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A NEW VIEW ON (2,2)-REGULAR AG–GROUPOID VIA DFS SETS WITH
APPLICATIONS IN DECISION MAKING

T. ASIF, M. KHAN, M. M. AL-SHAMIRI, M. M. KHALAF∗ AND R. ISMAIL

ABSTRACT. In this paper, we study DFS left (right, two-sided) ideals, DFS (generalized)
bi-ideals, DFS interior ideals and DFS (1, 2)-ideals of (2,2)-regular AG–Groupoid over an
initial universe set U. We have shown that these DFS ideals are coincides in a (2,2)-regular
unitary AG–Groupoid. Further we investigate some useful conditions for an AG–Groupoid
to become a (2,2)-regular AG–Groupoid and characterize a (2,2)-regular AG–Groupoid in
terms of DFS ideals. Finally we apply DFS expert sets to develop a decision making
scheme for everyday problems.

1. INTRODUCTION

The (crisp) set theory is a main mathematical approach to deal with a class of prob-
lems that are characterized by precision, exactness, specificity, perfection, and certainty.
However, many problems in the real-life inherently involve inconsistency, imprecision,
ambiguity, and uncertainties. In particular, such classes of problems arise in engineering,
economics, medical sciences, environmental sciences, social sciences, and many differ-
ent scopes. The crisp (classical) mathematical tools fail to model or solve these types of
problems.

In the course of time, mathematicians, engineers, and scientists, particularly those who
focus on artificial intelligence, are seeking for alternative mathematical approaches to solve
the problems that contain uncertainty or vagueness. They initiated several set theories such
as probability theory, fuzzy set, intuitionistic fuzzy set, and rough set.

In 1999, Molodtsov [29] proposed the concept of soft sets, which has wide range ap-
plications in artificial intelligence, computer engineering, control engineering, robotices,
medical diagnosis, forcasting, operation research, management science and many more.
The theory of soft sets is a novel mathematical approach as concerns with the uncertain-
ties. Now a days, the concept of soft sets obtain a lot of reputation for its parameteric
nature. Due to its dynamical behaviour, the soft sets victoriously made its place and now
comprehensively used in many applied areas. For example, soft sets are applied in decision
making problems [7, 11, 25], soft integrals, soft derivatives and soft numbers along with
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their applications in [35]. In international business, soft sets are applied for forecasting
the import and export volumes [35]. Maji et al. [27]. Maji et al. [26] gives many oper-
ations of algebraic structures in the form of soft sets that is further elaborated by Ali et
al. [1, 2]. The major areas of application of soft computing are: robotics and machine
control (path planning, control, coordination, and decision making [6]), natural language
processing (representation and understanding), speech and character recognition (under-
standing, image processing, and biometrics [43]), biomedical systems and bioinformatics
(Santos-Buitrago et al. [36] define a real-life application for decision making under incom-
plete information in the field of symbolic computational biology [39]), and big data and
data mining (extract rules, features, analysis, and trends from large databases, e.g. social
networks or financial series).

Currently, Jun et al. [16] further extend the notion of soft set into double-framed soft sets
and apply double-framed soft set to BCK/BCI algebra and studied its related properties.
Jun et al. [16] also introduced the concept of a double-framed soft ideal (briefly, DFS
ideal) of a BCK/BCI-algebra and produce much valuable results. In [18], Khan et al. have
applied the idea of double-framed soft set to LA-semigroup and defined double-framed
soft LA-semigroup (briefly. DFS-LA-semigroup). Khan et al. have also characterized
different classes of LA-semigroups by using different DFS ideals. Iftikhar and Mahmood
[14] produced several results on lattice ordered double-framed soft semirings, Bordar et
al. [5] applied the said concept to hyper BCK-algebra. In addition, Jayaraman et al. [15]
introduced double-framed soft lattices, distributive double-framed soft lattice and double-
framed soft chain. Khan and Mahmood [21] developed the concept of double-framed
T-soft fuzzy set and applied the concept into BCK/BCI-algebra. Park [33] developed,
double-framed soft deductive system in subtraction algebra and Hussain [12] produced the
applications of double-framed soft ideal in gamma near-rings. Also, Hussain at al. [13]
introduced double-framed fuzzy quotient lattices. For further study on double-famed soft
sets, the readers refer to [4, 20, 22, 23, 32].

In this paper, we investigate the notions of DFS left (right, two-sided) ideals, DFS
(generalized) bi-ideals, DFS interior ideals and DFS (1, 2)-ideals over an initial universe
set U . We study the relationship between these DFS ideals in a (2,2)-regular class of an
AG–Groupoid in detail. An application of our results we get characterizations of a (2,2)-
regular AG–Groupoids in terms of DFS left (right, two-sided) ideals, DFS (generalized)
bi-ideals, DFS interior ideals and DFS (1, 2)-ideals over U . Moreover, we apply DFS
expert sets to develop a decision making scheme for everyday problems.

2. PRELIMINARIES

2.1. AG–Groupoids. An AG–Groupoid is a non-associative and non-commutative alge-
braic structure lying in between a groupoid and a commutative semigroup. Commutative
law is given by abc = cba in ternary operations. By putting brackets on the left of this
equation, i.e. (ab)c = (cb)a, in 1972, M. A. Kazim and M. Naseeruddin introduced a new
algebraic structure called a left almost semigroup abbreviated as an LA-semigroup [17].
This identity is called the left invertive law. P. V. Protic and N. Stevanovic called the same
structure an Abel-Grassmann’s groupoid abbreviated as an AG–Groupoid [34].

This structure is closely related to a commutative semigroup because a commutative
AG–Groupoid is a semigroup [30]. It was proved in [17] that an AG–Groupoid S is medial,
that is, (ab)(cd) = (ac)(bd) holds for all a,b,c,d ∈ S. An AG–Groupoid may or may
not contain a left identity. The left identity of an AG–Groupoid permits the inverses of
elements in the structure. If an AG–Groupoid contains a left identity, then this left identity
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is unique [30]. In an AG–Groupoid S with left identity, the paramedial law (ab)(cd) =
(dc)(ba) holds for all a,b,c,d ∈ S. By using medial law with left identity, we get a(bc) =
b(ac) for all a,b,c ∈ S. We should genuinely acknowledge that much of the ground work
has been done by M. A. Kazim, M. Naseeruddin, Q. Mushtaq, M. S. Kamran, P. V. Protic,
N. Stevanovic, M. Khan, W. A. Dudek and R. S. Gigon. One can be referred to [8, 9, 19,
30, 31, 34, 37] in this regard.
• A non-empty subset A of an AG–Groupoid S is sub-AG–Groupoid of S if A2 ⊆ A;
•A non-empty subset A of an AG–Groupoid S is called a left (right) ideal of S if

SA ⊆ A (AS ⊆ A);
•By a two-sided ideal or simply ideal, we mean a non-empty subset of an AG–Groupoid

S which is both left and right ideal of S.
• By an interior ideal of S, we means a non-empty subset A of S such that (SA)S ⊆ A.
• By a bi-ideal of S, we means an sub-AG–Groupoid A of S such that (AS)A ⊆ A.

2.2. Double framed soft sets. In [38], Sezgin and Atagun introduce few new operations
on soft set and defined soft sets in the following way:

Suppose a universal set is U , set of parameters is E , power set of U is P (U) and
A ⊆ E. Then a soft set KA over U is a mapping described by:

KA : E → P (U) such that KA(u) = ∅, if u /∈ A.

Here KA is known as approximate mapping. A soft set over U is denoted by the set of
ordered pairs as:

KA = {(u, KA(u)) : u ∈ E, KA(u) ∈ P (U)} .
Note that a soft set is a parameterized family of subsets of U . By S(U) means set of all

soft sets.
• Suppose KA, KB ∈ S(U). Then KA is a soft subset of KB , represented by KA

∼
⊆

KB if KA(u) ⊆ KB(u) ∀ u ∈ S. Two soft sets KA, KB are called equal, if KA

∼
⊆ KB

and
∼

KB ⊆ KA and is represented by KA
∼
= KB . The union of KA and KB is defined by

KA

∼
∪KB = KA∪B , where KA∪B(u) = KA(u) ∪KB(u), ∀ u ∈ E. The intersection of

KA and KB is defined in similar way.
• Suppose S is an AG–Groupoid, and let KA, LB ∈ S(U). The soft product [38] of

KA and LB , represented by KA
∼◦ LB , is defined as:

(KA
∼◦ LB)(u) =

{ ⋃
u=vw

{K−A (v) ∩ L
B

(w)} if u = vw for u, v ∈ S

∅ otherwise
,

• A double-framed soft pair
〈
(K+

A , K−A ;A
〉

is called a double-framed soft set (briefly,
DFSS) [16] of A over U denoted by KA, where K+

A and K−A are mappings from A to
P (U). The set of all DFSSs of A over U is denoted by DFS(U).
• Suppose KA =

〈
(K+

A , K−A );A
〉

and LA =
〈
(L+

A, L
−
A);A

〉
be two DFSSs of

an AG–Groupoid S over U. The soft uni-int product [42], represented by KA � LA =〈
(K+

A

∼◦ L+
A, K

−
A

∼
? L−A);A

〉
is defined as a DFSS of S over U , in which K+

A

∼◦ L+
A and

K−A
∼
? L−A are mapping from S to P (U), as:

K+
A

∼◦L+
A : S −→ P (U), u 7−→

{ ⋃
u=vw

{K+
A (v) ∩ L+

A(w)} if u = vw for v, w ∈ S

∅ otherwise
,
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K−A
∼
?L−A : S −→ P (U), u 7−→

{ ⋂
u=vw

{K−A (v) ∪ L−A(w)} if u = vw for v, w ∈ S

U otherwise
.

• Suppose KA =
〈
(K+

A , K−A );A
〉

and LA =
〈
(L+

A, L
−
A);A

〉
be two DFSSs over

U. Then
〈
(K+

A , K−A );A
〉

is known as a DFS subset [42] of
〈
(L+

A, L
−
A);A

〉
, denote by〈

(K+
A , K−A );A

〉
v
〈
(L+

A, L
−
A);A

〉
if

(i) A ⊆ B,

(ii) (∀e ∈ A)

(
K+

A and L+
A are same approximations (K+

A (e) ⊆ L+
A(e))

K−A and L−A are same approximations (K−A (e) ⊇ L−A(e))

)
.

• For two DFSSs KA =
〈
(K+

A , K−A );A
〉

and LA =
〈
(L+

A, L
−
A);A

〉
over U are

known as equal, represented by
〈
(K+

A , K−A );A
〉

=
〈
(L+

A, L
−
A);A

〉
, if
〈
(K+

A , K−A );A
〉
v〈

(L+
A, L

−
A);A

〉
and

〈
(L+

A, L
−
A);A

〉
v
〈
(K+

A , K−A );A
〉
.

• For two DFSSs KA =
〈
(K+

A , K−A );A
〉

and LA =
〈
(L+

A, L
−
A);A

〉
over U, the

DFS int-uni set [42] of
〈
(K+

A , K−A );A
〉

and
〈
(L+

A, L
−
A);A

〉
, is defined as a DFSS〈

(K+
A ∩ L+

A, K
−
A ∪ L−A);A

〉
, where K+

A ∩ L+
A and K−A ∪ L−A are mappings as fallow:

K+
A ∩ L+

A : A −→ P (U), u 7−→ K+
A (u) ∩ L+

A(u);

K−A ∪ L−A : A −→ P (U), u 7−→ K−A (u) ∪ L−A(u).

It is denoted by
〈
(K+

A , K−A );A
〉
u
〈
(L+

A, L
−
A);A

〉
=
〈
(K+

A ∩ L+
A, K

−
A ∪ L−A);A

〉
.

• A double framed soft set (briefly, DFSS) KA =
〈
(K+

A , K−A );A
〉

of S over U is
known as:

(i) a DFS-sub-AG–Groupoid if it holds:
K+

A (uv) ⊇ K+
A (u) ∩K+

A (v) and K−A (uv) ⊆ K−A (u) ∪K−A (v), ∀ u, v ∈ S.
(ii) a DFS left ideal, (briefly, DFS-LI) if it holds:
K+

A (uv) ⊇ K+
A (v) and K−A (uv) ⊆ K−A (v), ∀ u, v ∈ S.

(iii) a DFS right ideal (briefly, DFS-RI) if it holds:
K+

A (uv) ⊇ K+
A (u) and K−A (uv) ⊆ K−A (u), ∀ u, v ∈ S.

(iv) a DFS two-sided ideal (briefly, DFS-2SI) of S over U , if it is both DFS-LI and
DFS-RI of S over U .

(v) a DFS interior ideal (briefly, DFS-II) if it holds:
K+

A ((uv)w) ⊇ K+
A (v) and K−A ((uv)w) ⊆ K−A (v), ∀ u, v, w ∈ S.

(vi) a DFS generalized bi-ideal (briefly, DFS-GBI) if it holds:
K+

A ((uv)w) ⊇ K+
A (u)∩K+

A (w) and K−A ((uv)w) ⊆ K−A (u)∪K−A (w), ∀ u, v, w ∈ S.
(vii) a DFS bi-ideal (briefly, DFS-BI) if it holds:
(a) K+

A (uv) ⊇ K+
A (u) ∩K+

A (v) and K−A (uv) ⊆ K−A (u) ∪K−A (v);

(b) K+
A ((uv)w) ⊇ K+

A (u) ∩ K+
A (w) and K−A ((uv)w) ⊆ K−A (u) ∪ K−A (w), ∀ u, v,

w ∈ S.
viii) a DFS (1,2)-ideal (briefly, DFS-(1,2)-I) if it holds:
(a) K+

A (uv) ⊇ K+
A (u) ∩K+

A (v) and K−A (uv) ⊆ K−A (u) ∪K−A (v);

(b) K+
A ((ua)(vw)) ⊇ K+

A (u) ∩ K+
A (v) ∩ K+

A (w) and K−A ((ua)(vw) ⊆ K−A (u) ∪
K−A (v) ∪K−A (w), ∀ u, v, w ∈ S.

(iu) a DFS idempotent if it holds: KA � KA = KA i.e., K+
A

∼◦ K+
A = K+

A and
K−A

∼∗ K−A = K−A .

(u) a DFS semiprime if it holds: a ≤ a2 =⇒ K+
A (a) ⊇ K+

A (a2) and K−A (a) ⊆
K−A (a2) ∀ a ∈ S.
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• Let ∅ 6= A ⊆ S, where S is an AG–Groupoid. The characteristic DFS-function of
A, represented by

〈
(C+

A , C−A );A
〉

= CA is described to be a DFSS, in which C+
A and

C−A are soft functions over U, given as follows:

C+
A : S −→ P (V ), w 7−→

{
U if w ∈ A
∅ if w /∈ A,

C−A : S −→ P (V ), w 7−→
{
∅ if w ∈ A

U if w /∈ A.

Clearly the characteristic function of the whole set S, represented as CS =
〈
(C+

S , C−S );S
〉
,

is known as the identity DFS-function, where C+
S (w) = U and C−S (w) = ∅, ∀ w ∈ S.

• Recall that an AG**–Groupoids is an AG-Groupoid in which a(bc) = b(ac), ∀
a, b, c ∈ S.
• Note that an AG**–Groupoid also satisfies the paramedial law as well.
Now let us introduce the concept of an AG***–Groupoid as follows:
• An AG**-groupoid S is called an AG***–Groupoid if S = S2.

Lemma 2.1. [42]For DFSS KA =
〈
(K+

A , K−A );A
〉

of S over U, the given statements
are valid.

(i) KA =
〈
(K+

A , K−A );A
〉

is a DFS-LI-(DFS-RI) of S over U ⇐⇒ if CA �KA v
KA (KA � CA v KA).

(ii) KA =
〈
(K+

A , K−A );A
〉

is a DFS-sub-AG–Groupoid of S over U ⇐⇒ if KA �
KA v KA.

Lemma 2.2. [42]For an AG–Groupoid S over V, the following conditions holds.
(i) Let A is an sub-AG–Groupoid of S⇐⇒ CA =

〈
(C+

A , C−A );A
〉

is a DFS-sub-AG–
Groupoid of S over V .

(ii) A be right (left, two-sided, bi-, interior) ideal of S ⇐⇒ CA =
〈
(C+

A , C−A );A
〉

is
a DFS-RI- (LI , 2SI , BI , II) of S over V .

(iii) For ∅ 6= A, B ⊆ S, where S is an AG–Groupoid, CA�CA = CAB and CAuCB =
CA∩B .

Throughout this paper, suppose E = S, where S is an AG–Groupoid, otherwise stated.
By a unitary AG–Groupoid mean an AG–Groupoid having left identity.

3. DFS IDEALS IN (2,2)-REGULAR AG-GROUPOIDS

A very major conclusion from this section is that DFS (LIs, RIs, 2SIs, GBIs, BIs,
IIs, (1, 2)-Is) need not to be coincide in an AG-groupoid (an AG***–Groupoid) S even
if S has a unitary AG-groupoid (an AG***–Groupoid), but they will coincide in a (2,2)-
regular class of an unitary AG-groupoid (an AG***–Groupoid) S.

Definition 3.1. An element a of an ordered AG–Groupoid S is called a (2, 2)-regular
element of S, if there exists some x in S such that a = (a2x)a2.

Theorem 3.1. [40]Let S be a unitary AG-groupoid (an AG***–Groupoid). An element
a of S is (2, 2)-regular if and only if for all a ∈ S, a = (ay)(az) for some y, z ∈ S
(a = (at)a, at = ta for some t ∈ S).

Theorem 3.2. For a (2,2)-regular unitary AG–Groupoid (an AG***–Groupoid) S,the fol-
lowing conditions are equivalent :
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(i) KA =
〈
(K+

A , K−A );A
〉

is a DFS-2SI of S over U ⇔CA�KA = KA = KA�CA.

(ii) KA =
〈
(K+

A , K−A );A
〉

is a DFS-BI (GBI) of S over U ⇔ (KA �CA) �KA =
KA = KA �KA

(iii) KA =
〈
(K+

A , K−A );A
〉

is a DFS-II of S over U ⇔ (CA �KA) � CA = KA

(iv) KA =
〈
(K+

A , K−A );A
〉

is a DFS-(1, 2)-I of S over U ⇔ (KA � CA) � (KA �
KA) = KA = KA �KA.

Proof. Let S is (2,2)-regular unitary AG–Groupoid.
(i)⇒ Let KA =

〈
(K+

A , K−A );A
〉

be a DFS-2SI of S over U. For a ∈ S, there exists
u ∈ S such that a = (ax)(ay), we have

(K+
A

∼◦ C+
A )(a) =

⋃
a=(ax)(ay)

{
K+

A (ua) ∩ C+
A (a)

}
⊇ K+

A (ax) ∩ C+
A (ay) ⊇ K+

A (ax) ∩ U

= K+
A (ax) ⊇ K+

A (a),

and

(K−A
∼∗ C−A )(a) =

⋂
a=(ax)(ay)

{
K−A (ax) ∪ C−A (a)

}
⊆ K−A (ax) ∪ C−A (a) ⊆ K−A (a2) ∪ ∅
= K−A (ax) ⊆ K−A (a),

therefore C+
A

∼◦ K+
A = K+

A and C−A
∼∗ K−A = K−A , that is CA �KA = KA.

⇐ The converse is obvious.
(ii).⇒ Let KA =

〈
(K+

A , K−A );A
〉

be a DFS-BI of S over U. For a ∈ S, there exists
x, y ∈ S such that a = (ax)(ay), we have

a = (ax)(ay) = (ax)(ay) = (aa)(xy) = ((xy)a) a = ((xy) ((ax)(ay))) a

= ((xy) ((aa)(xy))) a = ((aa) ((xy)(xy))) a =
(
(aa)

(
x2y2

))
a =

((
y2x2

)
(aa)

)
a

=
((
a
(
y2x2

))
a
)
a =

((
((ax)(ay))

(
y2x2

))
a
)
a =

((
((aa)(xy))

(
y2x2

))
a
)
a

=
((((

x2y2
)

(xy)
)

(aa) a
)
a
)
a =

((((
x3y3

)
(aa)

)
a
)
a
)
a =

(((
a
((
x3y3

)
a
))

a
)
a
)
a

where p =
((
a
((
x3y3

)
a
))

a
)
a and p = qa where q =

(
a
((
x3y3

)
a
))

a, therefore

((K+
A

∼◦ C+
A )
∼◦ K+

A )(a) =
⋃

a=pa

{
(K+

A

∼◦ C+
A )(p) ∩K+

A (a)
}

⊇ (K+
A

∼◦ C+
A )(p) ∩K+

A (a)

=

( ⋃
p=qa

{
K+

A (q) ∩ C+
A (u)

})
∩K+

A (a)

⊇ K+
A

((
a
((
x3y3

)
a
))

a
)
∩ U ∩K+

A (a)

⊇ K+
A (a) ∩K+

A (a) ∩K+
A (a) = K+

A (a)
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and

((K−A
∼∗ C−A )

∼∗ K−A )(a) =
⋃

a=pa

{
(K−A

∼∗ C−A )(p) ∪K−A (a)
}

⊆ (K−A
∼∗ C−A )(p) ∪K−A (a)

=

( ⋃
p=qa

{
K−A (q) ∪ C−A (u)

})
∪K−A (a)

⊆ K−A
((
a
((
x3y3

)
a
))

a
)
∪ ∅ ∪K−A (a)

⊆ K−A (a) ∪K−A (a) ∪K−A (a) = K−A (a)

Again, we have

a = (ax) (ay) = (aa) (xy) = ((xy) a) a = ((xy) ((ax) (ay))) a

= ((xy) ((aa) (xy))) a = ((aa) ((xy) (xy))) a =
(
(aa)

(
x2y2

))
a

=
((
y2x2

)
(aa)

)
a =

(
a
((
y2x2

)
a
))

a = pa,

where p = a
((
y2x2

)
a
)

and p = aq, where q =
(
y2x2

)
a, therefore

((K+
A

∼◦ C+
A )
∼◦ K+

A )(a) =
⋃

a=pa

{
(K+

A

∼◦ C+
A )(p) ∩K+

A (a)
}

=
⋃

a=pa

( ⋃
p=aq

{
K+

A (a) ∩ C+
A (q)

}
∩K+

A (a)

)

=
⋃

a=pa

( ⋃
p=aq

K+
A (a) ∩ U ∩K+

A (a)

)

=
⋃

a=pa

( ⋃
p=aq

K+
A (a) ∩K+

A (a)

)
=

⋃
a=pa

(
K+

A (a) ∩K+
A (a)

)
⊆

⋃
a=pa

{
K+

A (
(
a
((
y2x2

)
a
))

a)
}

= K+
A (a).
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and

((K−A
∼∗ C−A )

∼∗ K−A )(a) =
⋂

a=pa

{
(K−A

∼∗ C−A )(p) ∪K−A (a)
}

=
⋂

a=pa

( ⋂
p=aq

{
K−A (a) ∪ C−A (q)

}
∪K−A (a)

)

=
⋂

a=pa

( ⋂
p=aq

K−A (a) ∪ ∅ ∪K−A (a)

)

=
⋂

a=pa

( ⋂
p=aq

K−A (a) ∪K−A (a)

)
=

⋂
a=pa

(
K−A (a) ∪K−A (a)

)
⊇

⋂
a=pa

{
K−A (

(
a
((
y2x2

)
a
))

a)
}

= K−A (a).

Therefore (K+
A

∼◦C+
A )
∼◦K+

A = K+
A and (K−A

∼∗C−A )
∼∗K−A = K−A . Thus (KA�C+

A )�KA =
KA.

Now, we have

a = (ax)(ay) = (ax)(ay) = (aa)(xy) = ((xy)a) a = ((xy) ((ax)(ay))) a

= ((xy) ((aa)(xy))) a = ((aa) ((xy)(xy))) a =
(
(aa)

(
x2y2

))
a

=
((
y2x2

)
(aa)

)
a =

((
a
(
y2x2

))
a
)
a

where p =
(
a
(
y2x2

))
a, therefore

(K+
A

∼◦ K+
A )(a) =

⋃
a=pa

{
K+

A (p) ∩K+
A (a)

}
⊇ K+

A (
(
a
(
y2x2

))
a) ∩K+

A (a)

⊇ K+
A (a) ∩K+

A (a) ∩K+
A (a) = K+

A (a).,

and

(K−A
∼◦ K−A )(a) =

⋃
a=pa

{
K−A (p) ∩K−A (a)

}
⊇ K−A (

(
a
(
y2x2

))
a) ∩K−A (a)

⊇ K−A (a) ∩K−A (a) ∩K−A (a) = K−A (a),

so by Lemma 2.1, K+
A

∼◦ K+
A = K+

A and K−A
∼∗ K−A = K−A , Thus KA �KA = KA.

⇐= Assume that (KA � CA) �KA = KA = KA �KA. Since KA �KA = KA, so by
Lemma 2.1, it follows that K−A is a DFS-sub-AG–Groupoid of S over U. Also

K+
A ((uv)w) = ((K+

A

∼◦ C+
A )
∼◦ K+

A )((uv)w) =
⋃

(uv)w=(uv)w

{
(K+

A

∼◦ C+
A )(uv) ∩K+

A (w)
}

=
⋃

(uv)w=(uv)w

({ ⋃
uv=uv

K+
A (u) ∩ C+

A (v)

}
∩K+

A (w)

)
⊇ K+

A (u) ∩ U ∩K+
A (w) = K+

A (u) ∩K+
A (w),
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and

K−A ((uv)w) = ((K−A
∼∗ C−A )

∼∗ K−A )((uv)w) =
⋂

(uv)w=(uv)w

{
(K−A

∼∗ C−A )(uv) ∪K−A (w)
}

=
⋂

(uv)w=(uv)w

({ ⋂
uv=uv

K−A (u) ∪ C−A (v)

}
∪K−A (w)

)
⊆ K−A (u) ∪ ∅ ∪K−A (w) = K−A (u) ∪K−A (w).

Thus by KA � KA = KA and Lemma 2.1, it follows that KA is a DFS-sub-AG–
Groupoid of S over U. Hence KA is a DFS-BI of S over U.

(iii). It is immediate.
(iv).⇒ Let KA =

〈
(K+

A , K−A );A
〉

be a DFS-(1, 2)-I of S over U. Now for a ∈ S,
there exists some x, y ∈ S such that a = (ax)(ay), we have

a = (ax)(ay) = (ax)(ay) = (aa)(xy) = ((xy)a) a = ((xy) ((ax)(ay))) a

= ((xy) ((aa)(xy))) a = ((aa) ((xy)(xy))) a =
(
(aa)

(
x2y2

))
a =

(
a
(
y2x2

))
(aa) = p(aa)

where p = a
(
y2x2

)
= aq, where q = y2x2, therefore

((K+
A

∼◦ C+
A )
∼◦ (K+

A

∼◦ K+
A ))(a) =

⋃
a=p(aa)

{
(K+

A

∼◦ C+
A )(p) ∩ (K+

A

∼◦ K+
A )(aa)

}
⊇ (K+

A

∼◦ C+
A )(p) ∩ (K+

A

∼◦ K+
A )(aa)

=
⋃

p=aq

{
K+

A (a) ∩ C+
A (q)

}
∩
⋃

aa=aa

{
K+

A (a) ∩K+
A (a)

}
⊇ K+

A (a) ∩ U ∩K+
A (a) ∩K+

A (a) = K+
A (a)

and

((K−A
∼∗ C−A )

∼∗ (K−A
∼∗ K−A ))(a) =

⋂
a=p(aa)

{
(K−A

∼∗ C−A )(p) ∪ (K−A
∼∗ K−A )(aa)

}
⊆ (K−A

∼∗ C−A )(p) ∪ (K−A
∼∗ K−A )(aa)

=
⋂

p=aq

{
K−A (a) ∪ C−A (q)

}
∪
⋂

aa=aa

{
K−A (a) ∪K−A (a)

}
⊆ K−A (a) ∪ ∅ ∪K−A (a) ∪K−A (a) = K−A (a)

Again, we have

a = (ax)(ay) = (ax)(ay) = (aa)(xy) = ((xy)a) a = ((xy) ((ax)(ay))) a

= ((xy) ((aa)(xy))) a = ((aa) ((xy)(xy))) a =
(
(aa)

(
x2y2

))
a

=
(
a
(
x2y2

))
(aa) = p(aa)
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where p = a
(
x2y2

)
= aq, where q = x2y2, therefore

((K+
A

∼◦ C+
A )
∼◦ (K+

A

∼◦ K+
A ))(a) =

⋃
a=p(aa)

{
(K+

A

∼◦ C+
A )(p) ∩ (K+

A

∼◦ K+
A )(aa)

}

=
⋃

a=p(aa)

{( ⋃
p=aq

{
K+

A (a) ∩ C+
A (q)

})
∩

( ⋃
aa=aa

{
K+

A (a) ∩K+
A )(a)

})}

=
⋃

a=p(aa)

{( ⋃
p=aq

{
K+

A (a) ∩ U
})
∩

( ⋃
aa=aa

{
K+

A (a) ∩K+
A )(a)

})}

=
⋃

a=p(aa)

{( ⋃
p=aq

K+
A (a)

)
∩

( ⋃
aa=aa

K+
A (a)

)}

=
⋃

a=p(aa)

{
K+

A (a) ∩K+
A (a)

}
=

⋃
a=p(aa)

K+
A (a)

⊆
⋃

a=p(aa)

{
K+

A (
(
a
(
x2y2

))
(aa))

}
= K+

A (a),

and

((K−A
∼∗ C−A )

∼∗ (K−A
∼∗ K−A ))(a) =

⋂
a=p(aa)

{
(K−A

∼∗ C−A )(p) ∪ (K−A
∼∗ K−A )(aa)

}

=
⋂

a=p(aa)

{( ⋂
p=aq

{
K−A (a) ∪ C−A (q)

})
∪

( ⋂
aa=aa

{
K−A (a) ∪K−A )(a)

})}

=
⋂

a=p(aa)

{( ⋂
p=aq

{
K−A (a) ∪ ∅

})
∪

( ⋂
aa=aa

{
K−A (a) ∪K−A )(a)

})}

=
⋂

(p,(aa))∈Aa

{( ⋂
p=aq

K−A (a)

)
∪

( ⋂
aa=aa

K−A (a)

)}

=
⋂

a=p(aa)

{
K−A (a) ∪K−A (a)

}
⊇

⋂
a=p(aa)

{
K−A (

(
a
(
x2y2

))
(aa))

}
= K−A (a),

which implies that (K+
A

∼◦C+
A )
∼◦ (K+

A

∼◦K+
A ) = K+

A and (K−A
∼∗C−A )

∼∗ (K−A
∼∗K−A ) = K−A .

Thus (KA � C+
A ) �KA = KA = KA �KA. Now

a = (ax) (ay) = a ((ax) y) = a ((yx) a) = a ((yx) ((ax) (ay))) = a ((yx) ((aa) (xy)))

= a ((aa) ((yx) (xy))) = a ((a ((ax) (ay))) ((yx) (xy))) = a ((a ((aa) (xy))) ((yx) (xy)))

= a (((aa) (a (xy))) ((yx) (xy))) = a (((yx) (xy) (a (xy))) (aa))

= a (a ((yx) (xy) ((xy))) (aa)) = ap,
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where p = a ((yx) (xy) ((xy))) (aa), therefore

(K+
A

∼◦ K+
A )(a) =

⋃
a=ap

{
K+

A (a) ∩K+
A (p)

}
⊇ K+

A (a) ∩K+
A (p)

= K+
A (a) ∩K+

A (a ((yx) (xy) ((xy))) (aa)) ⊇ K+
A (a)

and

(K−A
∼∗ K−A )(a) =

⋂
a=pa

{
K−A (a) ∪K−A (p)

}
⊆ K−A (a) ∪K−A (p)

= K−A (a) ∪K−A (a ((yx) (xy) ((xy))) (aa)) ⊆ K−A (a).

By Lemma 2.1, K+
A

∼◦ K+
A = K+

A and K−A
∼∗ K−A = K−A . Thus KA �KA = KA.

⇐ Assume that (KA �CA) � (KA �KA) = KA = KA �KA. Since KA �KA = KA,
so by Lemma 2.1, it follows that K−A is a DFS-sub-AG–Groupoid of S over U, we have

K+
A ((ua)(vw)) = ((K+

A

∼◦ C+
A )
∼◦ (K+

A

∼◦ K+
A ))((ua)(vw))

= ((K+
A

∼◦ C+
A )
∼◦ K+

A )((ua)(vw))

=
⋃

(ua)(vw)=(ua)(vw)

{
(K+

A

∼◦ C+
A )(ua) ∩K+

A (vw)
}

⊇ (K+
A

∼◦ C+
A )(ua) ∩K+

A (vw)

=

 ⋃
(u,a)∈Aua

{K+
A (u) ∩ C+

A (a)}

 ∩K+
A (vw)

⊇ K+
A (u) ∩ U ∩K+

A (v) ∩K+
A (w) = K+

A (u) ∩K+
A (v) ∩K+

A (w).

and

K−A ((ua)(vw)) = ((K−A
∼∗ C−A )

∼∗ (K−A
∼∗ K−A ))((ua)(vw))

= ((K−A
∼∗ C−A )

∼∗ K−A )((ua)(vw))

=
⋂

(ua)(vw)=(ua)(vw)

{
(K−A

∼∗ C−A )(ua) ∪K−A (vw)
}

⊆ (K−A
∼∗ C−A )(ua) ∪K−A (vw)

=

 ⋂
(u,a)∈Aua

{K−A (u) ∪ C−A (a)}

 ∪K−A (vw)

⊆ K−A (u) ∪ ∅ ∪K−A (v) ∪K−A (w) = K−A (u) ∪K−A (v) ∪K−A (w).

Hence KA is a DFS-(1, 2)-I of S over U. �

Theorem 3.3. In a (2,2)-regular unitary AG–Groupoid (an AG***–Groupoid) S over U ,
the DFS-LIs (RIs, 2SIs, GBIs, BIs, IIs, (1,2)-Is) are coincides.

Proof. Let S is (2,2)-regular unitary AG–Groupoid.
For a, b ∈ S, there exists u ∈ S such that a = (ax) (ay) . Let KA =

〈
(K+

A , K−A );A
〉

be a DFS-LI of S, we have

K+
A (ab) = K+

A (((ax) (ay))b) = K+
A (((aa) (xy))b)

= K+
A (((xy))b) (aa)) ⊇ K+

A (aa) ⊇ K+
A (a),
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and

K−A (ab) = K−A (((ax) (ay))b) = K−A (((aa) (xy))b)

= K−A (((xy))b) (aa)) ⊆ K−A (aa) ⊆ K−A (a).

Hence KA is a DFS-RI of S over U . Similarly, every DFS-RI of S is a DFS-LI of S
over U.

Clearly a DFS-BI of S is a DFS-GBI of S. For a, b ∈ S, there exists x, y ∈ S such
that a = (ax) (ay). Let KA =

〈
(K+

A , K−A );A
〉

be a DFS-GBI of S, we have

K+
A (ab) = K+

A (((ax) (ay)) b) = K+
A (((aa) (xy)) b) = K+

A ((((xy) a) a) b)

= K+
A ((((xy) (ax) (ay)) a) b) = K+

A ((((xy) (aa) (xy)) a) b

= K+
A ((((aa) ((xy) (xy))) a) b = K+

A (
((

(aa)
((
x2y2

)))
a
)
b

= K+
A (
(((

y2x2
)

(aa)
)
a
)
b = K+

A (
((
a
((
y2x2

)
a
))

a
)
b ⊇ K+

A (a) ∩K+
A (b),

and

K−A (ab) = K−A (((ax) (ay)) b) = K−A (((aa) (xy)) b) = K−A ((((xy) a) a) b)

= K−A ((((xy) (ax) (ay)) a) b) = K−A ((((xy) (aa) (xy)) a) b

= K−A ((((aa) ((xy) (xy))) a) b = K−A (
((

(aa)
((
x2y2

)))
a
)
b

= K−A (
(((

y2x2
)

(aa)
)
a
)
b = K−A (

((
a
((
y2x2

)
a
))

a
)
b ⊇ K−A (a) ∩K−A (b),

Hence KA is a DFS-BI of S over U .
It is easy to see that a DFS-2SI of S is a DFS-BI (GBI) of S over U. For a, b ∈

S there exist p, q, x, y ∈ S such that a = (ap)(aq) and b = (bx)(by). Let KA =〈
(K+

A , K−A );A
〉

is a DFS-BI of S over U, we have

K+
A (ab) = K+

A (a((bx)(by))) = K+
A (a((bb)(xy))) = K+

A ((bb)(a(xy)))

= K+
A (((a(xy)) b)b) = K+

A (((a(xy)) ((bx)(by)))b)

= K+
A (((a(xy)) ((bb)(xy)))b) = K+

A ((bb) (((a(xy)) (xy)))b)

= K+
A (((xy)(a(xy)) (bb))b) = K+

A ((b (((xy)(a(xy)) b))b)

⊇ K+
A (b) ∩K+

A (b) = K+
A (b),

and

K−A (ab) = K−A (a((bx)(by))) = K−A (a((bb)(xy))) = K−A ((bb)(a(xy)))

= K−A (((a(xy)) b)b) = K−A (((a(xy)) ((bx)(by)))b)

= K−A (((a(xy)) ((bb)(xy)))b) = K−A ((bb) (((a(xy)) (xy)))b)

= K−A (((xy)(a(xy)) (bb))b) = K−A ((b (((xy)(a(xy)) b))b)

⊇ K−A (b) ∩K−A (b) = K−A (b),

which shows that KA is a DFS-LI of S over U . Similarly KA is a DFS-RI of S over
U. Hence KA is a DFS-2SI of S over U.

It is easy to see that a DFS-2SI of S is a DFS-(1, 2)-I of S over U. Now for a, b ∈ S,
there exists some x, y ∈ S such that a = (ax)(ay). Let KA be a DFS-(1, 2)-I of S we
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have

K+
A (ab) = K+

A (((ax)(ay)) b) = K+
A (((aa)(xy)) b) = K+

A (((((ax)(ay)) a)(xy)) b)

= K+
A (((((aa)(xy)) a)(xy)) b) = K+

A (((xy)a) ((aa)(xy)) b)

= K+
A ((aa) (((xy)a) (xy)) b) = K+

A (b (((xy)a) (xy)) (aa))

= K+
A (((xy)a) (b(xy)) (aa)) = K+

A (((xy)b) (a(xy)) (aa))

= K+
A (a (((xy)b) (xy)) (aa)) ⊇ K+

A (a) ∩K+
A (a) ∩K+

A (a) = K+
A (a),

and

K−A (ab) = K−A (((ax)(ay)) b) = K−A (((aa)(xy)) b) = K−A (((((ax)(ay)) a)(xy)) b)

= K−A (((((aa)(xy)) a)(xy)) b) = K−A (((xy)a) ((aa)(xy)) b) = K−A ((aa) (((xy)a) (xy)) b)

= K−A (b (((xy)a) (xy)) (aa)) = K−A (((xy)a) (b(xy)) (aa))

= K−A (((xy)b) (a(xy)) (aa)) = K−A (a (((xy)b) (xy)) (aa))

⊇ K+
A (a) ∩K+

A (a) ∩K+
A (a) = K+

A (a),

Thus KA is a DFS-RI of S over U . Similarly KA is a DFS-LI of S over U. Hence KA

be a DFS 2SI of S over U.
It is easy to see that a DFS-II of S is a DFS-(1, 2)-I of S over U. Now let a, u, v ∈ S,

then there exists x, y ∈ S such that a = (ax)(ay). Let KA is a DFS (1, 2)-I of S over U ,
we have

K+
A ((ua)v) = K+

A ((ua)v) = K+
A ((u ((ax)(ay)))v) = K+

A ((u ((((ax)(ay))x)(ay)))v)

= K+
A ((u ((((aa)(xy))x)(ay)))v) = K+

A ((((aa)(xy))x)(u(ay))v)

= K+
A (((x(xy)) (aa))(u(ay))v) = K+

A ((((ay)u) ((aa) ((x(xy)))) v)

= K+
A ((aa) (((ay)u)((x(xy))) v) = K+

A ((v (((ay)u)(x(xy)))) (aa))

= K+
A ((((ay)u) (v(x(xy)))) (aa)) = K+

A ((((yu)a) (v(x(xy)))) (aa))

= K+
A ((((x(xy)v)) (a(yu))) (aa)) = K+

A ((a(((x(xy)v)) (yu))) (aa))

⊇ K+
A (a) ∩K+

A (a) ∩K+
A (a) = K+

A (a),

similarly K−A ((ua)v) ⊆ K−A (a). Thus KA is a DFS-II of S over U. Again let a, u, v, w ∈
S, then there exist p, q and r, s ∈ S such that u = (up)(uq) and w = (wr)(ws). Let KA

be a DFS-II of S over U, we have

K+
A ((ua)(vw)) = K+

A ((wv)(au)) ⊇ K+
A (v)

and

K+
A ((ua)(vw)) = K+

A ((((up)(uq)) (vw)) = K+
A ((((uu)(pq)) (vw))

= K+
A ((((uu)v) ((pq) (vw))) = K+

A ((((vu)u) ((pq) (vw))) ⊇ K+
A (u).

and

K−A ((ua)(vw)) = K−A ((ua)(v((wr)(ws))) = K−A ((ua)(v((ww)(rs)))

= K−A ((ua)((ww)(v(rs))) = K−A ((ww)((ua)(v(rs))) ⊆ K−A (w).

Therefore, K+
A ((ua)(vw)) ⊇ K+

A (u) ∩ K+
A (v) ∩ K+

A (w), similarly K−A ((ua)(vw)) ⊆
K−A (u) ∪ K−A (v) ∪ K−A (w). If a, b ∈ S, then there exist p., q and r, s ∈ S such that
a = (ap) (aq) and b = (br)(bs), we have

K+
A (ab) = K+

A (((ap)(aq))b) = K+
A (((aa)(pq))b) = K+

A (((b(pq)) (aa)))

= K+
A (((ba) ((pq)a))) ⊇ K+

A (a),
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and

K+
A (ab) = K+

A (a((br)(bs))) = K+
A (a((bb)(rs))) = K+

A ((bb)(a(rs))) ⊇ K+
A (b).

Thus, K+
A (ab) ⊇ K+

A (a)∩K+
A (b), similarly K−A (ab) ⊆ K−A (a)∪K−A (b). Hence KA is a

DFS-(1, 2)-I of S over U. �

Example 3.2. [10] Suppose there are twelve houses over a universal set U given by

U := {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12}.

Let S = {e1,e2, e3, e4} be a set of parameters, shows status of houses in which
e0 stands for “in green surroundings”,
e1 stands for “beautiful”,
e2 stands for “in good location”,
e3 stands for “cheap,
with the following binary operation.

∗ e0 e1 e2 e3 e4
e0 e0 e0 e0 e0 e0
e1 e0 e4 e4 e2 e4
e2 e0 e4 e4 e1 e4
e3 e0 e1 e2 e3 e4
e4 e0 e4 e4 e4 e4

Clearly (S, ∗) is a unitary AG-groupoid having left identity d. Note that S is not (2,2)-
regular because for e2 ∈ S there do not exists u ∈ S such that e2 = ue22.

If we define DFSS 〈(K+
A ,K−A );A〉 of S over U as follows:

K+
A (u) : S −→ P (U), u 7→


U if u = e0

{s2, s3, s4,s5,s6,s7,s8} if u = e1
{s2, s3, s4,s5,s6} if u = e2
{s2, s3, s4,s5} if u = e3

{s1, s2, s3, s4,s5,s6,s7,s8, s9, s10} if u = e4

 and

K−A (u) : S −→ P (U), u 7→


{s2, s3, s4} if u = e0

{s2, s3, s4, s6, s7} if u = e1
{s1, s2, s3, s4, s5, s6, s7, s8 } if u = e2

U if u = e3
{s2, s3, s4, s6 } if u = e4

 .

Then it is simple to verify that
〈
(K+

A , K−A );A
〉

is a DFS-LI of S over U, but
〈
(K+

A , K−A );A
〉

is not a DFS-RI of S over U, because

K+
A (e1e3) ! K+

A (e1) and K−A (e1e3)  K−A (e1)

It is simple to see that 〈(K+
A ,K−A );A〉 is a DFS-II of S over U but it is not a DFS-

2SI of S over U. On the other hand it is easy to see that every DFS-2SI of S is a DFS-II
(BI) of S over U .
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4. DFS LEFT (RIGHT) IDEALS IN AG–GROUPOIDS

In this section, we characterize a (2,2)-regular AG–Groupoid by using the properties of
DFS-LIs (RIs). We also provide few counter examples to discuss the converse part of
given problem.

Lemma 4.1. If
〈
(K+

A , K−A );A
〉

is a DFSS of S over U , then
〈
(K+

A , K−A );A
〉

is a DFS

semiprime⇐⇒ if K+
A (u) ⊇ K+

A (u2) and K−A (u) ⊆ K−A (u2), for all u ∈ S.

Proof. It is immediate. �

Example 4.1. Let us define a DFSS 〈(K+
A ,K−A );A〉 of S = {e1,e2, e3, e4} over U :=

{h1, h2, h3, h4, h, h6, h7, h8, h9, h10} given in Example 3.2 as follows:

K+
A (u) : S −→ P (U), u 7→


{h1, h2, h3, h4} if u = e0

{h1, h2, h3, h4,h5,h6,h7, h8} if u = e1
U if u = e2

{h2, h3, h4,h5} if u = e3
{h2, h3, h4} if u = e4

 and

K−A (u) : S −→ P (U), u 7→


U if u = e0

{h1, h2, h3, h4,h5,h6,h7} if u = e1
{h1, h2, h3, h4,h5,h6,h7,h8} if u = e2

{h7,h8, h9,h10} if u = e3
{h1, h2, h3, h4,h5,h6,h7,h8, h9} if u = e4


Then it is easy to verify that a DFSS 〈(K+

A ,K−A );A〉 is a DFS semiprime.

Theorem 4.2. A right (left, two-sided) ideal of S over U is semiprime⇐⇒CR =
〈
(C+

R , C−R );R
〉

is DFS semiprime.

Proof. =⇒ Let A be a right (left, two-sided) ideal of S. By Lemma 2.2, CA =
〈
(C+

A , C−A );A
〉

is a DFS-RI (LI , 2SI) of S over U. Now let a ∈ S, if a2 ∈ A, since S semiprime, then
a ∈ A.Hence (C+

A )(a) = U = (C+
A )(a2) and (C−−A )(a) = ∅ = (C−A )(a2). If a2 /∈ A,

then (C+
A )(a) ⊇ ∅ = (C+

A )(a2) and (C−A )(a) ⊆ U ⊆ (C−A )(a2). Thus in both cases
CA(a) w CA(a2).Hence CA =

〈
(C+

A , C−A );A
〉
DFS semiprime.

⇐= It is immediate. �

Corollary 4.3. If any DFS-RI (LI , 2SI) of S is DFS semiprime, then any right (left,
two-sided) ideal of S is semiprime.

Lemma 4.4. For a (2,2)-regular unitary AG–Groupoid (an AG***–Groupoid) S over U,
the following assertions hold.

(i) All DFS-RIs of S are DFS semiprime.
(ii) All DFS-LIs of S are DFS semiprime in a unitary AG–Groupoid S over U .

Proof. (i) : It is immediate.
(ii) : If KA =

〈
(K+

A , K−A );A
〉

is an DFS-LI of S over U and a ∈ S, then there exists
x, y ∈ S such that a = (ax)(ay), we have K+

A (a) = K+
A ((ax)(ay)) = K+

A ((aa)(xy)) =

K+
A ((yx)(aa)) ⊇ K+

A (a2) and K−A (a) = K−A ((ax)(ay)) = K−A ((aa)(xy)) = K−A ((yx)(aa)) ⊇
K−A (a2), which shows that KA is DFS semiprime. �

Theorem 4.5. For a unitary AG–Groupoid (an AG***–Groupoid) S, the following condi-
tions are equivalent .
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(i) S is (2,2)-regular.
(ii) All DFS-RIs, (LIs, 2SIs) of S are DFS semiprime.

Proof. (i) =⇒ (ii) : It follows from Lemma 4.4.
(ii) =⇒ (i) : Since a2S [24] is a right and also a left ideal of S, so by Corollary

4.3, Ca2S =
〈
(C+

a2S , C
−
a2S); a2S

〉
is DFS semiprime. Now clearly a2 ∈ a2S, implies

a ∈ a2S, hence S is (2,2)-regular. �

Lemma 4.6. Every DFS-RI of a unitary AG–Groupoid (an AG***–Groupoid) S be-
comes a DFS-LI of S.

Proof. Let KA =
〈
(K+

A , K−A );A
〉

be a DFS-RI of S. Then for any a, b ∈ S, we
have K+

A (ab) = K+
A ((ea)b) = K+

A ((ba)e) ⊇ K+
A (b) and K−A (ab) = K−A ((ea)b) =

K−A ((ba)e) ⊆ K−A (b). hence KA is a DFS-LI of S. �

Theorem 4.7. The following conditions are equivalent for a unitary AG–Groupoid (an
AG***–Groupoid) S.

(i) S is (2,2)-regular.
(ii) Each DFS-RIs of S are DFS semiprime.
(iii) Each DFS-LIs of S are DFS semiprime.

Proof. (i) =⇒ (iii) and (ii) =⇒ (i) follows from Theorem 4.5.
(iii) =⇒ (ii) : If KA =

〈
(K+

A , K−A );A
〉

is a DFS-RI of S over U, then by Lemma
4.6, KA is a DFS-LI of S over U , therefore KA is a DFS semiprime. �

Lemma 4.8. For a unitary AG–Groupoid (an AG***–Groupoid) S, the following condi-
tions are equivalent:

(i) S is (2,2)-regular.
(ii) KA �KA = KA, for each DFS-LI (RI , 2SI) ideal of S over U .

Proof. (i) =⇒ (ii) : Let KA =
〈
(K+

A , K−A );A
〉

be a DFS-LI of S over U, then K+
A

∼◦
K+

A ⊆ K+
A and.K−A

∼∗ K−A ⊇ K−A Let a ∈ S, then there exists u ∈ S such that a =
(ax)(ay) = (ya)(xa), we have

(K+
A

∼◦ K+
A )(a) =

⋃
a=(ya)(xa)

{K+
A (ya) ∩K+

A (xa)} ⊇ K+
A (xa) ∩K+

A (ya)

⊇ K+
A (a) ∩K+

A (a) = K+
A (a),

and

(K−A
∼∗ K−A )(a) =

⋂
a=(ya)(xa)

{K−A (ya) ∪K−A (xa)} ⊆ K−A (ya) ∪K−A (xa)

⊆ K−A (a) ∪K−A (a) = K−A (a).

Hence KA �KA = KA.
(ii) =⇒ (i) : Let KA � KA = KA holds for each DFS-LI of S over U . Since Sa

[24] is left ideal of S, so by Lemma 2.2, CSa =
〈
(C+

Sa, C
−
Sa);Sa

〉
is a DFS-LI of S

over U. Since a ∈ Sa, therefore (C+
Sa)(a) = U and (C−Sa)(a) = ∅. By Lemma 2.2 and

hypothesis, we have (CSa) � (CSa) = CSa and (CSa) � (CSa) = C(Sa)(Sa). Therefore(
C+

((Sa)(Sa))

)
(a) = C+

(Sa](a) = U and C−((Sa)(Sa))(a) = C−(Sa](a) = ∅, which implies
that a ∈ ((Sa)(Sa)) = (aS)(aS). Hence S is (2,2)-regular. �
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Theorem 4.9. For a unitary AG–Groupoid (an AG***–Groupoid) S, the following condi-
tions are equivalent:

(i) S is (2,2)-regular.
(ii) KA = (C+

A � KA) � (C+
A � KA), where KA =

〈
(K+

A , K−A );A
〉

is an arbitrary
DFS-LI (RI , 2SI) ideal of S over U .

Proof. (i) =⇒ (ii) : Let S is (2,2)-regular and KA =
〈
(K+

A , K−A );A
〉

is a DFS-LI of
S over U. It is simple to see that CA � KA is also a DFS-LI of S over U. By Lemma
4.8, we obtain (C+

A

∼◦ K+
A )
∼◦ (C+

A

∼◦ K+
A ) = (C+

A

∼◦ K+
A ) ⊆ K+

A and (C−A
∼∗ K−A )

∼∗
(C−A

∼∗ K−A ) = (C−A
∼∗ K−A ) ⊇ K−A . Now let a ∈ S, then there exists u ∈ S such that

a = (ax)(ay) = (ya)(xa), we have(
(C+

A

∼◦ K+
A )
∼◦ (C+

A

∼◦ K+
A )
)

(a) =
⋃

a=(ya)(xa)

{(C+
A

∼◦ K+
A )(ya) ∩ (C+

A

∼◦ K+
A )(xa)}

⊇ (C+
A

∼◦ K+
A )(ya) ∩ (C+

A

∼◦ K+
A )(xa)

=

( ⋃
ya=ya

{C+
A (y) ∩K+

A (a)}

)
∩

( ⋃
xa=xa

{C+
A (x) ∩K+

A (a)

)
⊇ C+

A (y) ∩K+
A (a) ∩ C+

A (x) ∩K+
A (a)

= U ∩K+
A (a) ∩ U ∩K+

A (a) = K+
A (a),

and(
(C−A

∼∗ K−A )
∼∗ (C−A

∼∗ K−A )
)

(a) =
⋂

a=(ya)(xa)

{(C−A
∼∗ K−A )(ya) ∩ (C−A

∼∗ K−A )(xa)}

⊆ (C−A
∼∗ K−A )(ya) ∪ (C−A

∼∗ K−A )(xa)

=

( ⋂
ya=ya

{C−A (y) ∪K−A (a)}

)
∪

( ⋂
xa=xa

{C−A (x) ∪K−A (a)

)
⊆ C−A (y) ∪K−A (a) ∪ C−A (x) ∪K−A (a)

= ∅ ∪K−A (a) ∪ ∅ ∪K−A (a) = K−A (a).

Hence KA = (CA �KA) � (CA �KA).
(ii) =⇒ (i) : Let KA = (CA �KA) � (CA �KA) holds for all DFS-LI KA of S over

U. Then KA = (CA �KA) � (CA �KA) v KA �KA v CA �KA v KA. Thus by Lemma
4.8, S is (2,2)-regular. �

5. DUO AND DFS DUO AG–GROUPOIDS

Definition 5.1. An AG–Groupoid (an AG***–Groupoid) S is called a left (right) duo if
every left (right) ideal of S is an ideal of S and is called a duo if it is both left and right
duo.

Lemma 5.1. If each DFS-LI of a unitary AG–Groupoid (an AG***–Groupoid) S is a
DFS-II of S over U , then S is a left duo.

Proof. Let I is a left ideal of unitary AG–Groupoid S. By Lemma 2.2, XI =
〈
(X+

I , X−I ); I
〉

is a DFS-LI of S over U . So by assumption, XI is a DFS-II of S over U and by Lemma
2.2, I is an interior ideal of S. Now

IS = (eI)S ⊆ (SI)S ⊆ I .
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Hence S is left duo. �

Corollary 5.2. Every interior ideal of unitary AG–Groupoid (an AG***–Groupoid) S is
right ideal of S.

Theorem 5.3. For a (2,2)-regular unitary AG-groupoid (an AG***–Groupoid) S, the fol-
lowing conditions are equivalent:

(i) S is left duo.
(ii) Every DFS-LI of S is a DFS-II of S over U .

Proof. (i) ⇒ (ii) Let a (2,2)-regular unitary AG–Groupoid S is left duo and KA =〈
(K+

A , K−A );A
〉

is a DFS-LI of S over U . If a, b, c ∈ S, then b = (bx)(by) for some
x, y ∈ S. Since Sa is a left and also a right ideal of S [24], so Sa is an ideal of S, we have

(ab)c = (a((bx)(by)))c = (a((bb)(xy)))c = ((bb)(a(xy)))c

= (c(a(xy)))(bb) ∈ (S(a(SS)))(Sb) ⊆ (S(aS))b

= ((eS)(aS))b = ((Sa)(Se))b ⊆ ((Sa)(SS))b

⊆ ((Sa)S)b ⊆ (Sa)b.

Thus (ab)c = (ta)b, for some t ∈ S. Now K+
A ((ab)c) = K+

A ((ta)b) ⊇ K+
A (b) and

K−A ((ab)c) = K−A ((ta)b) ⊆ K−A (b). Hence KA =
〈
(K+

A , K−A );A
〉

is a DFS II of S
over U .

(ii)⇒ (i) is follows from Lemma 5.1. �

Definition 5.2. An AG–Groupoid (an AG***–Groupoid) S is called a DFS left duo (right
duo) (briefly, DFS-L-duo (DFS-R-duo)) if every DFS-LI (RI) of S is a DFS-2SI of
S and is called a DFS-duo if it is both DFS-L-duo and DFS-R-duo.

Remark. Every DFS-L-duo or DFS-R-duo is a DFS-duo in a (2,2)-regular unitary
AG–Groupoid (an AG***-Groupoid).

Lemma 5.4. Every left ideal of a unitary AG–Groupoid (an AG***–Groupoid) S an inte-
rior ideal of S over U if S is a DFS-L-duo.

Proof. It is immediate. �

Theorem 5.5. For a (2,2)-regular unitary AG–Groupoid (an AG***–Groupoid) S, the
following conditions are equivalent:

(i) S is a DFS-L-duo.
(ii) Every left ideal of S over U is an interior ideal of S over U .

Proof. (i)⇒ (ii) cab be followed from Lemma 5.4.
(ii)⇒ (i) cab be followed from Theorem 3.3. �

6. SOME APPLICATIONS OF DOUBLE-FRAMED SOFT EXPERT SETS

In this section we utilize DFS expert sets to solve some real world problem, specifically
stated, to decision making.

In real life, there are many cases where the properties of the universal set U, called pa-
rameters are multi-values rather than a single value. For example, if we take a collection
of books on the subject of , “Calculus & Analytic Geometry” available in the market. One
of the parameters may be the content of the book. This parameter is two-value. Calculus
content means single variable calculus and multi-variable calculus. Other parameters may
be the geometric content of the book. This parameter is also two-value. Geometric ma-
terial means 2-dimensional geometry and 3-dimensional geometry. In the case where the
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parameters involved are two-value, the DFSSs concept plays a useful role. This concept
naturally extends to n-framed software sets when the parameters are n-valued.

Suppose we have a team of experts and their views are recorded in case of agreement
or disagreement on a particular estimate. We will develop a decision algorithm based on
DFS expert sets.

We will be making use of some preliminary concepts from Graph Theory which we
present here for completion. A graph L = (V,E) consists of two sets, V called the set
of vertices and E called the set of edges. V represents some entities and E represents
the relationships between the elements of V . The degree of a vertex is defined to be the
number of edges connected to it or in real world, number of relationships it has with other
elements. for a vertex v ∈ V (L), we will denote the degree by dL(v). Reader is referred
to any book on graph theory for further readings of this topic.

Let U be a universe, E a set of parameters, and X a set of experts (agents). Let O =
{disagree= 0, agree= 1} be a set of opinions, Z = E × X × O and A ⊆ Z. A DFSS
〈(Γ,Ψ) ;A〉 is then known as a DFS expert-set over calU, where Γ and Ψ are mappings
from A to P (calU) (power set of U ).

Example 6.1. Assume that U = {t1, t2, t3, t4, t5} is a set of five newspapers under con-
sideration and A = {m1,m2,m3} = {coverage, Calls, Data} is a set of parameters. The
parameters involved here are two-valued. m1 stands for coverage which includes urban
and rural coverage, m2 stands for Calss which includes low rate and call packages and m3

stands for Data which includes low rates and data packages. Suppose a best performance
award is to be announced by some agency. Let Z = {z1, z2, z3} be a set of experts. Ac-
cording to the data collected, the DFSS 〈(ΓA,ΨA) ;A〉 can be viewed as the collection
of the following approximations:

(ΓA, Z) =



((m1, z1, 1) , {t2, t3, t4}) , ((m1, z2, 1) , {t1, t3, t4}) , ((m1, z3, 1) , {t1, t2, t4}) ,
((m2, z1, 1) , {t1, t2, t3}) , ((m2, z2, 1) , {t3, t4}) , ((m2, z3, 1) , {t2, t4}) ,
((m3, z1, 1) , {t2, t3}) , ((m3, z2, 1) , {t1, t4}) , ((m3, z3, 1) , {t1, t3}) ,
((m1, z1, 0) , {t4, t5}) , ((m1, z2, 0) , {t3, t5}) , ((m1, z3, 0) , {t3, t4}) ,
((m2, z1, 0) , {t2, t5}) , ((m2, z2, 0) , {t2, t4}) , ((m2, z3, 0) , {t3, t4}) ,
((m3, z1, 0) , {t2, t3}) , ((m3, z2, 0) , {t1, t5}) , ((m3, z3, 0) , {t1, t4})



(ΨA, Z) =



((m1, z1, 1) , {t1}) , ((m1, z2, 1) , {t2}) , ((m1, z3, 1) , {t3}) ,
((m2, z1, 1) , {t4}) , ((m2, z2, 1) , {t5}) , ((m2, z3, 1) , {t1, t2, t5}) ,
((m3, z1, 1) , {t2, t4, t5}) , ((m3, z2, 1) , {t1, t3, t5}) , ((m3, z3, 1) , {t1, t4, t5}) ,
((m1, z1, 0) , {t2, t3, t4}) , ((m1, z2, 0) , {t2, t4, t5}) , ((m1, z3, 0) , {t3, t4, t5}) ,
((m2, z1, 0) , {t1, t2, t3, t4}) , ((m2, z2, 0) , {t1, t2, t3, t5}) , ((m2, z3, 0) , {t1, t2, t4, t5}) ,
((m3, z1, 0) , {t1, t3, t4, t5}) , ((m3, z2, 0) , {t2, t3, t4, t5}) , ((m3, z3, 0) , U)


Let us define the agree-soft expert graph L(Γ1(Z)) henceforth denoted by L1 as fol-

lows:
The vertex set V (L1) = (A×Z)∪U and the edge set E(L1) = {{(mi, zj), tk} when tk ∈

ΓA(mi, zj , 1)}.
The disagree-soft expert graph L(Γ0(Z)) henceforth denoted by L0 has the same vertex

set and the edge set is defined as E(L0) = {{(mi, zj), tk} when tk ∈ ΓA(mi, zj , 0)}.
These two graphs L1 and L0 are given in Fig. 1 and Fig. 2 respectively.
Using the same path of definitions for the graphs but using (Ψ1, Z) and (Ψ0, Z), we get

two more graphs, the agree-soft expert graph L(Ψ1(Z)) henceforth denoted by L′1 and The
disagree-soft expert graph L(Ψ0(Z)) henceforth denoted by L′0. These graphs are given in
Fig. 3 and Fig. 4 respectively.
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FIGURE 1. Agree-soft ex-
pert graph G(Γ1(Z))

FIGURE 2. Disgree-soft
expert graph G(Γ0(Z))

These graphs enable us to see the above mentioned detailed information in a pictorial
way and enable us to see the opinions in a clear and concise way. We also use these graphs
to develop the following algorithm for choosing the best option based on expert opinions.

Algorithm

(1) Input the DFS expert-set 〈(ΓA,ΨA) ;Z〉 .
(2) Determine agree as well as disagree expert sets for (Γ, Z) and (Ψ, Z) .
(3) Determine the agree-soft expert graph L(Γ1(Z)), disagree-soft expert graph L(Γ0(Z)),

agree-soft expert graph L(Ψ1(Z)) and disagree-soft expert graph L(Ψ0(Z)).
(4) Calculate dL(ti) for agree-soft expert graph, similarly dL0

(ti) for disagree-soft
expert graph of (Γ, Z).

(5) Calculate d′L(ti) for agree-soft expert graph, similarly d′L0
(ti) for disagree-soft

expert graph of (Ψ, Z).
(6) Calculte ai = dL(ti)− dL0

(ti) and a′i = d′L(ti)− d′L0
(ti).

(7) Calculate ci =
ai+a′

i

2
(8) Choose j for which cj = max ci.
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FIGURE 3. Agree-soft ex-
pert graph G(Γ1(Z))

FIGURE 4. Disgree-soft
expert graph G(Γ0(Z))

Applying the steps 4-8 of above algorithm to Example No. 6.1, we get the following
table.
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dL dL0
d′L d′L0

ai = dL − dL0
a′i = d′L − d′L0

ci =
ai+a′

i

2

t1 5 2 4 5 3 -1 1
t2 5 3 3 7 2 -4 -1
t3 6 4 2 7 2 -5 -1.5
t4 6 5 3 8 1 -5 -2
t5 0 4 5 7 -4 -2 -2

Thus the optimal choice is 1 or t1.

Conclusion
We have considered the following problems in detail:
i) Study and compare DFS left (right, two-sided) ideals, DFS (generalized) bi-ideals,

DFS interior ideals and DFS (1, 2)-ideals of AG–Groupoid over an initial universe set U.
ii) Discuss the structural properties of a (2,2) regular AG-groupoid in terms of DFS

ideals.
iii) Compare a (2,2) regular class of an AG-groupoid with other important classes of an

AG-groupoid, which will provide us a way to study DFS-sets in more generalized form in
future.

iv) Apply DFS expert sets to develop a decision making scheme for everyday problems.
Some important issues for future work are:
i) To develop strategies for obtaining more valuable results in related areas.
ii) To apply these notions and results for studying DFS ideals in LA-semihypergroups

and LA-semihyperrings.
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