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EXISTENCE RESULTS FOR FUZZY DIFFERENTIAL EQUATION WITH
ψ-HILFER FRACTIONAL DERIVATIVE

K. KANAGARAJAN, R. VIVEK, D. VIVEK AND E. M. ELSAYED∗

ABSTRACT. This manuscript concerns the fuzzy differential equation involving ψ-Hilfer
type fractional derivative with nonlocal condition. By using successive approximation, we
obtain the existence, uniqueness results of solution for ψ-Hilfer fuzzy differential equa-
tion. Further, nonlocal conditions are extended to the existence results. Furthermore, an
application is shown to demonstrate the theoretical conclusions utility.

1. INTRODUCTION

Consider the ψ-Hilfer fuzzy fractional differential equation of the kind{
Dα,β,ψ
a+ x(t) = f(t, x(t)), for all t ∈ [a, b],

I1−γ,ψa+ x(a) = x0 =
∑m
i=1 Cix(ti), γ = α+ β(1− α),

(1.1)

where x ∈ R, 0 < α < 1, β ∈ [0, 1], f : [a, b] × E → E is a fuzzy function. Moreover,
I1−γ,ψa+ , Dα,β,ψ

a+ are the ψ-Hilfer fractional integral and derivative, which will be given in
the next section. ti(i = 1, 2, . . . ,m) satifies a < t1 ≤ t2 ≤ . . . < b and Ci is a real
number, x0 ∈ R. Here nonlocal conditions are more effective than the initial conditions
I1−γa+ x(0) = x0 in terms of physical problems. x is said to be a solution of (1.1).

The fundamental concept of theory of differential equation is a rich and beautiful field
of pure and applied mathematics which deals with many disciplines including engineering,
physics, economics, biology. There are many branches of theory of differential equation
is fuzzy fractional differential equations that in recent year. The theoretical development
of fractional differential equation is the Riemann-Liouville’s or Caputo sense have been
excellently given in [1, 2, 3, 4, 5, 6], it has gathered significant not only in mathematical
research but also in other applied sciences. In this way of fractional derivative concept
that we should considered depends on the experimental data that best fits in the theoretical
model. Hilfer has suggest a new generalized form of the fractional derivative, the so-called
Hilfer fractional derivative(HFD) that merge the wide number of definition of fractional
differential operators. For many definition on HFD and interesting applications, one can
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refer to [7, 8, 21]. Inspired by the definitions of the HFD and the concepts of fractional
derivative of a function with respect to the another ψ kernal function suggest a new idea of
fractional derivative,the so-called ψ-HFD.

Recently, the topics of existence and uniqueness for the solution to the linear and non-
linear fuzzy differential equations with ψ-HFD has been further investigated and discuss
by many researches in various aspects. In [9] the existence and uniqueness of Riemann-
Liouville fuzzy fractional differential equation has been demonstrate by Arshad and the
concept of fuzzy type Riemann-Liouville differentiabilty based on Hukuhara differen-
tiability in [15] by using the Hausdroff measure of noncompactness. Furthermore, the
existence and uniqueness for fuzzy fractional differential equation with ψ-Hilfer under
Liouville-Caputo generalized Hukuhara differentiability has been investigated in [10], and
further see [11, 12, 13, 14, 19, 22]. In [16], the existence results for extremal solutions
of interval fractional function integro-differential equation by using the monotone iteration
approaches associated with the method of upper and lower solution was investigated.

This paper is organized as follows: In Section 2, we give some preliminary facts that
we need in what follows. In section 3, we present our main results on the existence results
of solution by using successive approximation method. An illustrative example is given to
show the practical usefulness of the analytical results. Conclusion is given in section 4.

2. PRELIMINARIES

Now in this section we give some definitions and lemmas useful in our subsequent dis-
cussion. We denote by E the sapce of all fuzzy numbers on R. For c ∈ R, p ∈ [1,∞],
Let Xp

c (a, b) denote the space of all complex-valued Lebesgue measurable functions f on
a finite interval [a, b] for which

∥f∥Xpc <∞

with the norm

∥f∥Xpc =

(∫ b
a

∣∣f(t)∣∣p dtt )1/p

<∞.

Definition 2.1. [20] A fuzzy number is a fuzzy set x : R → [0, 1] which satisfies the
following conditions:

(i) x is normal, that is, there exists t0 ∈ R such that x(t0) = 1;
(ii) x is fuzzy convex in R, that is, for λ ∈ [0, 1],

x
(
λt1 + (1− λ)t2

)
≥ min

{
x(t1), x(t2)

}
, for any t1, t2 ∈ R;

(iii) x is a upper semicontinuous on R;
(iv) [x]0 = cl{z ∈ R | x(z) > 0} is compact.

Denote by C([a, b], E) the set of all continuous fuzzy function and by AC([a, b], E) the
set of all absolutely continuous fuzzy functions on the intervals [a, b] with values in E. Let
γ ∈ (0, 1), byCγ,ψ[a, b] we denote the space of continuous functions defined byCγ,ψ[a, b] =
{f : (a, b] → E : (ψ(t)−ψ(a))1−γf(t) ∈ C[a, b]}. Let L([a, b], E) be the set of all fuzzy
functions x : [a, b] → E such that the functions t 7→ D0[x(t), 0̂] belongs to L1[a, b].

If x is a fuzzy numbers on R, we define [x]r = {z ∈ R | x(z) ≥ r} the r-level of x,
with r ∈ (0, 1]. From condition (i) and (iv), it follows that the r-level set of x ∈ E, [x]r

, is a nonempty compact interval for any r ∈ [0, 1]. We denote by [x(r), x(r)] the r-level
of a fuzzy number x. For x1, x2 ∈ E, and λ ∈ R, the sum x1 + x2 and the product λ · x1
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are defined by [x1 + x2]
r = [x1]

r + [x2]
r, [λ · x1]r = λ[x1]

r, for all r ∈ [0, 1], where
[x1]

r + [x2]
r means the usual addition of two intervals of R and λ[x1]r means the usual

scalar product between λ and an real interval. For x ∈ E, we define the diameter of the
r-level set of x as diam[u]r = u(r)− u(r).

Definition 2.2. [19] Let x1, x2 ∈ E. If there exists x3 ∈ E such that x1 = x2 + x3, then
x3 is called the Hukuhara difference of x1 and x2 and it is denoted by x1 ⊖ x2. We note
that x1 ⊖ x2 ̸= x1 + (−)x2.

Definition 2.3. [19] The distance D0[x1, x2] between two fuzzy numbers is defined as
D0[x1, x2] = supr∈[0,1]H

(
[x1]

r, [x2]
r
)
, for all x1, x2 ∈ E,

where H([x1]
r, [x2]

r) = max{|u1(r) − u1(r)|, |u1(r) − u1(r)|} is a Hausdorff distance
between [x1]

r and [x2]
r.

Triangular fuzzy numbers are defined as a fuzzy set in E that is specifed by an ordered
triple x = (a, b, c) ∈ R3 with c ∈ [a, b] such that [x]r = [x(r), x(r)] are the end points of r-
level sets for all r ∈ [0, 1], where x(r) = a+(b−a)r and x(r) = c− (c− b)r. In general,
the parametric form of a fuzzy number x is a pair [x]r = [x(r), x(r)] of function x(r),
x(r), r ∈ [0, 1], which satisfy the following conditions: u(r) is a monotonically increasing
left-continuous function, u(r) is a monotonically decreasing left-continuous function, and
u(r) ≤ u(r), r ∈ [0, 1].

Definition 2.4. [17] The generalized Hukuhara difference of two fuzzy numbers x, y ∈ E
(gH-difference for short) is defined as follows:

x⊖gH y = ω ⇔ x = y + ω, or y = x+ (−1)ω.
A function x : [a, b] → E is called d-increasing (d− decreasing) on [a, b] if for every

r ∈ [0, 1] the function t 7→ diam[x(t)]r is nondecreasing (nonincreasing) on [a, b]. If x
is a d-increasing or d- decreasing on [a, b], then we say that x is d-monotone on [a, b].

Definition 2.5. [7, 8] The left-sided ψ-fractional integral of order α > 0, x ∈ Xp
c (a, b) for

-∞ < a < t <∞ is defined by(
Iα,ψa+ x

)
(t) =

1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1x(τ)dτ. (2.1)

Definition 2.6. [7, 8] The ψ-fractional derivative associated with the generalized fractional
integrals (2) are defined, for 0 ≤ a < t <∞, n = [α] + 1, by(

Dα,ψ
a+ x

)
(t) =

(
1

ψ′(t)

d

dt

)n(
In−α,ψa+ x

)
(t)

=
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))n−α−1x(τ)dτ. (2.2)

Let x ∈ L([a, b], E), then the ψ-Hilfer fractional integral of order α of the fuzzy func-
tion x is defined as follows:

xα,ψ(t) =
(
Iα,ψa+ x

)
(t) =

1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1x(τ)dτ, t ≥ a.

Since [x(t)]r = [x(r, t), x(r, t)] and 0 < α < 1, we can considered the fuzzy ψ-
fractional integral of the fuzzy function x based on lower and upper functions, that is,

[
(
Iα,ψa+ x

)
(t)]r = [

(
Iα,ψa+ x

)
(r, t),

(
Iα,ψa+ x

)
(r, t)], t ≥ a,
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where(
Iα,ψa+ x

)
(r, t) = 1

Γ(α)

∫ t
a
ψ

′
(τ)(ψ(t)− ψ(τ))α−1x(r, τ)(τ)dτ ,

and(
Iα,ψa+ x

)
(r, t) = 1

Γ(α)

∫ t
a
ψ

′
(τ)(ψ(t)− ψ(τ))α−1x(r, τ)(τ)dτ .

In addition, it follows that the opeartor xα,ψ(t) is linear and bounded from C([a, b], E)
to C([a, b], E). Indeed, we have

c ≤ ∥x∥0
1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1dτ =

∥x∥0
Γ(α+ 1)

(
ψ(t)− ψ(a)

)α
,

where ∥z∥0 = supt∈[a,b]D0[z(t), 0̂].

Definition 2.7. [7, 8] Let order α and type β satisfy n − 1 < α ≤ n and 0 ≤ β ≤ 1,
with n ∈ N . The fuzzy ψ-Hilfer generalized Hukuhara fractional derivative(or ψ-Hilfer
gH-fractional derivative) (left-sided/right-sided), with respect to t, with a function t ∈
C1−γ,ψ[a, b], is defined by

(
Dα,β,ψ
a+ x

)
(t) =

(
I
β(1−α),ψ
a+

)( 1

ψ′(t)

d

dt

)(
I
(1−β)(1−α),ψ
a+ x

)
(t)

=
(
I
β(1−α),ψ
a+ fψI

(1−β)(1−α),ψ
a+ x

)
(t),

if the gH-derivative x
′

(1−α),ψ(t) exists for t ∈ [a, b], where

x(1−α),ψ(t) :=
(
I
(1−α),ψ
a+ x

)
(t) =

1

Γ(1− α)

∫ t

a

ψ
′
(τ)[ψ(t)− ψ(τ)]−αx(τ)dτ.

Lemma 2.1. [7, 8] Let Iα,ψa+ according to Eqs(2.1). Then

Iα,ψa+ (ψ(t)− ψ(a))β−1(t) =
Γ(β)

Γ(α+ β)

(
ψ(t)− ψ(a)

)α+β−1
, α ≥ 0, β > 0.

Lemma 2.2. [7, 8] Let α > 0, 0 ≤ γ < 1. If x ∈ Cγ,ψ[a, b] and I1−α,ψa+ x ∈ C1
γ,ψ[a, b],

then

(
Iα,ψa+ Dα,ψ

a+ x
)
(t) = x(t)−

(I1−α,ψa+ x)(a)

Γ(α)

(
ψ(t)− ψ(a)

)α−1
.

Lemma 2.3. [7, 8] Let x ∈ L1(a, b). If Dβ(1−α),ψ
a+ x exists on L1(a, b), then

Dα,β,ψ
a+ Iα,ψa+ x = I

β(1−α),ψ
a+ D

β(1−α),ψ
a+ x, for all t ∈ (a, b].

Lemma 2.4. [20] If x ∈ AC([a, b], E) is a d-monotone fuzzy function, where [x(t)]r =
[x(r, t), x(r, t)] for 0 ≤ r ≤ 1, a ≤ t ≤ b, then for 0 < a < 1, we have that

(i) [(Dα,β,ψ
a+ x)(t)]r = [Dα,β,ψ

a+ x(r, t), Dα,β,ψ
a+ x(r, t)] for t ∈ [a, b], if x is d-increasing

(ii) [(Dα,β,ψ
a+ x)(t)]r = [Dα,β,ψ

a+ x(r, t), Dα,β,ψ
a+ x(r, t)] for t ∈ [a, b], if x is d-decreasing
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Proof. Let x ∈ AC([a, b], E) be a d-monotone fuzzy function, then [x(t)]r = [x(r, t), x(r, t)].
If x is d-monotone then either x is d-increasing or d-decreasing, for any r ∈ [0, 1]
To prove(i):
Assume that x is d-increasing,

[x
′
(t)] = [ ddtx(r, t),

d
dtx(r, t)],

by definition of fuzzy ψ-Hilfer gH-fractional derivative[(
Dα,β,ψ
a+ x

)
(t)

]r
=
[(
I
β(1−α),ψ
a+ f1,ψψ I

(1−β)(1−α),ψ
a+ x

)
(r, t),

(
I
β(1−α),ψ
a+ f1,ψψ I

(1−β)(1−α),ψ
a+ x

)
(r, t)

]
=
[(
I
β(1−α),ψ
a+

(
1

ψ′(t)

d

dt

)1,ψ

I
(1−β)(1−α),ψ
a+ x

)
(r, t),

(
I
β(1−α),ψ
a+

(
1

ψ′(t)

d

dt

)1,ψ

I
(1−β)(1−α),ψ
a+ x

)
(r, t)

]
=
[
Dα,β,ψ
a+ x(r, t), Dα,β,ψ

a+ x(r, t)
]
.

To prove(ii):
Assume that x is d-decreasing,

[x
′
(t)] = [ ddtx(r, t),

d
dtx(r, t)],

by definition of fuzzy ψ-Hilfer gH-fractional derivative[(
Dα,β,ψ
a+ x

)
(t)

]r
=
[(
I
β(1−α)′ψ
a+ f1,ψψ I

(1−β)(1−α),ψ
a+ x

)
(r, t),

(
I
β(1−α),ψ
a+ f1,ψψ I

(1−β)(1−α),ψ
a+ x

)
(r, t)

]
=
[(
I
β(1−α)
a+

(
1

ψ′(t)

d

dt

)1,ψ

I
(1−β)(1−α),ψ
a+ x

)
(r, t),

(
I
β(1−α),ψ
a+

(
1

ψ′(t)

d

dt

)1,ψ

I
(1−β)(1−α),ψ
a+ x

)
(r, t)

]
=
[
Dα,β,ψ
a+ x(r, t), Dα,β,ψ

a+ x(r, t)
]
.

This completes the proof. □

Lemma 2.5. If x ∈ AC([a, b], E) is a d-monotone fuzzy function t ∈ (a, b] and α ∈ (0, 1),
we set z(t) := Iα,ψa+ and z(1−α),ψ(t) is d-increasing on (a, b] then

(
Iα,ψa+ Dα,β,ψ

a+ x
)
(t) = x(t)⊖

∑m
i=1 Cix(ti)

Γ(γ)

(
[ψ(t)− ψ(a)]

)1−γ
and (

Dα,β,ψ
a+ Iα,ψa+ x

)
(t) = x(t).

Proof. Let x ∈ AC([a, b], E) be a d-monotone fuzzy function then by using ψ-HFD, we
have,

(
Dα,β,ψ
a+ x

)
(t) =

(
I
β(1−α),ψ
a+

)(
1

ψ′ (t)
d
dt

)(
I
(1−β)(1−α),ψ
a+

)
x(t).
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By applying Iα,ψa+ on the both sides, we get(
Iα,ψa+ Dα,β,ψ

a+

)
x(t) =

(
Iα,ψa+ I

β(1−α),ψ
a+

)( 1

ψ′(t)

d

dt

)(
I
(1−β)(1−α),ψ
a+

)
x(t)

=
(
I
α+β(1−α),ψ
a+

)( 1

ψ′(t)

d

dt

)(
I
(1−β)(1−α),ψ
a+

)
x(t)

=
(
Iγ,ψa+

)( 1

ψ′(t)

d

dt

)(
I
(1−γ),ψ
a+

)
x(t)

=
(
Iγ,ψa+ Dγ,ψ

a+

)
x(t),

where Dγ,ψ
a+ x(t) =

(
1

ψ′ (t)
d
dt

)
I1−γ,ψa+ x(t),

and we get
(
Iα,ψa+ Dα,ψ

a+ x
)
(t) = x(t)⊖

I
(1−γ),ψ
a+

Γ(α) x(a)[ψ(t)− ψ(a)]α−1

(
Iα,ψa+ Dα,β,ψ

a+ x
)
(t) = x(t)⊖ I

(1−γ),ψ
a+

Γ(α) x(a)[ψ(t)− ψ(a)]α−1.
Applying initial condition, we get

I
(1−γ),ψ
a+ x(a) = x0 =

m∑
i=1

Cix(ti). (2.3)

That is,
(
Iα,ψa+ Dα,β,ψ

a+ x
)
(t) = x(t)⊖gH

∑m
i=1 Cix(ti)

Γ(γ) [ψ(t)− ψ(a)]γ−1,
if z(t) is d-increasing on [a, b] or z(t) is d- decreasing on [a, b] and z(1−α),ψ(t) is d-
increasing on (a, b].
In similar,

(
Iα,ψa+ Dα,β,ψ

a+ x
)
(t) = x(t) + (−1)

∑m
i=1 Cix(ti)

Γ(γ) [ψ(t)− ψ(a)]γ−1.

Next we have, to prove that Dα,β,ψ
a+ Iα,ψa+ x(t) = x(t).

Let x ∈ L1(a, b),

Dα,β,ψ
a+ Iα,ψa+ x(t) = I

β(1−α),ψ
a+ DI

(1−β)(1−α),ψ
a+ x(t)

= I
β(1−α),ψ
a+ DI

1−β(1−α),ψ
a+ x(t)

= I
β(1−α),ψ
a+ D

β(1−α),ψ
a+ x(t)

Dα,β,ψ
a+ Iα,ψa+ x(t) = x(t)⊖

I
1−β(1−α),ψ
a+

Γ(β(1− α))
x(a)[ψ(t)− ψ(a)]β(1−α)−1 = x(t).

On the other hand, since x ∈ AC([a, b], E),there exists a constant K such that K =

supt∈[a,b]D0[x(t), 0̂]. Then

D0[I
α,ψ
a+ x(t), 0̂] =

1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1x(τ)ds

sup
t∈[a,b]

D0[I
α,ψ
a+ x(t), 0̂] ≤ 1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1|x(τ)|dτ

D0[I
α,ψ
a+ x(t), 0̂] ≤ K

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1dτ

D0[I
α,ψ
a+ x(t), 0̂] ≤ K

Γ(α+ 1)
(ψ(t)− ψ(a))α,

and Iα,ψa+ x(t) = 0 at t = a. This completes the proof. □
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Lemma 2.6. Let χ : [a, b] → R+ be a continuous function on the interval [a, b] and
satisfy Dα,β,ψ

a+ χ(t) ≤ g(t, χ(t)), t ≤ a, where g ∈ C([a, b] × R+,R+). Assume that
m(t) = m(t, a, ξ0) is the maximal solution of the initial value problem

Dα,β,ψ
a+ ξ(t) = g(t, ξ),

(
I1−γ,ψa+ ξ

)
(a) = ξ0 ≥ 0, t ∈ [a, b]. (2.4)

Then, if χ(a) ≤ ξ0, we have χ(t) ≤ m(t), t ∈ [a, b].

Lemma 2.7. Consider the initial value problem as follows:

Dα,β,ψ
a+ = g(t, χ(t)),

(
I1−γa+ χ

)
(a) = χ0 = 0, for all t ∈ [a, b] (2.5)

Let η > 0 be a given constant and B(χ0, η) = {χ ∈ R : |χ − χ0| ≤ η}. Assume that the
real-valued function g : [a, b]× [0, η] → R+ satisfies the following conditions:

(i) g ∈ C([a, b] × [0, η],R+), g(t, 0) = 0, 0 ≤ g(t, χ) ≤ Mg , for all (t, x) ∈
[a, b]× [0, η];

(ii) g(t, χ) is nondecreasing in χ for every t ∈ [a, b]. Then problem (6) has at least
one solution defined on [a, b] and χ(t) ∈ B(χ0, η).

Proof. The problem (2.5) is equivalent to the following fractional integral equation:

χ(t) = χ0 +
1

Γ(α)

∫ t
a
ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, χ(s))ds.

Given: χ(a) = χ0 = 0

χ(t) = 0 + 1
Γ(α)

∫ t
a
ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, χ(s))ds.

Choose t∗ > a such that t∗ ≤
[(ηΓ(1+α)

Mg

)1/α
+ a

]
, and put b∗ = min{t∗, b}. Let us de-

fine a sequence {x}∞n=0 of successive approximation of problem (2.5) on [a,b] as follows:

χ0(t) =
Mg

Γ(α+ 1)
(ψ(t)− ψ(a))α, χn+1(t) =

1

Γ(α)
+

∫ t

a

ψ
′
(s)(ψ(t)− ψ(s))α−1g(s, χn(s))ds

Then, for n=0, we have

χ1(t) =
1

Γ(α)

∫ t

a

ψ
′
(s)(ψ(t)− ψ(s))α−1g(s, χ0(s))ds

χ1(t) ≤ Mg

Γ(α+ 1)
(ψ(t)− ψ(a))α

χ1(t) ≤χ0(t) ≤ η, t ∈ [a, b].

Hence g(t, η) is nondecreasing in χ for every t ∈ ([a, b∗]) and proceeding recursively, we
find that,

0 ≤ χn+1(t) ≤ χn(t) ≤ ..... ≤ χ0(t) ≤ η, n = 0, 2, 3, . . .,

it follows that, the sequence {χn}∞n=0 is uniformly bounded for all n ≥ 0. Moreover.,
Dα,β,ψ
a+ χ(t) = g(t, χn(t)) ≤M , we get the equicontinuity of the sequence {χn}. Indeed,

for a ≤ t1 ≤ t2 ≤ b∗ and by using Mean-Value Theorem, we have

|χn(t2)− χn(t1)| ≤
2M2

Γ(α+ 1)
(t2 − t1)

α ≤ 2M2

Γ(α+ 1)
(t2 − t1)

ατα,ψ, ∀τ ∈ [t1, t2] ⊆ [a, b∗].
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Thus, if |t2 − t1| ≤ δ, we have |χn(t2)− χn(t1)| ≤ ϵ, where δ =
(

ϵ
2Mg

Γ(1 + α)τα
)1/α

.
Hence by using Arzela-Ascoli Theorem and the monotonicity of the sequence {χn}. There-
fore limn→∞ χn(t) = χ(t) is uniformly on [a, b∗]. Thus, χ ∈ C([a, b∗], [0, η]) and χ(t) is
a solution of the problem (2.5).
This completes the proof. □

3. MAIN RESUILTS

In this section, we discuss the existence and uniqueness of solution of problem (1.1) to
initial value problem by using successive approximation method under generalized lips-
chitz condition of the right-hand side.

Lemma 3.1. Let γ = α+β(1−α), where 0 < α < 1, 0 ≤ β ≤ 1, let f : (a, b]×E → E
be a fuzzy function such that t 7−→ f(t, x) belongs to Cγ,ψ([a, b], E) for any x ∈ E. Then
a d-monotone fuzzy function x ∈ C([a, b], E) is a solution of problem (1.1) if and only if x
satisfies the integral equation

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1

=
1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1f(τ, x(τ))dτ, t ∈ [a, b] (3.1)

and the fuzzy function t 7−→ I1−γ,ψa+ f(t, x) is d-increasing on (a, b].

Proof. First, we have to prove the necessary condition.
Let x ∈ C([a, b], E) be a d-monotone solution of problem (1.1), and
let z(t) := x(t)⊖gH (I1−γ,ψa+ x(a)), t ∈ [a, b]. Because x is d-monotone on [a, b], it follows
that t 7−→ z(t) is d-increasing on [a, b]. From (1.1) and Lemma 2.12 we have that(

Iα,ψa+ Dα,β,ψ
a+ x

)
(t) = x(t)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
[ψ(t)− ψ(a)]

)1−γ
t ∈ [a, b]. (3.2)

Since f(t, x) ∈ Cγ,ψ([a, b], E) for any x ∈ E, and from (1.1), it follows that(
Iα,ψa+ Dα,β,ψ

a+ x
)
(t) = Iα,ψa+ f(t, x(t))

=
1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1f(s, x(τ))dτ, for t ∈ [a, b].

(3.3)

In addition, since z(t) is d-increasing on (a, b], it follows that t 7−→ fα,ψ(t, x) is also
d-increasing on (a, b]. Consequently, combining (3.2) and (3.3) proves the necessity con-
dition.
Next, we prove that the sufficiency. Let x ∈ C([a, b], E) be a d-monotone fuzzy function
x satisfies the integral equation and such that t 7−→ fα,ψ(t, x) is d-increasing on (a, b].
Because of the continuity of the fuzzy function f , the fuzzy function t 7−→ fα,ψ(t, x) is
continuous on (a, b] and fα,ψ(a, x(a)) = limt→a+ fα,ψ(t, x) = 0. Then

x(t) =

∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)1−γ
+ Iα,ψa+ f(t, x(t))(t),

I1−γ,ψa+ x(t) =

m∑
i=1

Cix(ti) + I
1−β(1−α),ψ
a+ f(t, x(t))(t),

and
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I1−γ,ψa+ x(0) =
∑m
i=1 Cix(ti).

In addition, since t 7−→ fα,ψ(t, x) is d-increasing on (a, b], by applying Dα,β
a+ on both

sides, we obtain that

Dα,β,ψ
a+

[
x(t)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
[ψ(t)− ψ(a)]

)γ−1
]

= Dα,β,ψ
a+

[
1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1f(τ, x(τ))dτ

]
= Dα,β,ψ

a+ Iα,ψa+ f(t, x(t)).

Thus,

Dα,β,ψ
a+

[
Iα,ψa+ Dα,β,ψ

a+ x(t)
]
= Dα,β,ψ

a+ Iα,ψa+ f(t, x(t))

Dα,β,ψ
a+ Iα,ψa+ Dα,β,ψ

a+ x(t) = Dα,β,ψ
a+ Iα,ψa+ f(t, x(t))

Dα,β,ψ
a+ x(t) = f(t, x(t)).

This completes the proof. □

Theorem 3.2. Let f ∈ C([a, b] × B(x0, h), E) and assume that the following conditions
hold:

(i) There exists a positive constantMf such thatD0[f(t, z), 0̂] ≤Mf , for all (t, z) ∈
[a, b]× B(x0, h);

(ii) For every t ∈ [a, b] and every z, ω ∈ B(x0, h),
D0[f(t, z), f(t, ω)] ≤ g(t,D0[z, ω]),

where g(t, ·) ∈ C([a, b] × [0, ψ],R+) satisfies the condition in Lemma 2.14 provided that
the problem (2.5) has only the solution χ(t) = 0 on [a, b]. Then, the following successive
approximations given by x0(t) = x0 and for n = 1, 2, . . . ,

xn(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1

=
1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1f(τ, xn−1(τ))dτ (3.4)

converge uniformly to a unique solution of problem (1.1) on some intervals [a, T ] for some
T ∈ (a, b] provided that the function t 7−→ Iα,ψa+ f(t, xn(t)) is d-increasing on [a, T ].

Proof. Choose t∗ > a such that t∗ ≤
[(

hΓ(1+α)
M

)1/α]
, whereM = max{Mg,Mf}, and

setting T = min{t∗, b}. Let S = {x : ω(a) = x0 and ω(t) ∈ B(x0, h), for all t ∈ [a, T ]},
clearly S is a set of continuous fuzzy functions x.

Next, we consider the sequence of continuous fuzzy function {xn}∞n=0 given by:
x0(t) = x0 for all t ∈ [a, T ], and for n = 1, 2, . . .

xn(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1

=
1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1f(τ, xn−1(τ))dτ [a, T ]. (3.5)

Step 1: First of all, we prove that xn(t) ∈ C([a, T ], B(x0, h)). For n ≥ 1 and for any
t1, t2 ∈ [a, T ] with t1 < t2, we have
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D0

[
xn(t1)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
, xn(t2)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
]

≤ 1

Γ(α)

∫ t1

a

ψ
′
(τ)[(ψ(t1)− ψ(τ))α−1 − (ψ(t2)− ψ(τ))α−1]D0[f(τ, x

n(τ), 0̂]dτ

+
1

Γ(α)

∫ t2

t1

ψ
′
(τ)[(ψ(t2)− ψ(τ))α−1]D0[f(τ, x

n(τ), 0̂]dτ.

The second integral on right-hand side of the last inequality has the value 1
Γ(α+1) (ψ(t2)−

ψ(t1))
α. For the first integral, it has the value 1

Γ(α+1) [(ψ(t1)−ψ(a))
α−(ψ(t2)−ψ(a))α].

Hence, we get

D0[x
n(t1), x

n(t2)] ≤
Mf

Γ(α+ 1)
[(ψ(t2)− ψ(t1))

α + (ψ(t2)− ψ(t1))
α − (ψ(t2)− ψ(a))α]

≤ 2Mf

Γ(α+ 1)
(ψ(t2)− ψ(t1))

α,

and it follows that the last expression converges to 0 as t1 → t2, which proves that xn is a
continuous function on [a, T ] for all n ≥ 0. In addition, it follows that xn(t) ∈ B(x0, h)
for all t ∈ [a, T ] if and only if

xn(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1 ∈ B(0, h), forall t ∈ [a, T ].

Indeed, if we suppose that xn−1(t) ∈ S, for all t ∈ [a, T ] and for n ≥ 2, then from

D0

[
xn(t)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
, 0̂

]
≤ 1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1D0[f(τ, x

n−1(τ)), 0̂]dτ

≤ Mf

Γ(α+ 1)
[ψ(t)− ψ(a)]α ≤ h,

it follows that xn(t) ∈ S, forall t ∈ [a, T ]. Hence by mathematical induction, xn(t) ∈ S
for all t ∈ [a, T ] and for n ≥ 1. Next, we have to prove that the sequence xn(t) converges
uniformly to a continuous function x ∈ C([a, T ],B(x0, h)).
By assumption (ii) and mathematical induction, we have for t ∈ [a, T ]

D0

[
xn+1(t)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
, xn(t)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
]

≤ 1

Γ(α)

∫ t

a

ψ
′
(τ)[ψ(t)− ψ(τ)]α−1g(τ, ψn−1(τ))dτ

≤ ψn(t), n = 0, 1, 2, . . . , (3.6)

where ψn(t) is defined as follows:

ψn(t) = 1
Γ(α)

∫ t
a
ψ

′
(τ)(ψ(t)− ψ(τ))α−1g(τ, ψn−1(τ))dτ

and ψ0(t) = M
Γ(α+1) [ψ(t) − ψ(a)]α. Thus, we have, for t ∈ [a, T ] and for n =

0, 1, 2, . . .,



48 K. KANAGARAJAN, R. VIVEK, D. VIVEK AND E. M. ELSAYED

D0[D
α,β,ψ
a+ xn+1(t), Dα,β,ψ

a+ xn(t)] ≤ D0[f(t, x
n(t)), f(t, xn−1(t))]

≤ g(t,D0[x
n(t), xn−1(t)])

≤ g(t, χn−1(t)).

Let m ≥ n and t ∈ [a, T ], then we can obtain

Dα,β,ψ
a+ D0[x

n(t), xm(t)] ≤ D0[D
α,β,ψ
a+ xn(t), Dα,β,ψ

a+ xm(t)]

≤ D0[D
α,β,ψ
a+ xn(t), Dα,β,ψ

a+ xn+1(t)]

+D0[D
α,β,ψ
a+ xn+1(t), Dα,β,ψ

a+ xm+1(t)]

+D0[D
α,β,ψ
a+ xm+1(t), Dα,β,ψ

a+ xm(t)]

≤ g(t, χn−1(t)) + g(t, χn−1(t)) + g(t,D0[x
n, xm(t)])

≤ 2g(t, χn−1(t)) + g(t,D0[x
n, xm(t)]).

From (ii), because we have that the solution χ(t) = 0 is a unique solution of problem (2.5)

Dα,β,ψ
a+ χ(t) = g(t, χ(t)), I1−γ,ψa+ χ(a) = χ0 = 0 for all t ∈ [a, b].

That is, g(·, χn−1(.)) : [a, T ] → [0,Mg] uniformly converges to 0, for every ϵ > 0, there
exists a natural numbers n0 such that

Dα,β,ψ
a+ D0[x

n(t), xm(t)] ≤ g(t,D0[x
n(t), xm(t)]) + ϵ, for m ≥ n ≥ n0.

Now, we consider D0[x
n(a), xm(a)] = 0 < ϵ, it follows that, we have for t ∈ [a, T ],

D0[x
n(t), xm(t)] ≤ λϵ(t), m ≥ n ≥ n0, (3.7)

where λϵ(t) is the maximal solution to the following problem

Dα,β,ψ
a+ λϵ(t) = g(t, λϵ(t)) + ϵ, (I1−γ,ψa+ )λϵ(a) = ϵ.

It follows that, {χϵ(·, ω)} converges uniformly to the maximal solution χ(t) = 0 of prob-
lem (2.5) on [a, T ] as ϵ→ 0.
From (3.7), we can find n0 ∈ N large enough such that, for n,m > n0,

sup
t∈[a,T ]

D0

[
xn(t)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
[ψ(t)− ψ(a)]

)γ−1
,

xm(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
[ψ(t)− ψ(a)]

)γ−1
]
≤ ϵ. (3.8)

Since (E,D0) is a complete metric space and (3.8) holds, it follows that {xn(t)} converges
uniformly to x ∈ C([a, b],B(x0, h)). Hence, we obtain

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
[ψ(t)− ψ(a)]

)γ−1)
= lim
n→∞

(
xn(t)⊖gH

∑m
i=1 Cix(ti)

Γ(γ)

(
[ψ(t)− ψ(a)]

)γ−1
)

=
1

Γ(α)

∫ t

a

ψ
′
(τ)[ψ(t)− ψ(τ)]f(τ, x(τ))dτ, for allτ ∈ [a, T ]

Due to Lemma 3.1 the function x(t) is a solution to (1.1) on [a, T ].
Step 2: To show that the solution x is uniqueness, assume that y : [a, T ] → E is another
solution of problem (1.1) on [a, T ]. Denote k(t) = D0[x(t), y(t)]. Then k(a) = 0 and
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for every t ∈ [a, T ] we have

Dα,β,ψ
a+ k(t) ≤ D0[f(t, x(t)), f(t, y(t))]

Dα,β,ψ
a+ k(t) ≤ g(t,D0(x(t), y(t)))

Dα,β,ψ
a+ k(t) ≤ g(t, k(t))

It follows that, we obtain k(t) ≤ m(t), if k(a) ≤ ξ0 ∀t ∈ [a, T ], where m is a maximal
solution of the problem

Dα,β,ψ
a+ k(t) ≤ g(t, k(t))

Dα,β,ψ
a+ m(t) ≤ g(t,m(t)),

I1−γ,ψa+ k(a) = 0

I1−γ.ψa+ m(a) = 0.

Clearly, m(t) = 0. Therefore x(t) = y(t), for all t ∈ [a, T ]. Hence x is a solution of
uniqueness.
This completes the proof. □

Corollary 3.3. Let f ∈ C([a, b], E). Assume that there exists positive constants L,Mf

such that, for every z, ω ∈ E,

D0

[
f(t, z), f(t, ω)

]
≤ LD0[z, ω], D0[f(t, z), 0̂] ≤Mf .

Then the following successive approximations given by x0(t) = x0 and for n = 1, 2, 3, . . .

xn(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
=

1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1f(τ, xn−1(τ))dτ

converge uniformly to a unique solution of problem (1.1) on some intervals [a, T ] for some
T ∈ (a, b] provided that the function t 7−→ Iα,ψa+ f(t, x(tn)) is d-increasing on [a, T ].

Example 3.1. Let γ = α + β(1 − α), where 0 < α < 1, 0 ≤ β ≤ 1, and λ ∈ R. We
consider the linear fuzzy fractional differential equation under ψ-HFD and assume that the
following conditions hold:{

Dα,β,ψ
a+ x(t) = λx(t) + p(t), t ∈ (a, b]

I1−γ,ψa+ x(a) = x0 =
∑m
i=1 Cix(ti), γ = α+ β(1− α).

(3.9)

Then x satiefies the integral equations

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1

=
λ

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1x(τ)dτ +

1

Γ(α)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1p(τ)dτ

=λIα,ψa+ x(t) + Iα,ψa+ p(t),

where p ∈ C([a, b], E) and we also assume that the right-hand side of the above integral
equation of diameter is increasing . We see that f(t, x) = λx+ p satisfies the assumption
of Corollary 3.3. To find the explicit solution of (3.9), we apply the method of successive
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approximations. Setting u0(t) = u0 and

xn(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
= λIα,ψa+ xn−1(t) + Iα,ψa+ p(t), for

n = 1, 2, 3, . . ..

For n = 1 and λ > 0, if we assume that x is d-increasing, then it follows that

x1(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
=

m∑
i=1

Cix(ti)
λ(ψ(t)− ψ(a))α

Γ(α+ 1)
+ Iα,ψa+ p(t), t ∈ [a, b].

On the other hand, if we assume that λ < 0 and x is d-decreasing, then it follows that

(−1)

(∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1 ⊖gH x1(t)

)
=

m∑
i=1

Cix(ti)
λ(ψ(t)− ψ(a))α

Γ(α+ 1)
+ Iα,ψa+ p(t).

For n = 2, we also see that

x2(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1
=

m∑
i=1

Cix(ti)

[
λ[ψ(t)− ψ(a)]α

Γ(α+ 1)
+
λ2[ψ(t)− ψ(a)]2α

Γ(2α+ 1)

]
+ Iα,ψa+ p(t) + I2α,ψa+ p(t).

Suppose λ < 0 and x is d-decreasing such that

(−1)

(∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1 ⊖gH x2(t)

)
=

m∑
i=1

Cix(ti)

(
λ(ψ(t)− ψ(a))α

Γ(α+ 1)
+
λ2(ψ(t)− ψ(a))2α

Γ(2α+ 1)

)
+ Iα,ψa+ p(t) + I2α,ψa+ p(t).

If we proceed inductively and let n→ ∞, we obtain the

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1

=

m∑
i=1

Cix(ti)

∞∑
j=1

λj
(
ψ(t)− ψ(a)

)jα
Γ(jα+ 1)

+

∫ t

a

∞∑
j=1

λj−1ψ
′
(τ)(ψ(t)− ψ(τ))

Γ(jα)

jα−1

p(τ)dτ

=

m∑
i=1

Cix(ti)

∞∑
j=1

λj
(
ψ(t)− ψ(a)

)jα
Γ(jα+ 1)

+

∫ t

a

∞∑
j=0

λjψ
′
(τ)(ψ(t)− ψ(τ))

Γ(jα+ α)

jα+(α−1)

p(τ)dτ

=

m∑
i=1

Cix(ti)

∞∑
j=1

λj
(
ψ(t)− ψ(a)

)jα
Γ(jα+ 1)

+

∫ t

a

∞∑
j=0

λj(ψ(t)− ψ(τ))jα

Γ(jα+ α)
ψ

′
(τ)(ψ(t)− ψ(τ))α−1p(τ)dτ.

We see that, λ > 0 and x is d-increasing or λ < 0 and x is d-decreasing, respectively. Then,
by applying definition of Mittag-Leffler function Eα,β(x) =

∑∞
j=1

xk

Γ(jα+β) , α, β > 0,
if λ > 0 and x is d-increasing then the solution of problem (3.9) is given by
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x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1

=

m∑
i=1

Cix(ti)Eα,1(λ(ψ(t)− ψ(a))α)

+

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1Eα,α(λ(ψ(t)− ψ(a))α)p(τ)dτ.

On the other hand, if λ < 0 and x is d-decreasing, then we obtain the solution of problem
(3.9) is given by

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(γ)

(
ψ(t)− ψ(a)

)γ−1

=

m∑
i=1

Cix(ti)Eα,1(λ(ψ(t)− ψ(a))α)

⊖ (−1)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1Eα,α(λ(ψ(t)− ψ(a))α)p(τ)dτ

Remark. In problem (3.9), suppose that λ > 0 and the solution of (3.9) is d-increasing.
We observe that the solution of problem (3.9) admit particular cases as follows: if β = 0,
then we obtain the solution of problem (3.9) with the ψ-HFD as follows:

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(α)

(
ψ(t)− ψ(a)

)α−1

=

m∑
i=1

Cix(ti)Eα,1(λ(ψ(t)− ψ(a))α)

+

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1Eα,α(λ(ψ(t)− ψ(a))α)p(τ)dτ.

If the value of ψ(x) = x and taking β = 0, then we obtain the solution of the problem (3.9)
with the Caputo fractional derivative as follows:

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(α)

(
t− a

)α−1

=

m∑
i=1

Cix(ti)Eα,1(λ(t− a)α)

+

∫ t

a

(t− τ)α−1Eα,α(λ(t− a)α)p(τ)dτ.



52 K. KANAGARAJAN, R. VIVEK, D. VIVEK AND E. M. ELSAYED

In addition, if the value of ψ(x) = log x and taking β = 0 , then we obtain the following
solution of problem (3.9) with the Caputo-Hadamard fractional derivative:

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(α)

((
log

t

a

))α−1

=

m∑
i=1

Cix(ti)Eα,1(λ
(
log

t

a

)α
)

+

∫ t

a

1

τ

(
log

t

τ

)α−1
Eα,α(λ

(
log

t

a

)α
)p(τ)dτ.

Remark. Suppose that λ < 0 and the solution of (3.9) is d-decreasing. We observe that
the solution of problem (3.9) admit the following cases: if β = 0 then the solution (3.9)
with the ψ-type Caputo fractional derivative as follows:

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(α)

(
ψ(t)− ψ(a)

)α−1

=

m∑
i=1

Cix(ti)Eα,1(λ(ψ(t)− ψ(τ))α)

⊖ (−1)

∫ t

a

ψ
′
(τ)(ψ(t)− ψ(τ))α−1Eα,α(λ(ψ(t)− ψ(τ))α)p(τ)dτ.

If the value of ψ(x) = x and taking β = 0, then we obtain the following solution of
problem (3.9) with the Riemann-Liouville fractional derivative as follows:

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(α)

(
(t− a)

)α−1

=

m∑
i=1

Cix(ti)Eα,1(λ(t− a)α)

⊖ (−1)

∫ t

a

(t− τ)α−1Eα,α(λ(t− τ)α)p(τ)dτ.

In addition, if the value of ψ(x) = log x and taking β = 0, then we obtain the following
solution of problem (3.9) with Riemann-Hadamard fractional derivative as follows,

x(t)⊖gH
∑m
i=1 Cix(ti)

Γ(α)

((
log

t

a

))α−1

=

m∑
i=1

Cix(ti)Eα,1(λ
(
log

t

a

)α
)

⊖ (−1)

∫ t

a

1

τ

(
log

t

τ

)α−1
Eα,α(λ

(
log

t

a

)α
)p(τ)dτ.

4. CONCLUDING REMARKS

The existence and uniqueness of solutions for a fuzzy differential equations of ψ-Hilfer
fractional derivative with nonlocal condition have obtained. Our investigation based on
the successive approximation. The acquired results in this paper are more general and
cover many of the parallel problems that contain special cases of function ψ, because
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our proposed system contains a global fractional derivative that integrates many classic
fractional derivatives.
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