

$$
\begin{aligned}
K_{A}^{+}(a b) & =K_{A}^{+}(a((b x)(b y)))=K_{A}^{+}(a((b b)(x y)))=K_{A}^{+}((b b)(a(x y))) \\
& =K_{A}^{+}(((a(x y)) b) b)=K_{A}^{+}(((a(x y))((b x)(b y))) b) \\
& =K_{A}^{+}(((a(x y))((b b)(x y))) b)=K_{A}^{+}((b b)(((a(x y))(x y))) b) \\
& =K_{A}^{+}(((x y)(a(x y))(b b)) b)=K_{A}^{+}((b(((x y)(a(x y)) b)) b) \\
& \supseteq K_{A}^{+}(b) \cap K_{A}^{+}(b)=K_{A}^{+}(b),
\end{aligned}
$$

and

$$
\begin{aligned}
K_{A}^{-}(a b) & =K_{A}^{-}(a((b x)(b y)))=K_{A}^{-}(a((b b)(x y)))=K_{A}^{-}((b b)(a(x y))) \\
& =K_{A}^{-}(((a(x y)) b) b)=K_{A}^{-}(((a(x y))((b x)(b y))) b) \\
& =K_{A}^{-}(((a(x y))((b b)(x y))) b)=K_{A}^{-}((b b)(((a(x y))(x y))) b) \\
& =K_{A}^{-}(((x y)(a(x y))(b b)) b)=K_{A}^{-}((b(((x y)(a(x y)) b)) b) \\
& \supseteq K_{A}^{-}(b) \cap K_{A}^{-}(b)=K_{A}^{-}(b),
\end{aligned}
$$

which shows that K_{A} is a $D F S-L I$ of S over U. Similarly K_{A} is a $D F S-R I$ of S over U. Hence K_{A} is a $D F S-2 S I$ of S over U.

It is easy to see that a $D F S-2 S I$ of S is a $D F S-(1,2)-I$ of S over U. Now for $a, b \in S$, there exists some $x, y \in S$ such that $a=(a x)(a y)$. Let K_{A} be a $D F S-(1,2)-I$ of S we
have

$$
\begin{aligned}
K_{A}^{+}(a b) & =K_{A}^{+}(((a x)(a y)) b)=K_{A}^{+}(((a a)(x y)) b)=K_{A}^{+}(((((a x)(a y)) a)(x y)) b) \\
& =K_{A}^{+}(((((a a)(x y)) a)(x y)) b)=K_{A}^{+}(((x y) a)((a a)(x y)) b) \\
& =K_{A}^{+}((a a)(((x y) a)(x y)) b)=K_{A}^{+}(b(((x y) a)(x y))(a a)) \\
& =K_{A}^{+}(((x y) a)(b(x y))(a a))=K_{A}^{+}(((x y) b)(a(x y))(a a)) \\
& =K_{A}^{+}(a(((x y) b)(x y))(a a)) \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(a) \cap K_{A}^{+}(a)=K_{A}^{+}(a),
\end{aligned}
$$

and

$$
\begin{aligned}
K_{A}^{-}(a b) & =K_{A}^{-}(((a x)(a y)) b)=K_{A}^{-}(((a a)(x y)) b)=K_{A}^{-}(((((a x)(a y)) a)(x y)) b) \\
& =K_{A}^{-}(((((a a)(x y)) a)(x y)) b)=K_{A}^{-}(((x y) a)((a a)(x y)) b)=K_{A}^{-}((a a)(((x y) a)(x y)) b) \\
& =K_{A}^{-}(b(((x y) a)(x y))(a a))=K_{A}^{-}(((x y) a)(b(x y))(a a)) \\
& =K_{A}^{-}(((x y) b)(a(x y))(a a))=K_{A}^{-}(a(((x y) b)(x y))(a a)) \\
& \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(a) \cap K_{A}^{+}(a)=K_{A}^{+}(a),
\end{aligned}
$$

Thus K_{A} is a $D F S-R I$ of S over U. Similarly K_{A} is a $D F S-L I$ of S over U. Hence K_{A} be a $D F S 2 S I$ of S over U.

It is easy to see that a $D F S-I I$ of S is a $D F S-(1,2)-I$ of S over U. Now let $a, u, v \in S$, then there exists $x, y \in S$ such that $a=(a x)(a y)$. Let K_{A} is a $D F S(1,2)-I$ of S over U, we have

$$
\begin{aligned}
K_{A}^{+}((u a) v) & =K_{A}^{+}((u a) v)=K_{A}^{+}((u((a x)(a y))) v)=K_{A}^{+}((u((((a x)(a y)) x)(a y))) v) \\
& =K_{A}^{+}((u((((a a)(x y)) x)(a y))) v)=K_{A}^{+}((((a a)(x y)) x)(u(a y)) v) \\
& =K_{A}^{+}(((x(x y))(a a))(u(a y)) v)=K_{A}^{+}((((a y) u)((a a)((x(x y)))) v) \\
& =K_{A}^{+}\left((a a)(((a y) u)((x(x y))) v)=K_{A}^{+}((v(((a y) u)(x(x y))))(a a))\right. \\
& =K_{A}^{+}((((a y) u)(v(x(x y))))(a a))=K_{A}^{+}((((y u) a)(v(x(x y))))(a a)) \\
& =K_{A}^{+}((((x(x y) v))(a(y u)))(a a))=K_{A}^{+}((a(((x(x y) v))(y u)))(a a)) \\
& \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(a) \cap K_{A}^{+}(a)=K_{A}^{+}(a),
\end{aligned}
$$

similarly $K_{A}^{-}((u a) v) \subseteq K_{A}^{-}(a)$. Thus K_{A} is a $D F S-I I$ of S over U. Again let $a, u, v, w \in$ S, then there exist p, q and $r, s \in S$ such that $u=(u p)(u q)$ and $w=(w r)(w s)$. Let K_{A} be a $D F S-I I$ of S over U, we have

$$
K_{A}^{+}((u a)(v w))=K_{A}^{+}((w v)(a u)) \supseteq K_{A}^{+}(v)
$$

and

$$
\begin{aligned}
K_{A}^{+}((u a)(v w)) & =K_{A}^{+}\left((((u p)(u q))(v w))=K_{A}^{+}((((u u)(p q))(v w))\right. \\
& =K_{A}^{+}\left((((u u) v)((p q)(v w)))=K_{A}^{+}\left((((v u) u)((p q)(v w))) \supseteq K_{A}^{+}(u) .\right.\right.
\end{aligned}
$$

and

$$
\begin{aligned}
K_{A}^{-}((u a)(v w)) & =K_{A}^{-}\left((u a)(v((w r)(w s)))=K_{A}^{-}((u a)(v((w w)(r s)))\right. \\
& =K_{A}^{-}\left((u a)((w w)(v(r s)))=K_{A}^{-}\left((w w)((u a)(v(r s))) \subseteq K_{A}^{-}(w)\right.\right.
\end{aligned}
$$

Therefore, $K_{A}^{+}((u a)(v w)) \supseteq K_{A}^{+}(u) \cap K_{A}^{+}(v) \cap K_{A}^{+}(w)$, similarly $K_{A}^{-}((u a)(v w)) \subseteq$ $K_{A}^{-}(u) \cup K_{A}^{-}(v) \cup K_{A}^{-}(w)$. If $a, b \in S$, then there exist $p ., q$ and $r, s \in S$ such that $a=(a p)(a q)$ and $b=(b r)(b s)$, we have

$$
\begin{aligned}
K_{A}^{+}(a b) & =K_{A}^{+}(((a p)(a q)) b)=K_{A}^{+}(((a a)(p q)) b)=K_{A}^{+}(((b(p q))(a a))) \\
& =K_{A}^{+}(((b a)((p q) a))) \supseteq K_{A}^{+}(a),
\end{aligned}
$$

and

$$
K_{A}^{+}(a b)=K_{A}^{+}(a((b r)(b s)))=K_{A}^{+}(a((b b)(r s)))=K_{A}^{+}((b b)(a(r s))) \supseteq K_{A}^{+}(b)
$$

Thus, $K_{A}^{+}(a b) \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(b)$, similarly $K_{A}^{-}(a b) \subseteq K_{A}^{-}(a) \cup K_{A}^{-}(b)$. Hence K_{A} is a $D F S-(1,2)-I$ of S over U.

Example 3.2. [10] Suppose there are twelve houses over a universal set U given by

$$
U:=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}, s_{9}, s_{10}, s_{11}, s_{12}\right\}
$$

Let $S=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be a set of parameters, shows status of houses in which e_{0} stands for "in green surroundings",
e_{1} stands for "beautiful",
e_{2} stands for "in good location",
e_{3} stands for "cheap,
with the following binary operation.

$*$	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}
e_{0}	e_{0}	e_{0}	e_{0}	e_{0}	e_{0}
e_{1}	e_{0}	e_{4}	e_{4}	e_{2}	e_{4}
e_{2}	e_{0}	e_{4}	e_{4}	e_{1}	e_{4}
e_{3}	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}
e_{4}	e_{0}	e_{4}	e_{4}	e_{4}	e_{4}

Clearly $(S, *)$ is a unitary $A G$-groupoid having left identity d. Note that S is not (2,2)regular because for $e_{2} \in S$ there do not exists $u \in S$ such that $e_{2}=u e_{2}^{2}$.

If we define $D F S S\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ of S over U as follows:

$$
\begin{gathered}
K_{A}^{+}(u): S \longrightarrow P(U), u \mapsto\left\{\begin{array}{c}
U \text { if } u=e_{0} \\
\left\{s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}\right\} \text { if } u=e_{1} \\
\left\{s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\} \text { if } u=e_{2} \\
\left\{s_{2}, s_{3}, s_{4}, s_{5}\right\} \text { if } u=e_{3} \\
\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}, s_{9}, s_{10}\right\} \text { if } u=e_{4}
\end{array}\right\} \text { and } \\
K_{A}^{-}(u): S \longrightarrow P(U), u \mapsto\left\{\begin{array}{c}
\left\{s_{2}, s_{3}, s_{4}\right\} \text { if } u=e_{0} \\
\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}\right\} \text { if } u=e_{2} \\
U \text { if } u=e_{3} \\
\left\{s_{2}, s_{3}, s_{4}, s_{6}\right\} \text { if } u=e_{4}
\end{array}\right\} .
\end{gathered}
$$

Then it is simple to verify that $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a DFS-LI of S over U, but $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is not a $D F S-R I$ of S over U, because

$$
K_{A}^{+}\left(e_{1} e_{3}\right) \supsetneq K_{A}^{+}\left(e_{1}\right) \text { and } K_{A}^{-}\left(e_{1} e_{3}\right) \varsubsetneqq K_{A}^{-}\left(e_{1}\right)
$$

It is simple to see that $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a $D F S-I I$ of S over U but it is not a $D F S$ $2 S I$ of S over U. On the other hand it is easy to see that every $D F S-2 S I$ of S is a $D F S-I I$ $(B I)$ of S over U.

4. $D F S$ LEFT (RIGHT) IDEALS IN AG-Groupoids

In this section, we characterize a (2,2)-regular AG-Groupoid by using the properties of $D F S-L I s$ (RIs). We also provide few counter examples to discuss the converse part of given problem.
Lemma 4.1. If $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a DFSS of S over U, then $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a DFS semiprime \Longleftrightarrow if $K_{A}^{+}(u) \supseteq K_{A}^{+}\left(u^{2}\right)$ and $K_{A}^{-}(u) \subseteq K_{A}^{-}\left(u^{2}\right)$, for all $u \in S$.
Proof. It is immediate.
Example 4.1. Let us define a $\operatorname{DFSS}\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ of $S=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ over $U:=$ $\left\{h_{1}, h_{2}, h_{3}, h_{4}, h, h_{6}, h_{7}, h_{8}, h_{9}, h_{10}\right\}$ given in Example 3.2 as follows:

$$
\left.\begin{array}{rl}
K_{A}^{+}(u): S \longrightarrow P(U), u \mapsto & \left\{\begin{array}{c}
\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\} \text { if } u=e_{0} \\
\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, h_{7}, h_{8}\right\} \text { if } u=e_{1} \\
U \text { if } u=e_{2}
\end{array}\right\} \text { and } \\
\left\{h_{2}, h_{3}, h_{4}, h_{5}\right\} \text { if } u=e_{3} \\
\left\{h_{2}, h_{3}, h_{4}\right\} \text { if } u=e_{4}
\end{array}\right\} \text { } \begin{gathered}
U \text { if } u=e_{0} \\
K_{A}^{-}(u): S \longrightarrow P(U), u \mapsto\left\{\begin{array}{c}
\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, h_{7}\right\} \text { if } u=e_{1} \\
\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, h_{7}, h_{8}\right\} \text { if } u=e_{2} \\
\left\{h_{7}, h_{8}, h_{9}, h_{10}\right\} \text { if } u=e_{3} \\
\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, h_{7}, h_{8}, h_{9}\right\} \text { if } u=e_{4}
\end{array}\right\}
\end{gathered}
$$

Then it is easy to verify that a $D F S S\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a $D F S$ semiprime.
Theorem 4.2. A right (left, two-sided) ideal of S over U is semiprime $\Longleftrightarrow C_{R}=\left\langle\left(C_{R}^{+}, C_{R}^{-}\right) ; R\right\rangle$ is DFS semiprime.
Proof. \Longrightarrow Let A be a right (left, two-sided) ideal of S. By Lemma 2.2. $C_{A}=\left\langle\left(C_{A}^{+}, C_{A}^{-}\right) ; A\right\rangle$ is a $D F S-R I(L I, 2 S I)$ of S over U. Now let $a \in S$, if $a^{2} \in A$, since S semiprime, then $a \in A$.Hence $\left(C_{A}^{+}\right)(a)=U=\left(C_{A}^{+}\right)\left(a^{2}\right)$ and $\left(C_{A}^{--}\right)(a)=\emptyset=\left(C_{A}^{-}\right)\left(a^{2}\right)$. If $a^{2} \notin A$, then $\left(C_{A}^{+}\right)(a) \supseteq \emptyset=\left(C_{A}^{+}\right)\left(a^{2}\right)$ and $\left(C_{A}^{-}\right)(a) \subseteq U \subseteq\left(C_{A}^{-}\right)\left(a^{2}\right)$. Thus in both cases $C_{A}(a) \sqsupseteq C_{A}\left(a^{2}\right)$.Hence $C_{A}=\left\langle\left(C_{A}^{+}, C_{A}^{-}\right) ; A\right\rangle D F S$ semiprime.
$\Longleftarrow \mathrm{It}$ is immediate.
Corollary 4.3. If any $D F S-R I(L I, 2 S I)$ of S is $D F S$ semiprime, then any right (left, two-sided) ideal of S is semiprime.
Lemma 4.4. For a $(2,2)$-regular unitary $A G-G r o u p o i d ~(a n ~ A G * * *-G r o u p o i d) ~ S ~ o v e r ~ U, ~$ the following assertions hold.
(i) All DFS-RIs of S are $D F S$ semiprime.
(ii) All DFS-LIs of S are $D F S$ semiprime in a unitary AG-Groupoid S over U.

Proof. (i) : It is immediate.
(ii) : If $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is an $D F S-L I$ of S over U and $a \in S$, then there exists $x, y \in S$ such that $a=(a x)(a y)$, we have $K_{A}^{+}(a)=K_{A}^{+}((a x)(a y))=K_{A}^{+}((a a)(x y))=$ $K_{A}^{+}((y x)(a a)) \supseteq K_{A}^{+}\left(a^{2}\right)$ and $K_{A}^{-}(a)=K_{A}^{-}((a x)(a y))=K_{A}^{-}((a a)(x y))=K_{A}^{-}((y x)(a a)) \supseteq$ $K_{A}^{-}\left(a^{2}\right)$, which shows that K_{A} is $D F S$ semiprime.
Theorem 4.5. For a unitary $A G-G r o u p o i d ~(a n ~ A G * * *-G r o u p o i d) ~ S, ~ t h e ~ f o l l o w i n g ~ c o n d i-~$ tions are equivalent.
(i) S is (2,2)-regular.
(ii) All DFS-RIs, (LIs, $2 S I s)$ of S are $D F S$ semiprime.

Proof. $(i) \Longrightarrow(i i)$: It follows from Lemma 4.4
$(i i) \Longrightarrow(i)$: Since $a^{2} S[24]$ is a right and also a left ideal of S, so by Corollary 4.3. $C_{a^{2} S}=\left\langle\left(C_{a^{2} S}^{+}, C_{a^{2} S}^{-}\right) ; a^{2} S\right\rangle$ is $D F S$ semiprime. Now clearly $a^{2} \in a^{2} S$, implies $a \in a^{2} S$, hence S is (2,2)-regular.

Lemma 4.6. Every DFS-RI of a unitary AG-Groupoid (an AG ${ }^{* * *-G r o u p o i d) ~} S$ becomes a DFS-LI of S.
Proof. Let $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ be a $D F S-R I$ of S. Then for any $a, b \in S$, we have $K_{A}^{+}(a b)=K_{A}^{+}((e a) b)=K_{A}^{+}((b a) e) \supseteq K_{A}^{+}(b)$ and $K_{A}^{-}(a b)=K_{A}^{-}((e a) b)=$ $K_{A}^{-}((b a) e) \subseteq K_{A}^{-}(b)$. hence K_{A} is a $D F S-L I$ of S.

Theorem 4.7. The following conditions are equivalent for a unitary AG-Groupoid (an AG***-Groupoid) S.
(i) S is (2,2)-regular.
(ii) Each DFS-RIs of S are $D F S$ semiprime.
(iii) Each DFS-LIs of S are DFS semiprime.

Proof. $(i) \Longrightarrow(i i i)$ and $(i i) \Longrightarrow(i)$ follows from Theorem4.5
$($ iii $) \Longrightarrow($ ii $):$ If $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a $D F S-R I$ of S over U, then by Lemma 4.6. K_{A} is a $D F S-L I$ of S over U, therefore K_{A} is a $D F S$ semiprime.

Lemma 4.8. For a unitary $A G$-Groupoid (an $A G^{* * *-G r o u p o i d) ~} S$, the following conditions are equivalent:
(i) S is (2,2)-regular.
(ii) $K_{A} \diamond K_{A}=K_{A}$, for each DFS-LI $(R I, 2 S I)$ ideal of S over U.

Proof. $(i) \Longrightarrow(i i)$: Let $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ be a $D F S-L I$ of S over U, then $K_{A}^{+} \widetilde{\circ}$ $K_{A}^{+} \subseteq K_{A}^{+}$and. $K_{A}^{-} \tilde{*}^{-} K_{A}^{-} \supseteq K_{A}^{-}$Let $a \in S$, then there exists $u \in S$ such that $a=$ $(a x)(a y)=(y a)(x a)$, we have

$$
\begin{aligned}
\left(K_{A}^{+} \tilde{\circ} K_{A}^{+}\right)(a) & =\bigcup_{a=(y a)(x a)}\left\{K_{A}^{+}(y a) \cap K_{A}^{+}(x a)\right\} \supseteq K_{A}^{+}(x a) \cap K_{A}^{+}(y a) \\
& \supseteq K_{A}^{+}(a) \cap K_{A}^{+}(a)=K_{A}^{+}(a),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(K_{A}^{-} \tilde{*} K_{A}^{-}\right)(a) & =\bigcap_{a=(y a)(x a)}\left\{K_{A}^{-}(y a) \cup K_{A}^{-}(x a)\right\} \subseteq K_{A}^{-}(y a) \cup K_{A}^{-}(x a) \\
& \subseteq K_{A}^{-}(a) \cup K_{A}^{-}(a)=K_{A}^{-}(a) .
\end{aligned}
$$

Hence $K_{A} \diamond K_{A}=K_{A}$.
$($ ii $) \Longrightarrow(i):$ Let $K_{A} \diamond K_{A}=K_{A}$ holds for each $D F S$ - $L I$ of S over U. Since $S a$ [24] is left ideal of S, so by Lemma 2.2. $C_{S a}=\left\langle\left(C_{S a}^{+}, C_{S a}^{-}\right) ; S a\right\rangle$ is a $D F S-L I$ of S over U. Since $a \in S a$, therefore $\left(C_{S a}^{+}\right)(a)=U$ and $\left(C_{S a}^{-}\right)(a)=\emptyset$. By Lemma 2.2 and hypothesis, we have $\left(C_{S a}\right) \diamond\left(C_{S a}\right)=C_{S a}$ and $\left(C_{S a}\right) \diamond\left(C_{S a}\right)=C_{(S a)(S a)}$. Therefore $\left(C_{((S a)(S a))}^{+}\right)(a)=C_{(S a]}^{+}(a)=U$ and $C_{((S a)(S a))}^{-}(a)=C_{(S a]}^{-}(a)=\emptyset$, which implies that $a \in((S a)(S a))=(a S)(a S)$. Hence S is (2,2)-regular.

Theorem 4.9. For a unitary $A G$-Groupoid (an $A G^{* * *-G r o u p o i d) ~} S$, the following conditions are equivalent:
(i) S is (2,2)-regular.
(ii) $K_{A}=\left(C_{A}^{+} \diamond K_{A}\right) \diamond\left(C_{A}^{+} \diamond K_{A}\right)$, where $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is an arbitrary DFS-LI (RI, 2SI) ideal of S over U.

Proof. $(i) \Longrightarrow(i i)$: Let S is (2,2)-regular and $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a DFS-LI of S over U. It is simple to see that $C_{A} \diamond K_{A}$ is also a $D F S-L I$ of S over U. By Lemma 4.8, we obtain $\left(C_{A}^{+} \sim K_{A}^{+}\right) \sim\left(C_{A}^{+} \sim K_{A}^{+}\right)=\left(C_{A}^{+} \sim K_{A}^{+}\right) \subseteq K_{A}^{+}$and $\left(C_{A}^{-} \widetilde{*} K_{A}^{-}\right) \stackrel{\sim}{*}$ $\left(C_{A}^{-} \approx K_{A}^{-}\right)=\left(C_{A}^{-} \widetilde{*}^{-} K_{A}^{-}\right) \supseteq K_{A}^{-}$. Now let $a \in S$, then there exists $u \in S$ such that $a=(a x)(a y)=(y a)(x a)$, we have

$$
\begin{aligned}
\left(\left(C_{A}^{+} \sim K_{A}^{+}\right) \tilde{\circ}\left(C_{A}^{+} \sim K_{A}^{+}\right)\right)(a) & =\bigcup_{a=(y a)(x a)}\left\{\left(C_{A}^{+} \sim K_{A}^{+}\right)(y a) \cap\left(C_{A}^{+} \sim K_{A}^{+}\right)(x a)\right\} \\
& \supseteq\left(C_{A}^{+} \sim K_{A}^{+}\right)(y a) \cap\left(C_{A}^{+} \sim K_{A}^{+}\right)(x a) \\
& =\left(\bigcup_{y a=y a}\left\{C_{A}^{+}(y) \cap K_{A}^{+}(a)\right\}\right) \cap\left(\bigcup_{x a=x a}\left\{C_{A}^{+}(x) \cap K_{A}^{+}(a)\right)\right. \\
& \supseteq C_{A}^{+}(y) \cap K_{A}^{+}(a) \cap C_{A}^{+}(x) \cap K_{A}^{+}(a) \\
& =U \cap K_{A}^{+}(a) \cap U \cap K_{A}^{+}(a)=K_{A}^{+}(a),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(C_{A}^{-} \tilde{*} K_{A}^{-}\right) \approx\left(C_{A}^{-} \tilde{*} K_{A}^{-}\right)\right)(a) & =\bigcap_{a=(y a)(x a)}\left\{\left(C_{A}^{-} \tilde{*}^{-} K_{A}^{-}\right)(y a) \cap\left(C_{A}^{-} \tilde{*} K_{A}^{-}\right)(x a)\right\} \\
& \subseteq\left(C_{A}^{-} \tilde{*} K_{A}^{-}\right)(y a) \cup\left(C_{A}^{-} \tilde{*} K_{A}^{-}\right)(x a) \\
& =\left(\bigcap_{y a=y a}\left\{C_{A}^{-}(y) \cup K_{A}^{-}(a)\right\}\right) \cup\left(\bigcap_{x a=x a}\left\{C_{A}^{-}(x) \cup K_{A}^{-}(a)\right)\right. \\
& \subseteq C_{A}^{-}(y) \cup K_{A}^{-}(a) \cup C_{A}^{-}(x) \cup K_{A}^{-}(a) \\
& =\emptyset \cup K_{A}^{-}(a) \cup \emptyset \cup K_{A}^{-}(a)=K_{A}^{-}(a) .
\end{aligned}
$$

Hence $K_{A}=\left(C_{A} \diamond K_{A}\right) \diamond\left(C_{A} \diamond K_{A}\right)$.
$($ ii $) \Longrightarrow(i):$ Let $K_{A}=\left(C_{A} \diamond K_{A}\right) \diamond\left(C_{A} \diamond K_{A}\right)$ holds for all DFS-LI K_{A} of S over U. Then $K_{A}=\left(C_{A} \diamond K_{A}\right) \diamond\left(C_{A} \diamond K_{A}\right) \sqsubseteq K_{A} \diamond K_{A} \sqsubseteq C_{A} \diamond K_{A} \sqsubseteq K_{A}$. Thus by Lemma 4.8, S is (2,2)-regular.

5. Duo and $D F S$ duo AG-Groupoids

Definition 5.1. An AG-Groupoid (an $\mathrm{AG}^{* * *}$-Groupoid) S is called a left (right) duo if every left (right) ideal of S is an ideal of S and is called a duo if it is both left and right duo.

Lemma 5.1. If each DFS-LI of a unitary AG-Groupoid (an AG***-Groupoid) S is a DFS-II of S over U, then S is a left duo.

Proof. Let I is a left ideal of unitary AG-Groupoid S. By Lemma 2.2, $X_{I}=\left\langle\left(X_{I}^{+}, X_{I}^{-}\right) ; I\right\rangle$ is a $D F S$-LI of S over U. So by assumption, X_{I} is a $D F S-I I$ of S over U and by Lemma 2.2, I is an interior ideal of S. Now

$$
I S=(e I) S \subseteq(S I) S \subseteq I
$$

Hence S is left duo.
Corollary 5.2. Every interior ideal of unitary $A G-G r o u p o i d ~(a n ~ A G * * *-G r o u p o i d) ~ S ~ i s ~$ right ideal of S.
Theorem 5.3. For a (2,2)-regular unitary $A G$-groupoid (an $A G^{* * *-G r o u p o i d) ~} S$, the following conditions are equivalent:
(i) S is left duo.
(ii) Every DFS-LI of S is a DFS-II of S over U.

Proof. $(i) \Rightarrow(i i)$ Let a (2,2)-regular unitary AG-Groupoid S is left duo and $K_{A}=$ $\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a $D F S-L I$ of S over U. If $a, b, c \in S$, then $b=(b x)(b y)$ for some $x, y \in S$. Since $S a$ is a left and also a right ideal of S [24], so $S a$ is an ideal of S, we have

$$
\begin{aligned}
(a b) c & =(a((b x)(b y))) c=(a((b b)(x y))) c=((b b)(a(x y))) c \\
& =(c(a(x y)))(b b) \in(S(a(S S)))(S b) \subseteq(S a S)) b \\
& =((e S)(a S)) b=((S a)(S e)) b \subseteq((S a)(S S)) b \\
& \subseteq((S a) S) b \subseteq(S a) b
\end{aligned}
$$

Thus $(a b) c=(t a) b$, for some $t \in S$. Now $K_{A}^{+}((a b) c)=K_{A}^{+}((t a) b) \supseteq K_{A}^{+}(b)$ and $K_{A}^{-}((a b) c)=K_{A}^{-}((t a) b) \subseteq K_{A}^{-}(b)$. Hence $K_{A}=\left\langle\left(K_{A}^{+}, K_{A}^{-}\right) ; A\right\rangle$ is a DFS II of S over U.
$(i i) \Rightarrow(i)$ is follows from Lemma 5.1 .
Definition 5.2. An AG-Groupoid (an AG***-Groupoid) S is called a $D F S$ left duo (right duo) (briefly, $D F S$ - L-duo (DFS-R-duo)) if every $D F S-L I(R I)$ of S is a $D F S-2 S I$ of S and is called a $D F S$-duo if it is both $D F S$ - L-duo and $D F S$ - R-duo.
Remark. Every DFS-L-duo or DFS-R-duo is a DFS-duo in a (2,2)-regular unitary AG-Groupoid (an AG***-Groupoid).

Lemma 5.4. Every left ideal of a unitary $A G-G r o u p o i d ~(a n ~ A G * *-G r o u p o i d) ~ S ~ a n ~ i n t e-~$ rior ideal of S over U if S is a DFS-L-duo.

Proof. It is immediate.
Theorem 5.5. For a (2,2)-regular unitary $A G$-Groupoid (an $A G^{* * *-G r o u p o i d) ~} S$, the following conditions are equivalent:
(i) S is a DFS-L-duo.
(ii) Every left ideal of S over U is an interior ideal of S over U.

Proof. (i) \Rightarrow (ii) cab be followed from Lemma 5.4
(ii) \Rightarrow (i) cab be followed from Theorem 3.3.

6. Some Applications of Double-Framed soft expert sets

In this section we utilize $D F S$ expert sets to solve some real world problem, specifically stated, to decision making.

In real life, there are many cases where the properties of the universal set \mathbb{U}, called parameters are multi-values rather than a single value. For example, if we take a collection of books on the subject of, "Calculus \& Analytic Geometry" available in the market. One of the parameters may be the content of the book. This parameter is two-value. Calculus content means single variable calculus and multi-variable calculus. Other parameters may be the geometric content of the book. This parameter is also two-value. Geometric material means 2 -dimensional geometry and 3-dimensional geometry. In the case where the
parameters involved are two-value, the $D F S S$ s concept plays a useful role. This concept naturally extends to n-framed software sets when the parameters are n-valued.

Suppose we have a team of experts and their views are recorded in case of agreement or disagreement on a particular estimate. We will develop a decision algorithm based on $D F S$ expert sets.

We will be making use of some preliminary concepts from Graph Theory which we present here for completion. A graph $L=(V, E)$ consists of two sets, V called the set of vertices and E called the set of edges. V represents some entities and E represents the relationships between the elements of V. The degree of a vertex is defined to be the number of edges connected to it or in real world, number of relationships it has with other elements. for a vertex $v \in V(L)$, we will denote the degree by $d_{L}(v)$. Reader is referred to any book on graph theory for further readings of this topic.

Let \mathbb{U} be a universe, E a set of parameters, and X a set of experts (agents). Let $O=$ $\{$ disagree $=0$, agree $=1\}$ be a set of opinions, $Z=E \times X \times O$ and $A \subseteq Z$. A DFSS $\langle(\Gamma, \Psi) ; A\rangle$ is then known as a $D F S$ expert-set over calU, where Γ and Ψ are mappings from A to P (calU) (power set of \mathscr{U}).

Example 6.1. Assume that $\mathscr{U}=\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}$ is a set of five newspapers under consideration and $A=\left\{m_{1}, m_{2}, m_{3}\right\}=\{$ coverage, Calls, Data $\}$ is a set of parameters. The parameters involved here are two-valued. m_{1} stands for coverage which includes urban and rural coverage, m_{2} stands for Calss which includes low rate and call packages and m_{3} stands for Data which includes low rates and data packages. Suppose a best performance award is to be announced by some agency. Let $Z=\left\{z_{1}, z_{2}, z_{3}\right\}$ be a set of experts. According to the data collected, the $\operatorname{DFSS}\left\langle\left(\Gamma_{A}, \Psi_{A}\right) ; A\right\rangle$ can be viewed as the collection of the following approximations:

$$
\begin{aligned}
& \left(\Gamma_{A}, Z\right)=\left\{\begin{array}{l}
\left(\left(m_{1}, z_{1}, 1\right),\left\{t_{2}, t_{3}, t_{4}\right\}\right),\left(\left(m_{1}, z_{2}, 1\right),\left\{t_{1}, t_{3}, t_{4}\right\}\right),\left(\left(m_{1}, z_{3}, 1\right),\left\{t_{1}, t_{2}, t_{4}\right\}\right), \\
\left(\left(m_{2}, z_{1}, 1\right),\left\{t_{1}, t_{2}, t_{3}\right\}\right),\left(\left(m_{2}, z_{2}, 1\right),\left\{t_{3}, t_{4}\right\}\right),\left(\left(m_{2}, z_{3}, 1\right),\left\{t_{2}, t_{4}\right\}\right), \\
\left(\left(m_{3}, z_{1}, 1\right),\left\{t_{2}, t_{3}\right\}\right),\left(\left(m_{3}, z_{2}, 1\right),\left\{t_{1}, t_{4}\right\}\right),\left(\left(m_{3}, z_{3}, 1\right),\left\{t_{1}, t_{3}\right\}\right), \\
\left(\left(m_{1}, z_{1}, 0\right),\left\{t_{4}, t_{5}\right\}\right),\left(\left(m_{1}, z_{2}, 0\right),\left\{t_{3}, t_{5}\right\}\right),\left(\left(m_{1}, z_{3}, 0\right),\left\{t_{3}, t_{4}\right\}\right), \\
\left(\left(m_{2}, z_{1}, 0\right),\left\{t_{2}, t_{5}\right\}\right),\left(\left(m_{2}, z_{2}, 0\right),\left\{t_{2}, t_{4}\right\}\right),\left(\left(m_{2}, z_{3}, 0\right),\left\{t_{3}, t_{4}\right\}\right), \\
\left.\left(\left(m_{3}, z_{1}, 0\right),\left\{t_{2}, t_{3}\right\}\right),\left(\left(m_{3}, z_{2}, 0\right),\left\{t_{1}, t_{5}\right\}\right),\left(\left(m_{3}, z_{3}, 0\right),\left\{t_{1}, t_{4}\right\}\right)\right)
\end{array}\right. \\
& \left(\Psi_{A}, Z\right)=\left\{\begin{array}{l}
\left(\left(m_{1}, z_{1}, 1\right),\left\{t_{1}\right\}\right),\left(\left(m_{1}, z_{2}, 1\right),\left\{t_{2}\right\}\right),\left(\left(m_{1}, z_{3}, 1\right),\left\{t_{3}\right\}\right), \\
\left(\left(m_{2}, z_{1}, 1\right),\left\{t_{4}\right\}\right),\left(\left(m_{2}, z_{2}, 1\right),\left\{t_{5}\right\}\right),\left(\left(m_{2}, z_{3}, 1\right),\left\{t_{1}, t_{2}, t_{5}\right\}\right), \\
\left(\left(m_{3}, z_{1}, 1\right),\left\{t_{2}, t_{4}, t_{5}\right\}\right),\left(\left(m_{3}, z_{2}, 1\right),\left\{t_{1}, t_{3}, t_{5}\right\}\right),\left(\left(m_{3}, z_{3}, 1\right),\left\{t_{1}, t_{4}, t_{5}\right\}\right), \\
\left(\left(m_{1}, z_{1}, 0\right),\left\{t_{2}, t_{3}, t_{4}\right\}\right),\left(\left(m_{1}, z_{2}, 0\right),\left\{t_{2}, t_{4}, t_{5}\right\}\right),\left(\left(m_{1}, z_{3}, 0\right),\left\{t_{3}, t_{4}, t_{5}\right\}\right), \\
\left(\left(m_{2}, z_{1}, 0\right),\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}\right),\left(\left(m_{2}, z_{2}, 0\right),\left\{t_{1}, t_{2}, t_{3}, t_{5}\right\}\right),\left(\left(m_{2}, z_{3}, 0\right),\left\{t_{1}, t_{2}, t_{4}, t_{5}\right\}\right), \\
\left(\left(m_{3}, z_{1}, 0\right),\left\{t_{1}, t_{3}, t_{4}, t_{5}\right\}\right),\left(\left(m_{3}, z_{2}, 0\right),\left\{t_{2}, t_{3}, t_{4}, t_{5}\right\}\right),\left(\left(m_{3}, z_{3}, 0\right), U\right)
\end{array}\right\}
\end{aligned}
$$

Let us define the agree-soft expert graph $L\left(\Gamma_{1}(Z)\right)$ henceforth denoted by L_{1} as follows:

The vertex set $V\left(L_{1}\right)=(A \times Z) \cup \mathbb{U}$ and the edge set $E\left(L_{1}\right)=\left\{\left\{\left(m_{i}, z_{j}\right), t_{k}\right\}\right.$ when $t_{k} \in$ $\left.\Gamma_{A}\left(m_{i}, z_{j}, 1\right)\right\}$.

The disagree-soft expert graph $L\left(\Gamma_{0}(Z)\right)$ henceforth denoted by L_{0} has the same vertex set and the edge set is defined as $E\left(L_{0}\right)=\left\{\left\{\left(m_{i}, z_{j}\right), t_{k}\right\}\right.$ when $\left.t_{k} \in \Gamma_{A}\left(m_{i}, z_{j}, 0\right)\right\}$.

These two graphs L_{1} and L_{0} are given in Fig. 1 and Fig. 2 respectively.
Using the same path of definitions for the graphs but using $\left(\Psi_{1}, Z\right)$ and $\left(\Psi_{0}, Z\right)$, we get two more graphs, the agree-soft expert graph $L\left(\Psi_{1}(Z)\right)$ henceforth denoted by L_{1}^{\prime} and The disagree-soft expert graph $L\left(\Psi_{0}(Z)\right)$ henceforth denoted by L_{0}^{\prime}. These graphs are given in Fig. 3 and Fig. 4 respectively.

Figure 1. Agree-soft expert graph $G\left(\Gamma_{1}(Z)\right)$

Figure 2. Disgree-soft expert graph $G\left(\Gamma_{0}(Z)\right)$

These graphs enable us to see the above mentioned detailed information in a pictorial way and enable us to see the opinions in a clear and concise way. We also use these graphs to develop the following algorithm for choosing the best option based on expert opinions.

Algorithm

(1) Input the $D F S$ expert-set $\left\langle\left(\Gamma_{A}, \Psi_{A}\right) ; Z\right\rangle$.
(2) Determine agree as well as disagree expert sets for (Γ, Z) and (Ψ, Z).
(3) Determine the agree-soft expert graph $L\left(\Gamma_{1}(Z)\right)$, disagree-soft expert graph $L\left(\Gamma_{0}(Z)\right)$, agree-soft expert graph $L\left(\Psi_{1}(Z)\right)$ and disagree-soft expert graph $L\left(\Psi_{0}(Z)\right)$.
(4) Calculate $d_{L}\left(t_{i}\right)$ for agree-soft expert graph, similarly $d_{L_{0}}\left(t_{i}\right)$ for disagree-soft expert graph of (Γ, Z).
(5) Calculate $d_{L}^{\prime}\left(t_{i}\right)$ for agree-soft expert graph, similarly $d_{L_{0}}^{\prime}\left(t_{i}\right)$ for disagree-soft expert graph of (Ψ, Z).
(6) Calculte $a_{i}=d_{L}\left(t_{i}\right)-d_{L_{0}}\left(t_{i}\right)$ and $a_{i}^{\prime}=d_{L}^{\prime}\left(t_{i}\right)-d_{L_{0}}^{\prime}\left(t_{i}\right)$.
(7) Calculate $c_{i}=\frac{a_{i}+a_{i}^{\prime}}{2}$
(8) Choose j for which $c_{j}=\max c_{i}$.

Figure 3. Agree-soft expert graph $G\left(\Gamma_{1}(Z)\right)$

Figure 4. Disgree-soft expert graph $G\left(\Gamma_{0}(Z)\right)$

Applying the steps 4-8 of above algorithm to Example No. 6.1, we get the following table.

	d_{L}	$d_{L_{0}}$	d_{L}^{\prime}	$d_{L_{0}}^{\prime}$	$a_{i}=d_{L}-d_{L_{0}}$	$a_{i}^{\prime}=d_{L}^{\prime}-d_{L_{0}}^{\prime}$	$c_{i}=\frac{a_{i}+a_{i}^{\prime}}{2}$
t_{1}	5	2	4	5	3	-1	1
t_{2}	5	3	3	7	2	-4	-1
t_{3}	6	4	2	7	2	-5	-1.5
t_{4}	6	5	3	8	1	-5	-2
t_{5}	0	4	5	7	-4	-2	-2

Thus the optimal choice is 1 or t_{1}.

Conclusion

We have considered the following problems in detail:
i) Study and compare DFS left (right, two-sided) ideals, DFS (generalized) bi-ideals, DFS interior ideals and DFS (1,2)-ideals of AG-Groupoid over an initial universe set U.
ii) Discuss the structural properties of a $(2,2)$ regular AG-groupoid in terms of DFS ideals.
iii) Compare a $(2,2)$ regular class of an AG-groupoid with other important classes of an AG-groupoid, which will provide us a way to study DFS-sets in more generalized form in future.
iv) Apply DFS expert sets to develop a decision making scheme for everyday problems. Some important issues for future work are:
i) To develop strategies for obtaining more valuable results in related areas.
ii) To apply these notions and results for studying DFS ideals in LA-semihypergroups and LA-semihyperrings.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (R.G.P.1/258/43).

Availability of data and materials

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

REFERENCES

[1] M. I. Ali, F. Feng, X. Liu, W. K. Mine and M. Shabir, On some new operations in soft set theory, Comput Math Appl., 57 (2009), 1547-1553.
[2] M. I. Ali, M. Shabir, M. Naz, Algebraic structure of soft sets associated with new operations, Comput. Math. Appl., 61 (2011), 2647-2654.
[3] T. Asif, A. Khan, J. Tang, Fully Prime Double-Framed Soft Ordered Semigroups, Open journal of science and technology (OJST), 2(4) (2019), 17-25.
[4] T. Asif, F. Yousafzai, A. Khan and K. Hila, Ideal Theory in Ordered AG-groupoids Based on Double Framed Soft Sets, J. of Mult.-Valued Logic \& Soft Computing, 33(2019), 27-49.
[5] H. Bordar et al. Double-framed soft set theory applied to hyper BCK-algebras, New Mathematics and Natural Computation, 2020.
[6] Carroll M. Decision making in aviation. InHuman Factors in Aviation and Aerospace 2023 Jan 1 (pp. 563588). Academic Press.
[7] N. Cagman, S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl., 59 (2010), 3308-3314.
[8] W. A. Dudek and R. S. Gigon, Congruences on completely inverse AG**-groupoids, Quasigroups and related systems, 20 (2012), 203-209.
[9] W. A. Dudek and R. S. Gigon, Completely inverse AG**-groupoids. Semigroup Forum, 87 (2013), 201229.
[10] Faisal, N. Yaqoob and A. Ghareeb, Left regular AG-groupoids in terms of fuzzy interior ideals, Afrika Mathematika, DOI: 10.1007/s13370-012-0081-y.
[11] F. Fatimah and J. C. R Alcantud, The multi-fuzzy N-soft set and its applications to decision-making. Neural Computing and Applications, 33(17) (2021), 11437-11446.
[12] R. J. Hussain, Applications of double - framed soft ideal structures over gamma near-rings, Global Journal of Pure and Applied Mathematics, 13 (2017), 5101-51113.
[13] R. J. Hussain, K. Sampath and P. Jayaraman, Lattice structures of double-framed fuzzy soft lattices, Specialty Journal of Engineering and Applied Science, 3 (2017), 10-21.
[14] M. Iftikhar and T. Mahmood, Some results on lattice ordered double-framed soft semirings, International Journals of Algebra and Statistics, 7 (2018), 123-140.
[15] P. Jayaraman, K. Sampath and R. Jahir Hussain, Double-framed soft version of chain over distributive lattice, International Journal of Computational Engineering Research, 8 (2018), 1-7.
[16] Y. B. Jun and S. S. Ahn, Double-framed soft sets with applications in BCK/BCI-algebras, J. Appl. Math., 2012, pp. 15.
[17] M. A. Kazim and M. Naseeruddin, On almost semigroups, The Alig. Bull. Math., 2(1972), 1-7.
[18] A. Khan M. Izhar, M. M. Khalaf, Double-framed soft LA-semigroups, Journal of Intelligent \& Fuzzy Systems, 34 (2017) 2947 -2959.
[19] M. Khan, Some studies in AG*-groupoids, Ph. D Thesis, Quaid-i-Azam University, Pakistan, 2008.
[20] M. Khalaf, A Khan, T Asif, and F. Yousafzai, On double-framed soft sets of non-associaive ordered semigroups, J. of Ramanujan Society of Mathematics and Mathematical Sciences, 8(1) (2020), 97-118.
[21] M. B. Khan and T. Mahmood, Applications of double framed T-soft fuzzy sets in BCK/BCIAlgebras, preprint.
[22] M. B. Khan, G. Sana and M. Iftikhar, On double framed B(T) soft Fuzzy ideals and doubt double framed soft Fuzzy algebras of BF-algebras, NTMSCI, 7 (2019), 159-170.
[23] M. B., Khan, T. Mahmood and M. Iftikhar, Some results on lattice (anti-lattice) ordered double framed soft sets, Journal of New Theory, 29 (2019), 58-70.
[24] M. Khan and Faisal, On fuzzy ordered Abel-Grassmann's groupoids. J. Math. Res., 3 (2011) $27-40$.
[25] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083.
[26] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562.
[27] D. Molodtsov, V. Y. Leonov and D. V. Kovkov, Soft sets technique and its application, Nechetkie Sistemy i Myagkie Vychisleniya, 1 (1) (2006), 8-39.
[28] P. Majumdar and S. K. Samanta, Similarity measures of soft sets, New Mathematics and Neutral Computation, 4 (1) (2008), 1-12.
[29] D. Molodtsov, Soft set theory, Comput Math Appl., 37 (1999), 19-31.
[30] Q. Mushtaq and S. M. Yusuf, On $L A$-semigroups, The Alig. Bull. Math., 8(1978), 65-70.
[31] Q. Mushtaq and S. M. Yusuf, On locally associative left almost semigroups, J. Nat. Sci. Math., 19(1979), 57-62.
[32] G. Muhiuddin and A. M. Al-Roqi, Double-framed soft hyper vector spaces, The Scientific World Journal, 2014 (2014), 1-5.
[33] C. H. Park, Double-framed soft deductive system of subtraction algebras, International Journal of Fuzzy Logic and Intelligent Systems, 18 (2018), 214-219.
[34] P. V. Protić and N. Stevanović, AG-test and some general properties of Abel-Grassmann's groupoids, PU. M. A., 4, 6 (1995), 371-383.
[35] A. S. Sezer, A new approach to LA-semigroup theory via the soft sets, J. Intell. Fuzzy Syst., 26 (2014), 2483-2495
[36] B. Santos-Buitrago, A. Riesco, M. Knapp, JCR. Alcantud, G. Santos-Garcı'a, CL. Talcott, Soft set theory for decision making in computational biology under incomplete information, IEEE Access. 2019; 7:1818318193. https://doi.org/10.1109/ACCESS.2019.2896947
[37] N. Stevanović and P. V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad, J. Math., 2, 34 (2004), 175-182.
[38] A.Sezgin and A.O.Atagun,On operations of soft set,Comput.Math.Appl.,61(2011).1457-1467.
[39] B. Tripathy, R. Mohanty, T. Sooraj, Application of uncertainty models in bioinformatics, In: Biotechnology: Concepts, Methodologies, Tools, and Applications. IGI Global; 2019. p. 141-155.
[40] F. Yousafzai, M. M. Khalaf and M. Danish Zia, On Smallest (generalized) Ideals and Semilattices of (2,2)regular Non-associative Ordered Semigroups, Bol. Soc. Paran. Mat, 40, (2022), 1-13.
[41] F. Yousafzai, A. Khan, V. Amjid and A. Zeb, On fuzzy fully regular ordered AG-groupoids, Journal of Intelligent \& Fuzzy Systems, 26 (2014), 2973-2982.
[42] F. Yousafzai, T. Asif, A. Khan, B. Davvaz, A Study of non-associative ordered semigroups in terms of semilattices via smallest (double-frames soft) ideals, , Int. J. Anal. Appl. 16(4) (2018), 484-502.
[43] Q. Zhang, Q. Xie, G. Wang, A survey on rough set theory and its applications, CAAI Trans on Intelligence Technology. 2016; 1(4):323-333. https://doi.org/10.1016/j.trit.2016.11.001.
T. ASIF

Department of Mathematics \& Statistics, The University of Haripur, Haripur, Kpk, PakISTAN

Email address: tasif@uoh.edu.pk
M. KHAN

Department of Mathematics \& Statistics, The University of Haripur, Haripur, KpK, PakISTAN

Email address: muradulislam@uoh.edu.pk
M. M. Al-Shamiri

Department of Mathematics, Faculty of science and arts ,Muhayl Asser, King Khalid University, K.S.A and Department of Mathematics and Computer, Faculty of Science, Ibb UniVersity, Ibb, Yemen

Email address: mal-shamiri@kku.edu.sa
M. M. Khalaf

Faculty of Engineering, Arab Academy for Science Technology and Maritime Transport (AASTMT), Aswan Branch, Egypty

Email address: halfmohammed2003@aast.edu
R. ISMAIL

Department of Mathematics, Faculty of science and arts ,Muhayl Asser, King Khalid University, K.S.A and Department of Mathematics and Computer, Faculty of Science, Ibb UniVERSITY, Ibb, Yemen

[^0]: 2000 Mathematics Subject Classification. 20M10 and 20N99.
 Key words and phrases. Left invertive law, (2,2)-regular, DF S-ideals, AG-Groupoids, decision making.
 Received: August 03, 2022. Accepted: October 15, 2022. Published: November 30, 2022.
 *Corresponding author.

