ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 4, Number 2 (2021), 126-130 ISSN: 2582-0818 (© http://www.technoskypub.com

FUZZY CUT POINT SPACES

A. SWAMINATHAN* AND S. SIVARAJA

ABSTRACT. By means of fuzzy connected topological space having no any fuzzy non-cut point, the concept of fuzzy cut-point space is introduced. We show that a fuzzy cut-point space is infinite. Moreover it is showed that a fuzzy cut-point space is non-compact. Finally we have studied fuzzy irreducible cut-point space.

1. INTRODUCTION

The idea of fuzzy set was initiated by Zadeh[4] in 1965. Chang[1] developed fuzzy topological spaces in 1968. A fuzzy set *A* is a function from *X* to [0, 1], where I = [0, 1]. The family of all fuzzy sets on *X* is I^X consisiting all the mapping from *X* to *I*. I^X is called the fuzzy space which is infinite. The main aim of this paper is to extend and study fuzzy cut-point space and fuzzy irreducible space in terms of fuzzy connected topological spaces and which were already investigated by Honari and Bahrampour[2] in classical topology.

In this article, in section 2, first we define fuzzy cut-point spaces with example and we prove that every fuzzy cut-point space has an infinite number of fuzzy closed points. Further, it is showed that every fuzzy cut-point space is fuzzy non-compact. In section 3, we define fuzzy irreducible cut-point space as a fuzzy cut-point space whose proper fuzzy subsets are not fuzzy cut-point spaces.

For our convenience the phrases, fuzzy topological space and fuzzy connected topological space respectively abbreviated as FTS and FCTS throughout this paper.

2. FUZZY CUT-POINT SPACE AND ITS PROPERTIES

Definition 2.1. Let *X* be a nonzero FCTS. A fuzzy point $p_x^{\alpha} \in X$ is called fuzzy cut-point of *X* if $1_X \setminus \{p_x^{\alpha}\}$ is a fuzzy disconnected subset of *X*. A nonzero FCTS *X* is called a fuzzy cut-point space if every fuzzy point $p_x^{\alpha} \in X$ is a fuzzy cut-point of *X*.

Example 2.2. (Pao-Ming and Ying-Ming[3]) Let $X = \{y, z\}$ when $y \neq z$. Let δ be the fuzzy topology on X which has $\mathscr{B} = \{p_y^{\lambda} | \lambda \in (\frac{2}{3}, 1]\} \lor \{p_z^{\lambda} | \lambda \in (0, 1]\} \lor \{\phi\}$ as a base. It is observed that X is fuzzy connected but not a fuzzy cut-point FTS. Obviously, (X, δ) is a fuzzy T_2 space.

²⁰¹⁰ Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. Fuzzy connected; Fuzzy cut-point; Fuzzy irreducible cut-point.

Received: April 16, 2021. Accepted: June 25, 2021. Published: September 30, 2021.

^{*}Corresponding author.

Theorem 2.1. Let X be a FCTS. Consider a fuzzy cut-point $p_x^{\alpha} \in X$ such that $1_X \setminus \{p_x^{\alpha}\} = G|H$. Then $\{p_x^{\alpha}\}$ is fuzzy open or fuzzy closed. If $\{p_x^{\alpha}\}$ is fuzzy open (resp.fuzzy closed), then G and H are fuzzy closed (resp.fuzzy open).

Proof. As *G* is fuzzy clopen in $1_X \setminus \{p_x^{\alpha}\}$, we have a fuzzy open subset *U* of *X* such that $G = U \land (1_X \setminus \{p_x^{\alpha}\}) = U \setminus \{p_x^{\alpha}\}$ and we have a fuzzy closed subset *E* of *X* such that $G = E \land (1_X \setminus \{p_x^{\alpha}\}) = E \setminus \{p_x^{\alpha}\}$. As $G = U \setminus \{p_x^{\alpha}\} = E \setminus \{p_x^{\alpha}\}$, then E = U contradicting the fuzzy connectedness of *X*. We have either $\{p_x^{\alpha}\} = U \setminus E$ or $\{p_x^{\alpha}\} = E \setminus U$. If $\{p_x^{\alpha}\} = U \setminus E$, then $\{p_x^{\alpha}\}$ is fuzzy open and G = E is fuzzy closed. If $\{p_x^{\alpha}\} = E \setminus U$, then $\{p_x^{\alpha}\}$ is fuzzy closed and G = U is fuzzy open.

Corollary 2.2. Let X be a FCTS; let Y be the subset of all fuzzy cut-points of X. Then: (i) Each nonzero fuzzy connected subsets of Y having fuzzy non-singleton containing atleast one fuzzy closed point.

(ii) If $\{p_x^{\alpha}\} \in Y$ is fuzzy open, then each fuzzy accumulation point of $\{p_x^{\alpha}\} \in Y$ is a fuzzy closed point.

Lemma 2.3. Let X be a FCTS and a fuzzy cut point $p_x^{\alpha} \in X$. If $1_X \setminus \{p_x^{\alpha}\} = G \mid H$, then $G \vee \{p_x^{\alpha}\}$ is fuzzy connected.

Proof. Suppose $G \vee \{p_x^{\alpha}\}$ is not fuzzy connected, then $G \vee \{p_x^{\alpha}\} = K|M$ for any fuzzy open subsets *K* and *M* of *X*. Assume that $p_x^{\alpha} \in K$. Then $M \leq G$. Since $(Cl(H \vee K)) \wedge M = (Cl(H) \wedge M) \vee (Cl(K) \wedge M) = Cl(H) \wedge M \leq Cl(H) \wedge G = 0_X$, $Cl(H \vee K) \wedge M = 0_X$. Since, $(H \vee K) \wedge Cl(M) = (H \wedge Cl(M) \vee (K \wedge Cl(M)) = H \wedge Cl(M) \leq H \wedge Cl(G) = 0_X$, $(H \vee K) \wedge Cl(M) = 0_X$. Therefore $X = (H \vee K)|M$ which is contrary to fuzzy connectedness of *X*.

Lemma 2.4. Let a fuzzy cut point $p_x^{\alpha} \in X$, where X is a FCTS. If $1_X \setminus \{p_x^{\alpha}\} = G | H$ and if every fuzzy point of G is a fuzzy cut point of X, then G contains atleast one fuzzy closed point.

Proof. Assume that *G* contains only of fuzzy open points. As by lemma 2.3, $G \vee \{p_x^{\alpha}\}$ is fuzzy connected, $\{p_x^{\alpha}\}$ is fuzzy closed and also by theorem 2.1 $G \vee \{p_x^{\alpha}\}$ is also fuzzy closed. So for each $p_y^{\beta} \in G$, $\{p_y^{\overline{\beta}}\} \leq G \vee \{p_x^{\alpha}\}$, by corollary 2.2(ii), p_x^{α} is possible fuzzy accumulation point of $\{p_y^{\beta}\}$. Since $\{p_y^{\beta}\}$ having a fuzzy accumulation point (it is clear that $\{p_y^{\beta}\}$ is fuzzy open and *X* is fuzzy connected), p_x^{α} is a fuzzy accumulation point of $\{p_y^{\beta}\}$. Therefore $\{p_x^{\alpha}, p_y^{\beta}\}$ is fuzzy connected for any $p_y^{\beta} \in G$. Let $p_y^{\beta_0} \in G$. Since $H \vee \{p_x^{\alpha}\}$ is fuzzy connected by lemma 2.3

$$1_X \setminus \{p_y^{\beta_0}\} = \bigvee_{p_y^{\beta} \in G, p_y^{\beta} \neq p_y^{\beta_0}} \{p_x^{\alpha}, p_y^{\beta}\} \lor (H \lor \{p_x^{\alpha}\}).$$

is also fuzzy connected. Hence it is contrary to our assumption that $p_y^{\beta_0}$ is a fuzzy cut-point of *X*.

Lemma 2.5. Let X be a FCTS; let two fuzzy cut points p_x^{α} , $p_y^{\beta} \in X$ such that $1_X \setminus \{p_x^{\alpha}\} = G | H$ and $1_X \setminus \{p_y^{\beta}\} = K | M$. If $p_x^{\alpha} \in K$ and $p_y^{\beta} \in G$, then $M \leq G$ and $H \leq K$.

Proof. As $M \vee \{p_y^\beta\}$ is fuzzy connected by lemma 2.3 and since $M \vee \{p_y^\beta\} \le 1_X \setminus \{p_x^\alpha\}$, we have $M \vee \{p_y^\beta\} \le G$ or $M \vee \{p_y^\beta\} \le H$. Since $p_y^\beta \in G$, $M \vee \{p_y^\beta\} \le H$ is not true. Therefore $M \le G$. Similarly we can show that $H \le K$.

In the succeding theorem, we will prove that a finite FTS cannot be a fuzzy cut-point space.

Theorem 2.6. Let X be a fuzzy cut-point space. Then the collection of fuzzy closed points of X is infinite.

Proof. The proof is by mathematical induction: Let distinct fuzzy closed points in X form a sequence $p_x^{\alpha_1}, p_x^{\alpha_2}, p_x^{\alpha_3}, \dots$. Set $K_0 = X$. From corollary 3.3(a), we have a fuzzy closed point $p_x^{\alpha_1} \in K_0$. As a fuzzy cut-point $p_x^{\alpha_1} \in X$, then the fuzzy open subsets K_1 and M_1 of X such that $1_X \setminus \{p_x^{\alpha_1}\} = K_1 | M_1$. Assume that the distinct fuzzy closed points $p_x^{\alpha_1}, p_x^{\alpha_2}, p_x^{\alpha_3}, \dots, p_x^{\alpha_m} \in X$ and the fuzzy open subsets $K_1, \dots, K_m, M_1, \dots, M_m$ of X are picked such that $1_X \setminus \{p_x^{\alpha_j}\} = K_j | M_j, p_x^{\alpha_j} \in K_{j-1}$ and $K_{j-1} \ge K_j$ for each $j, 1 \le j \le m$. As stated in lemma 2.4, there is a fuzzy closed point $p_x^{\alpha_{m+1}} \in K_m$. Then we have fuzzy open subsets K_{m+1} and M_{m+1} of X such that $1_X \setminus \{p_x^{\alpha_m+1}\} = K_{m+1} | M_{m+1}$. If needed K_{m+1} and M_{m+1} are interchanged, we may assume that $p_x^{\alpha_m} \in M_{m+1}$. Thus by Lemma 2.5, $K_m \ge K_{m+1}$. Since $p_x^{\alpha_j} \notin K_j, p_x^{\alpha_j} \notin K_m$ for any $j, 1 \le j \le m$. Now $p_x^{\alpha_{m+1}} \in K_m \Rightarrow p_x^{\alpha_{m+1}}$ differs from $p_x^{\alpha_1}, p_x^{\alpha_2}, \dots, p_x^{\alpha_m}$.

Corollary 2.7. Let X be a fuzzy cut-point space. Then $|X| = \infty$.

In fact, Theorem 2.6 is a generalisation of Corollary 2.7. Generalisation of corollary 2.7 is proved by means of fuzzy Hausdorff Maximal Principle, in the succeeding result.

Theorem 2.8. Let X be a fuzzy compact connected topological space having more than one fuzzy point. Then X has atleast two fuzzy non-cut points.

Proof. Let X have utmost one non fuzzy-cut point. Suppose a fuzzy cut point $p_x^{\alpha_0} \in X$ and $1_X - \{p_x^{\alpha_0}\} = G_0 | H_0$. As X has utmost one non fuzzy cut-point, either G_0 or H_0 contains of fuzzy cut-points. By lemma 2.4, G_0 contains few fuzzy closed cut point of X say P_x^{α} . Let $1_X \setminus \{p_x^{\alpha}\} = G \mid H$ and consider $p_x^{\alpha_0} \in H$. From lemma 2.5, $G \subseteq G_0$. Set $F = \{T :$ T is a fuzzy open subset of $X, T \ge H, Cl(T) \setminus T$ is a fuzzy singleton, and $Cl(T) \ne 1_X$. As H is fuzzy open and $Cl(H) = H \lor \{p_x^{\alpha}\}, H \in F$. For each $T_i \in F$ and $T_i \in F$, write $T_i \leq T_i$ if $T_i = T_i$ or if $ClT_i \subseteq T_i(F, \leq)$ is obviously a fuzzy partially ordered set, and by the fuzzy Hausdorff Maximal Principle, there is a fuzzy maximal chain C in F. Let $T_i \in F$ and let $\{p_x^{\alpha}\} = Cl T_i \setminus T_i$. As by lemma 2.4, $1_X \setminus \{p_x^{\alpha}\} = T_i | (1_X | Cl T_i)$, there is a fuzzy closed point $p_y^{\beta} \in 1_X \setminus T_i \leq G$. Let $1_X \setminus \{p_y^{\beta}\} = K \mid M$. Since by lemma 2.3, *Cl* T_i is fuzzy connected, $Cl T_i \leq K$ or $Cl T_i \leq M$, i.e., $T_i < K$ or $T_i < M$. Since $Cl (T_i)$ was arbitrary in F, F not having a fuzzy maximal element. Thus $\bigvee_{T \in C} T = \bigvee_{T \in C} Cl T$. Let $W = \bigvee_{T \in C} T$. As Cl T is fuzzy connected for each $T \in F$, W is also fuzzy connected. We claim that $Cl W = 1_X$. If not, then $1_X \setminus W$ is nonzero fuzzy closed subset of X. Since $1_X \setminus W \leq G$, every fuzzy point in $1_X \setminus W$ is a fuzzy cut-point of X and is either fuzzy open or fuzzy closed by Theorem 2.1. Since $1_X \setminus W$ is not fuzzy open, all the fuzzy points of $1_X \setminus W$ not be fuzzy open, then there is a fuzzy cut-point $p_x^{\alpha'} \in 1_X \setminus W$. Take $1_X \setminus \{p_x^{\alpha'}\} = E|F$. Since W is fuzzy connected, $W \leq E$ or $W \leq F$. Let $W \leq E$. Since $E \in F, T \leq E$ for any $T \in C$. As C is not containing a fuzzy maximal element, $E \notin C$ which is the contradiction to the maximality of fuzzy chain C. Therefore $W = 1_X$ and hence C is an infinite fuzzy open covering of X. As C is a fuzzy chain except a fuzzy maximal element, we don't have a choice for finite fuzzy subcovering of C for X which is contrary to fuzzy compactness of X.

Corollary 2.9. Let X be a fuzzy cut-point space. Then X is non fuzzy compact.

128

Definition 3.1. A fuzzy cut-point is called an irreducible fuzzy cut-point space if no proper fuzzy subset of it (with the fuzzy subspace topology) is a fuzzy cut-point space.

Lemma 3.1. Let $p_x^{\alpha} \in X$, where X is a fuzzy cut-point space. Let $1_X \setminus \{p_x^{\alpha}\} = G | H$. If G is not fuzzy connected, then $G \vee \{p_x^{\alpha}\}$ is a fuzzy cut-point space.

Proof. Set $Y = G \vee \{p_x^{\alpha}\}$. It is obvious that a fuzzy cut-point $p_x^{\alpha} \in Y$. Choose an arbitrary fuzzy point p_y^{β} in G. As $1_X \setminus \{p_y^{\beta}\} = (1_Y \setminus \{p_y^{\beta}\}) \vee (H \vee \{p_x^{\alpha}\})$ is not fuzzy connected and $p_x^{\alpha} \in (1_Y \setminus \{p_y^{\beta}\}) \wedge (H \vee \{p_x^{\alpha}\})$, either $1_Y \setminus \{p_y^{\beta}\}$ or $H \vee \{p_x^{\alpha}\}$ is fuzzy disconnected. Since Lemma 2.3, $H \vee \{p_x^{\alpha}\}$ is fuzzy connected. Thus $1_Y \setminus \{p_y^{\beta}\}$ is fuzzy disconnected.

Corollary 3.2. If X is a fuzzy irreducible cut-point space, then for each $p_x^{\alpha} \in X, 1_X \setminus \{p_x^{\alpha}\}$ having absolutely two fuzzy components.

Proof. Let $1_X \setminus \{p_x^{\alpha}\} = G | H$. As X is fuzzy irreducible cut-point space, $G \vee \{p_x^{\alpha}\}$ and $H \vee \{p_x^{\alpha}\}$ are not fuzzy cut-point spaces. By Lemma 3.1, G and H are fuzzy connected.

Lemma 3.3. Let $p_x^{\alpha} \in X$ where X is a fuzzy irreducible cut-point space. Let $1_X \setminus \{p_x^{\alpha}\} = G \mid H$. Then there are exactly two fuzzy points $p_y^{\beta} \in G$ and $p_z^{\gamma} \in H$ such that $\{p_x^{\alpha}, p_y^{\beta}\}$ and $\{p_x^{\alpha}, p_z^{\gamma}\}$ are fuzzy connected. Moreover if p_x^{α} is fuzzy closed, then p_y^{β} and p_z^{γ} are fuzzy open; ifp_x^{α} is fuzzy open, then p_y^{β} and p_z^{γ} are fuzzy closed.

Proof. As *G* is fuzzy connected by Corollary 3.2 and as *X* is a fuzzy irreducible cutpoint space, *G* has a fuzzy non cut-point p_y^{β} , that is, $G \setminus \{p_y^{\beta}\}$ is fuzzy connected. It is asserted that p_y^{β} is unique fuzzy point in *G* such that $\{p_x^{\alpha}, p_y^{\beta}\}$ is fuzzy connected. Initialy it is showed that if $\{p_x^{\alpha}, p_y^{\beta'}\}$ is fuzzy connected for some $p_y^{\beta'} \in G$, then $p_y^{\beta'} = p_y^{\beta}$. Let $p_y^{\beta'}$ be a fuzzy point in *G* such that $\{p_x^{\alpha}, p_y^{\beta'}\}$ is fuzzy connected. Assume that $p_y^{\beta'} \neq p_y^{\beta}$. Since $H \lor \{p_x^{\alpha}\}$ is fuzzy connected by Lemma 2.3 and since $1_X \setminus \{p_y^{\beta}\} = (G \setminus \{p_y^{\beta}\}) \lor (H \lor \{p_x^{\alpha}\})$, the fuzzy connectedness of $\{p_x^{\alpha}, p_y^{\beta'}\}$ gives the fuzzy connectedness of $1_X \setminus \{p_y^{\beta}\}$ (a contradiction). From the following two cases, we can show $\{p_x^{\alpha}, p_y^{\beta'}\}$ is fuzzy connected.

(1)Case I:{ p_x^{α} } is fuzzy closed. By theorem 2.3, *G* is not fuzzy closed but $G \vee \{p_x^{\alpha}\}$ is fuzzy closed. In this way fuzzy point p_x^{α} is a fuzzy accumulation point of *G*. As $1_X \setminus \{p_y^{\beta}\} = (G \setminus p_y^{\beta}) \vee (H \vee \{p_x^{\alpha}\})$ is not fuzzy connected, p_x^{α} is not a fuzzy accumulation point of $G \setminus \{p_y^{\beta}\}$. Therefore p_x^{α} is a fuzzy accumulation point of $\{p_y^{\beta}\}$.

(2)Case II: p_x^{α} is fuzzy open. By theorem 2.1, *G* is not fuzzy open but $G \vee \{p_x^{\alpha}\}$ is fuzzy open. Similarly, there exists a fuzzy point $p_y^{\beta'} \in G$ which is not fuzzy interior point of *G*. As $p_y^{\beta'}$ is a fuzzy interior point of $G \vee \{p_x^{\alpha}\}$, $p_y^{\beta'}$ is a fuzzy accumulation point of $\{p_x^{\alpha}\}$. Therefore $\{p_x^{\alpha}, p_y^{\beta'}\}$ is fuzzy connected. As proved $p_y^{\beta'} = p_y^{\beta}, \{p_x^{\alpha}, p_y^{\beta}\}$ is fuzzy connected. From the above argument we can have unique fuzzy point $p_z^{\gamma'}$ in *H* such that $\{p_x^{\alpha}, p_z^{\gamma}\}$ is fuzzy connected. Since by Theorem 2.3, the final inclusion of this lemma and the fuzzy connectedness of $\{p_x^{\alpha}, p_y^{\beta}\}$ and $\{p_x^{\alpha}, p_z^{\gamma}\}$ is proved.

4. ACKNOWLEDGEMENTS

The authors are thankful to the referees for their suggestions and commands to develop this manuscript.

REFERENCES

[1] C.L. Chang, Fuzzy topological spaces, J.Math.Anal.Appl.24 (1968) 182-190.

- [2] B. Honari and Y. Bahrampour, Cut-point spaces, Proc. of the Amer. Math. Soc. vol. 25,no.9,2797-2803.
- [3] P.M. Pu and Y.M. Liu, Fuzzy topology.I.Neighborhood structure of a fuzzy point and Moore-smith conver-
- gence, Journal of Mathematical Analysis and Applications, vol.76, no.2,pp.571-599,1980.[4] L. A. Zadeh, Fuzzy sets, Information and control 8 (1965), 338-353.

A. SWAMINATHAN

DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KUMBAKONAM, TAMIL NADU-612 002, INDIA.

Email address: asnathanway@gmail.com

S. SIVARAJA

RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS, ANNAMALAI UNIVERSITY, ANNAMALAINAGAR, TAMIL NADU-608 002, INDIA.

Email address: sivarajamathematics@gmail.com