ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 4, Number 3 (2021), 249-253 ISSN: 2582-0818 (© http://www.technoskypub.com

SOMEWHAT FUZZY COMPLETELY *e*-IRRESOLUTE MAPPINGS

M. SANKARI* AND C. MURUGESAN

ABSTRACT. The aim of this paper is to introduce and study the concept of somewhat fuzzy completely *e*-irresolute mapping and somewhat fuzzy irresolute *e*-open mapping. Further, some interesting properties of those mappings are given and some comparative results discussed.

1. INTRODUCTION

The introduction of fuzzy sets by Zadeh[10] in 1965 motivated Chang [3] to study the concept of fuzzy topology in 1968. The concept of fuzzy δ -open sets, fuzzy δ -closed sets and the notion of fuzzy δ -continuous functions in fuzzy topological spaces introduced by Supriti Saha [6]. The concept of fuzzy e-open set[5] studied by Seenivasan and Kamala. Recently, the notions of of somewhat fuzzy δ -irresolute continuous mapping and somewhat fuzzy e-irresolute mapping on a fuzzy topological space are respectively introduced and investigated in [7] and [9].

In section 3 of this article, we introduce and study the concepts of somewhat fuzzy completely *e*-irresolute mapping and some comparative results on a fuzzy topological space are investigated. Besides, some interesting properties of those mappings are also given. In section 4, the idea of somewhat fuzzy completely *e*-open mapping are studied. Finally in section 5 some preservative results under these mappings are investigated.

Now let X and Y be fuzzy topological spaces. We denote $Int(\mu)$ and $Cl(\mu)$ with the interior and with the closure of the fuzzy set μ on a fuzzy topological space X respectively.

A fuzzy subset λ of a space X is called fuzzy regular open [2] (resp. fuzzy regular closed) if $\lambda = \text{Int}(\text{Cl}(\lambda))$ (resp. $\lambda = \text{Cl}(\text{Int}(\lambda))$). Now $\text{Cl}(\lambda)$ and $\text{Int}(\lambda)$ are defined as follows $\text{Cl}(\lambda) = \bigwedge \{\mu : \mu \ge \lambda, \mu \text{ is fuzzy closed in } X\}$ and $\text{Int}(\lambda) = \bigvee \{\mu \le \lambda, \mu \text{ is fuzzy open in } X\}$. The fuzzy δ -interior of a fuzzy subset λ of X is the union of all fuzzy regular open sets contained in λ . A fuzzy subset λ is called fuzzy δ -open [6] if $\lambda = \text{Int}_{\delta}(\lambda)$. The complement of fuzzy δ -open set is called fuzzy δ -closed (i.e, $\lambda = \text{Cl}_{\delta}(\lambda)$).

A fuzzy subset λ of a space X is called fuzzy *e*-open [5] if $\lambda \leq cl(int_{\delta}\lambda) \vee int(cl_{\delta}\lambda)$ and fuzzy *e*-closed set if $\lambda \geq cl(int_{\delta}\lambda) \wedge int(cl_{\delta}\lambda)$.

²⁰¹⁰ Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. Fuzzy completely e-continuous, fuzzy completely e-irresolute, somewhat fuzzy e-irresolute, fuzzy e-dense.

Received: July 14, 2021. Accepted: December 20, 2021. Published: December 31, 2021.

^{*}Corresponding author.

Definition 1.1. A fuzzy set μ on a fuzzy topological space X is called fuzzy completely dense[8] if there exists no fuzzy regular closed set ν in X such that $\mu < \nu < 1$. That is $rCl(\lambda) = 1$.

Definition 1.2. A fuzzy set μ on a fuzzy topological space X is called fuzzy e-dense[9] if there exists no fuzzy e-closed set ν in X such that $\mu < \nu < 1$. That is $Cl_e(\lambda) = 1$.

2. Somewhat fuzzy completely *e*-irresolute mappings

In this section, we introduce fuzzy completely *e*-continuous, fuzzy completely *e*-irresolute, somewhat fuzzy completely *e*-continuous and somewhat fuzzy completely *e*-irresolute mappings.

Definition 2.1. A mapping $f : X \to Y$ is called fuzzy completely *e*-irresolute if $f^{-1}(\nu)$ is a fuzzy regular open set on X for any fuzzy *e*-open set ν on Y.

Definition 2.2. A mapping $f : X \to Y$ is called somewhat fuzzy completely e-irresolute if there exists a fuzzy regular open set $\mu \neq 0_X$ on X such that $\mu \leq f^{-1}(\nu) \neq 0_X$ for any fuzzy e-open set $\nu \neq 0_Y$ on Y.

Every fuzzy completely *e*-irresolute mapping is a somewhat fuzzy completely *e*-irresolute mapping but not conversely.

Example 2.3. (Swaminathan [9]) Let $\lambda_1, \lambda_1^c, \lambda_2, \lambda_3, \lambda_4$ and λ_5 be fuzzy sets on $X = \{a, b, c\}$ with

 $\lambda_{1} = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.5}{c}, \lambda_{1}^{c} = \frac{0.7}{a} + \frac{0.6}{b} + \frac{0.5}{c}, \lambda_{2} = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.5}{c}, \lambda_{3} = \frac{0.7}{a} + \frac{0.6}{b} + \frac{0.4}{c}, \lambda_{4} = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.4}{c}, \lambda_{5} = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.4}{c} \text{ and } \lambda_{6} = \frac{0.5}{a} + \frac{0.5}{b} + \frac{0.5}{c}$

And let, $\tau_1 = \{0_X, \lambda_1, \lambda_2, \lambda_4, \lambda_5, 1_X\}$, $\tau_2 = \{0_X, \lambda_1, \lambda_1^c, \lambda_2, \lambda_3, \lambda_4, \lambda_5, 1_X\}$ be fuzzy topologies on X. Consider the fuzzy identity mapping $f:(X, \tau_1) \to (X, \tau_2)$. For fuzzy eopen sets $\lambda_1, \lambda_1^c, \lambda_2, \lambda_3, \lambda_4$ and λ_5 on (X, τ_2) , we have $f^{-1}(\lambda_1) = \lambda_1, \lambda_1 \leq f^{-1}(\lambda_1^c) =$ $\lambda_1^c, \lambda_1 \leq f^{-1}(\lambda_2) = \lambda_2, \lambda_4 \leq f^{-1}(\lambda_3) = \lambda_3, \lambda_4 \leq f^{-1}(\lambda_4) = \lambda_4$ and $\lambda_3 \leq f^{-1}(\lambda_5) =$ λ_5 . Since λ_1 and λ_4 are a fuzzy e-open sets on (X, τ_1) , f is somewhat fuzzy completely e-irresolute mapping. But for a fuzzy e-open set λ_3 on (X, τ_2) , $f^{-1}(\lambda_3) = \lambda_3$ is not a fuzzy regular open set on (X, τ_1) . Hence f is not a fuzzy completely e-irresolute mapping.

Theorem 2.1. If $f : X \to Y$ be a mapping. Then the following are equivalent: (1) f is somewhat fuzzy completely *e*-irresolute.

(2) If ν is a fuzzy *e*-closed set of *Y* such that $f^{-1}(\nu) \neq 1_X$, then there exists a fuzzy regular closed set $\mu \neq 1_X$ of *X* such that $f^{-1}(\nu) \leq \mu$.

(3) If μ is a fuzzy completely dense set on X, then $f(\mu)$ is a fuzzy e-dense set on Y.

Proof. (1) \Rightarrow (2) :Let ν be a fuzzy *e*-closed set on *Y* such that $f^{-1}(\nu) \neq 1_X$. Then ν^c is a fuzzy *e*-open set on *Y* and $f^{-1}(\nu^c) = (f^{-1}(\nu))^c \neq 0_X$. Since *f* is somewhat fuzzy completely *e*-irresolute, there exists a fuzzy regular open set $\lambda \neq 0_X$ on *X* such that $\lambda \leq f^{-1}(\nu)^c$. Let $\mu = \lambda^c$. Then $\mu \neq 1_X$ is fuzzy regular closed such that $f^{-1}(\nu) = 1 - f^{-1}(\nu^c) \leq 1 - \mu^c = \mu$.

 $(2)\Rightarrow(3)$: Let μ be a fuzzy completely dense set on X and suppose $f(\mu)$ is not fuzzy e-dense on Y. Then there exists a fuzzy e-closed set ν on Y such that $f(\mu) < \nu < 1$. Since $\nu < 1$ and $f^{-1}(\nu) \neq 1_X$, there exists a fuzzy regular closed set $\delta \neq 1_X$ such that $\mu \leq f^{-1}(f(\mu)) < f^{-1}(\nu) \leq \delta$. This contradicts to the assumption that μ is a fuzzy completely dense set on X. Hence $f(\mu)$ is a fuzzy e-dense set on Y.

(3) \Rightarrow (1): Let $\nu \neq 0_Y$ be a fuzzy *e*-open set on *Y* and $f^{-1}(\nu) \neq 0_X$. Suppose there exists no fuzzy regular open $\mu \neq 0_X$ on *X* such that $\mu \leq f^{-1}(\nu)$. Then $(f^{-1}(\nu)^c)$ is a fuzzy

set on X such that there is no fuzzy regular closed set δ on X with $(f^{-1}(\nu)^c) < \delta < 1$. Suppose there exists a fuzzy e-open set δ^c such that $\delta^c \leq f^{-1}(\nu)$, then it is a contradiction. Therefore $(f^{-1}(\nu))^c$ is a fuzzy completely dense set on X. Then $f((f^{-1}(\nu))^c)$ is a fuzzy e-dense set on Y. But $f((f^{-1}(\nu))^c) = f((f^{-1}(\nu))^c)) \neq \nu^c < 1$. This contradicts to the fact that $f((f^{-1}(\nu))^c)$ is fuzzy e-dense on Y. Hence there exists a fuzzy regular open set $\mu \neq 0_X$ on X such that $\mu \leq f^{-1}(\nu)$. Hence f is somewhat fuzzy completely e-irresolute.

Theorem 2.2. Let X_1 be product related to X_2 and Y_1 be product related to Y_2 . Then the product $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ of somewhat fuzzy completely *e*-irresolute mappings $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ is also somewhat fuzzy completely *e*-irresolute.

Proof. Let $\lambda = \bigvee_{i,j}(\mu_i \times \nu_j)$ be a fuzzy *e*-open set on $Y_1 \times Y_2$ where $\mu_i \neq 0_{Y_1}$ and $\nu_j \neq 0_{Y_2}$ are fuzzy *e*-open sets on Y_1 and Y_2 respectively. Then $(f_1 \times f_2)^{-1}(\lambda) = \bigvee_{i,j}(f_1^{-1}(\mu_i) \times f_2^{-1}(\nu_j))$. Since f_1 is somewhat fuzzy completely *e*-irresolute, there exists a fuzzy regular open set $\delta_i \neq 0_{X_1}$ such that $\delta_i \leq f_1^{-1}(\mu_i) \neq 0_{X_1}$. Also f_2 is somewhat fuzzy completely *e*-irresolute, there exists a fuzzy regular open set $\delta_i \neq 0_{X_1}$ such that $\delta_i \leq f_1^{-1}(\mu_i) \neq 0_{X_1}$. Also f_2 is somewhat fuzzy completely *e*-irresolute, there exists a fuzzy regular open set $\eta_j \neq 0_{X_2}$ such that $\eta_j \leq f_2^{-1}(\nu_j) \neq 0_{X_2}$. Now $\delta_i \times \eta_j \leq f_1^{-1}(\mu_i) \times f_2^{-1}(\nu_j) = (f_1 \times f_2)^{-1}(\mu_i \times \nu_j)$ and $\delta_i \times \eta_j \neq 0_{X_1 \times X_2}$ is a fuzzy regular open set on $X_1 \times X_2$. Hence $\bigvee_{i,j}(\delta_i \times \eta_j) \neq 0_{X_1 \times X_2}$ is a fuzzy regular open set on $X_1 \times X_2$. Therefore, $f_1 \times f_2^{-1}(\mu_i)$) = $(f_1 \times f_2)^{-1}(\bigvee_{i,j}(\mu_i \times \nu_j)) = (f_1 \times f_2)^{-1}(\lambda) \neq 0_{X_1 \times X_2}$. Therefore, $f_1 \times f_2$ is somewhat fuzzy completely *e*-irresolute.

Theorem 2.3. Let $f : X \to Y$ be a mapping. If the graph $g : X \to X \times Y$ of f is a somewhat fuzzy completely *e*-irresolute mapping, then f is also somewhat fuzzy completely *e*-irresolute.

Proof. Let ν be a fuzzy *e*-open set on *Y*. Then $f^{-1}(\nu) = 1 \wedge f^{-1}(\nu) = g^{-1}(1 \times \nu)$. As *g* is somewhat fuzzy completely *e*-irresolute and $(1 \times \nu)$ is a fuzzy *e*-open set on $X \times Y$, there exists a fuzzy regular open set $\mu \neq 0_X$ on *X* such that $\mu \leq g^{-1}(1 \times \nu) = f^{-1}(\nu) \neq 0_X$. Therefore, *f* is somewhat fuzzy *e*-irresolute continuous.

3. Somewhat fuzzy irresolute *e*-open mappings

In this section, we introduce fuzzy completely irresolute *e*-open and somewhat fuzzy completely irresolute *e*-open mapping. Also we discuss some comparative results on somewhat fuzzy completely irresolute *e*-open mapping.

Definition 3.1. A mapping $f : X \to Y$ is called fuzzy completely irresolute e-open if $f(\mu)$ is a fuzzy e-open set on Y for any fuzzy regular open set μ on X.

Definition 3.2. A mapping $f : X \to Y$ is called somewhat fuzzy completely irresolute *e-open if there exists a fuzzy e-open set* $\nu \neq 0_Y$ *on* Y *such that* $\nu \leq f(\mu) \neq 0_Y$ *for any fuzzy regular open set* $\mu \neq 0_X$ *on* X.

Theorem 3.1. If $f : X \to Y$ be a bijection. Then the following are equivalent.

(1) f is somewhat fuzzy completely irresolute e-open.

(2) If μ is a fuzzy regular closed set on X such that $f(\mu) \neq 1_Y$, then there exists a fuzzy *e*-closed set $\nu \neq 1_Y$ on Y such that $f(\mu) < \nu$.

Proof. (1) \Rightarrow (2): Let μ be a fuzzy regular closed set on X such that $f(\mu) \neq 1_Y$. Since f is bijective and μ^c is a fuzzy regular open set on X, $f(\mu^c) = (f(\mu))^c \neq 0_Y$. And, since f is somewhat fuzzy completely irresolute e-open, there exists a fuzzy e-open set $\delta \neq 0_Y$ on

Y such that $\delta < f(\mu^c) = (f(\mu))^c$. Consequently, $f(\mu) < \delta^c = \nu \neq 1_Y$ and ν is a fuzzy *e*-closed set on Y.

 $(2) \Rightarrow (1)$: Let μ be a fuzzy regular open set on X such that $f(\mu) \neq 0_Y$. Then μ^c is a fuzzy e-closed set on X and $f(\mu^c) \neq 1_Y$. Hence there exists a fuzzy e-closed set $\nu \neq 1_Y$ on Y such that $f(\mu^c) < \nu$. Since f is bijective, $f(\mu^c) = (f(\mu))^c < \nu$. Hence $\nu^c < f(\mu)$ and $\nu^c \neq 0_X$ is a fuzzy e-open set on Y. Therefore, f is somewhat fuzzy completely irresolute e-open.

Theorem 3.2. If $f : X \to Y$ be a surjection. Then the following are equivalent. (1) f is somewhat fuzzy irresolute *e*-open.

(2) If ν is a fuzzy *e*-dense set on *Y*, then $f^{-1}(\nu)$ is a fuzzy completely dense set on *X*.

Proof. (1)=>(2): Let ν be a fuzzy *e*-dense set on *Y*. Suppose $f^{-1}(\nu)$ is not fuzzy completely dense on *X*. Then there exists a fuzzy regular closed set μ on *X* such that $f^{-1}(\nu) < \mu < 1$. Since *f* is somewhat fuzzy irresolute *e*-open and μ^c is a fuzzy regular open set on *X*, there exists a fuzzy *e*-open set $\delta \neq 0_Y$ on *Y* such that $\delta \leq f(\ln \mu^c) \leq f(\mu^c)$. Since *f* is surjective, $\delta \leq f(\mu^c) < f(f^{-1}(\nu^c)) = \nu^c$. Thus there exists a fuzzy *e*-closed set δ^c on *Y* such that $\nu < \delta^c < 1$ which is a contradiction. Hence $f^{-1}(\nu)$ is fuzzy completely dense on *X*.

 $(2) \Rightarrow (1)$: Let μ be a fuzzy regular open set on X and $f(\mu) \neq 0_Y$. Suppose there exists no fuzzy *e*-open $\nu \neq 0_Y$ on Y such that $\nu \leq f(\mu)$. Then $(f(\mu))^c$ is a fuzzy set on Y such that there exists no fuzzy *e*-closed set δ on Y with $(f(\mu))^c < \delta < 1$. It means that $(f(\mu))^c$ is fuzzy *e*-dense on Y. Thus $f^{-1}((f(\mu))^c)$ is fuzzy *e*-dense on X. But $f^{-1}((f(\mu))^c) = (f^{-1}(f(\mu)))^c \leq \mu^c < 1$. This contradicts to the fact that $f^{-1}((f(\nu))^c)$ is fuzzy completely dense on X. Hence there exists a fuzzy *e*-open set $\nu \neq 0_Y$ on Y such that $\nu \leq f(\mu)$. Therefore, f is somewhat fuzzy irresolute *e*-open.

4. Some preservation results

In this section by means of fuzzy *e*-irresolute and fuzzy completely *e*-irresolute mapping preservation of some fuzzy topological structures are discussed.

Definition 4.1. A fuzzy topological space (X, \mathcal{F}) is called (*i*)fuzzy nearly compact [4] if every fuzzy regular open cover has a finite subcover. (*ii*) fuzzy e-compact [1] if every fuzzy e-open cover has a finite subcover.

Theorem 4.1. Every surjective fuzzy *e*-irresolute image of a fuzzy *e*-closed space is fuzzy *e*-compact.

Proof. Let $f: X \to Y$ be a fuzzy completely *e*-continuous mapping of a fuzzy *e*-closed space (X, \mathcal{F}_1) onto a fuzzy space (Y, \mathcal{F}_2) . Let $\{\beta_a : a \in A\}$ be any fuzzy *e*-open cover of Y. Since f is fuzzy *e*-irresolute, $\{f^{-1}(\beta_a) : a \in A\}$ is a fuzzy *e*-open cover of X. Since X is a fuzzy *e*-closed space, then there exists a finite subfamily $\{f^{-1}(\beta_{a_i}) : i = 1, ..., n\}$ of $\{f^{-1}(\beta)\}$ which covers X. It implies that $\{\beta_{a_i} : i = 1, ..., n\}$ is a finite subcover of $\{\beta_a : a \in A\}$ which covers Y. Hence f(X) = Y is fuzzy *e*-compact. \Box

Theorem 4.2. Every surjective fuzzy completely *e*-irresolute image of a fuzzy regular closed space is fuzzy *e*-compact.

Proof. Let $f : X \to Y$ be a fuzzy completely *e*-irresolute mapping of a fuzzy regular closed space (X, \mathcal{F}_1) onto a fuzzy space (Y, \mathcal{F}_2) . Let $\{\beta_a : a \in A\}$ be any fuzzy *e*-open cover of Y. Since f is fuzzy completely *e*-irresolute, $\{f^{-1}(\beta_a) : a \in A\}$ is a

252

fuzzy regular open cover of X. Since X is a fuzzy regular closed space, then there exists a finite subfamily $\{f^{-1}(\beta_{a_i}): i = 1, ..., n\}$ of $\{f^{-1}(\beta)\}$ which covers X. It implies that $\{\beta_{a_i}: i = 1, ..., n\}$ is a finite subcover of $\{\beta_a: a \in A\}$ which covers Y. Hence f(X) = Y is fuzzy *e*-compact.

5. ACKNOWLEDGEMENTS

The authors are thankful to the referees for their suggestions and commands to develop this manuscript.

REFERENCES

- M. Amutha and M. Palanisamy, Fuzzy e-compactness and fuzzy e-closed spaces, International Journal of Advance Research and Innovative Ideas in Education, 3(4), 2017.
- [2] K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82(1981), 14-32.
- [3] C. L. Chang Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [4] Es. A. Haydar Almost compactness and near compactness in fuzzy topological spaces, Fuzzy Sets and Systems 22 (1987)289-295.
- [5] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics, 8(1)(2014),141-148..
- [6] Supriti Saha, Fuzzy δ -continuous mappings, J. Math. Anal. Appl. 126 (1987) 130-142..
- [7] A. Swaminathan and K. Balasubramaniyan, Somewhat fuzzy δ-irresolute continuous mappings, Annals of Fuzzy Mathematics and Informatics, 12(1) (2016),121-128.
- [8] A. Swaminathan and A. Vadivel Somewhat fuzzy completely pre-irresolute and somewhat fuzzy completely continuous mappings, The J. of Fuzzy Mathematics, Vol. 27, No. 3, 2019.
- [9] A. Swaminathan, Somewhat fuzzy *e*-irresolute continuous mappings, The J. of Fuzzy Math. Vol. 27, No. 2, 2019..
- [10] L. A. Zadeh Fuzzy sets, Information and control 8 (1965), 338-353.

M. SANKARI

DEPARTMENT OF MATHEMATICS, LEKSHMIPURAM COLLEGE OF ARTS AND SCIENCE, NEYYOOR, KANYAKU-MARI, TAMIL NADU-629 802, INDIA.

Email address: sankarisaravanan1968@gmail.com

C. MURUGESAN

RESEARCH SCHOLAR, PIONNEER KUMARASWAMI COLLEGE OF ARTS AND SCIENCE, VETTURINIMADAM, KANYAKUMARI, TAMIL NADU-629 003, INDIA. (AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELLI)

Email address: kumarithozhanmurugesan@gmail.com