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e?-CONNECTEDNESS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

S. SIVASANGARI, R. BALAKUMAR AND G. SARAVANAKUMAR∗

ABSTRACT. In this paper the concept of types of intuitionistic fuzzy e?-connected and
intuitionistic fuzzy e?-extremally disconnected in intuitionistic fuzzy topological spaces
are introduced and studied. Here we introduce the concepts of intuitionistic fuzzy e?C5-
connectedness, intuitionistic fuzzy e?CS -connectedness, intuitionistic fuzzy e?CM -connectedness,
intuitionistic fuzzy e?-strongly connectedness, intuitionistic fuzzy e?-super connected-
ness, intuitionistic fuzzy e?Ci-connectedness (i = 1, 2, 3, 4), and obtain several prop-
erties and some characterizations concerning connectedness in these spaces.

1. INTRODUCTION

Ever since the introduction of fuzzy sets by Zadeh [15], the fuzzy concept has invaded
almost all branches of mathematics. The concept of fuzzy topological spaces was intro-
duced and developed by Chang [2]. Atanassov [1] introduced the notion of intuitionis-
tic fuzzy sets, Coker [3] introduced the intuitionistic fuzzy topological spaces. Several
types of fuzzy connectedness in intuitionistic fuzzy topological spaces were defined by
Turnali and Coker [14]. The initiation of e?-open sets in topological spaces is due to Ekici
[5, 6, 7, 8, 9]. Sobana et.al [12] were introduced the concept of fuzzy e?-open sets in in-
tuitionistic fuzzy topological spaces (briefly., IFTS’s). In this paper we have introduced
some types of intuitionistic fuzzy e?-connected and intuitionistic fuzzy e?-extremally dis-
connected spaces and studied their properties and characterizations.

2. PRELIMINARIES

We recall the following definition.

Definition 2.1. [1] LetX be a nonempty fixed set and I be the closed interval in [0, 1]. An
intuitionistic fuzzy set (IFS)A is an object of the following formA = {< x, µA(x), νA(x) >
;x ∈ X} where the mappings µA(x) : X → I and νA(x) : X → I denote the degree of
membership (namely) µA(x) and the degree of non membership (namely) νA(x) for each
element x ∈ X to the set A respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X .
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Definition 2.2. [1] LetA andB are intuitionistic fuzzy sets of the formA = {< x, µA(x),
νA(x) >: x ∈ X} and B = {< x, µB(x), νB(x) >: x ∈ X}. Then

(i) A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x);
(ii) A (orAc) = {< x, νA(x), µA(x) >: x ∈ X};

(iii) A ∩B = {< x, µA(x) ∧ µB(x), νA(x) ∨ νB(x) >: x ∈ X};
(iv) A ∪B = {< x, µA(x) ∨ µB(x), νA(x) ∧ νB(x) >: x ∈ X};
(v) [ ]A = {< x, µA(x), 1− µA(x) >: x ∈ X};

(vi) 〈 〉A = {< x, 1− νA(x), νA(x) >: x ∈ X};
We will use the notation A = {< x, µA, νA >: x ∈ X} instead of A = {< x, µA(x),
νA(x) >: x ∈ X}.

Definition 2.3. [4] 0∼ = {< x, 0, 1 >;x ∈ X} and 1∼ = {< x, 1, 0 >;x ∈ X}.
Let α, β ∈ [0, 1] such that α + β ≤ 1. An intuitionistic fuzzy point (IFP )p(α, β) is

intuitionistic fuzzy set defined by p(α, β)(x)=

{
(α, β) if x=p
(0, 1) otherwise

Definition 2.4. [3] An intuitionistic fuzzy topology (IFT) in Coker’s sense on a nonempty
set X is a family T of intuitionistic fuzzy sets in X satisfying the following axioms:

(i) 0∼, 1∼ ∈ T ;
(ii) G1 ∩G2 ∈ T , for any G1, G2 ∈ T ;

(iii) ∪Gi ∈ T for any arbitrary family {Gi; i ∈ J} ⊆ T .

In this paper by (X, T ) or simply by X we will denote the intuitionistic fuzzy topo-
logical space(IFTS). Each IFS which belongs to T is called an intuitionistic fuzzy open set
(IFOS) inX . The complementA of an IFOSA inX is called an intuitionistic fuzzy closed
set (IFCS) in X .

Definition 2.5. [10] Let p(α, β) be an IFP in IFTS X . An IFS A in X is called an intu-
itionistic fuzzy neighborhood (IFN) of p(α, β) if there exists an IFOS B in X such that
p(α, β) ∈ B ⊆ A.

Let X and Y are two non-empty sets and f : (X, T ) → (Y, S) be a function [3]. If
B = {< y, µB(y), νB(y) >; y ∈ Y } is an IFS in Y , then the pre-image of B under f is
denoted and defined by f−1(B) = {< x, f−1(µB(x)), f

−1(νB(x)) >;x ∈ X}. Since
µB(x), νB(x) are fuzzy sets, we explain that f−1(µB(x)) = µB(x)(f(x)), f

−1(νB(x)) =
νB(x)(f(x)).

Definition 2.6. [3] Let (X, T ) be an IFTS and A = {< x, µA, νA >;x ∈ X} be an IFS
inX . Then the intuitionistic fuzzy closure and intuitionistic fuzzy interior ofA are defined
by

(i) cl(A) =
⋂
{C : C is an IFCS in Xand C ⊇ A};

(ii) int(A) =
⋃
{D : D is an IFOS in Xand D ⊆ A};

It can be also shown that cl(A) is an IFCS, int(A) is an IFOS in X and A is and IFCS in
X if and only if cl(A) = A; A is an IFOS in X if and only if int(A) = A

Proposition 2.1. [3] Let (X, T ) be an IFTS and A, B be intuitionistic fuzzy sets in X .
Then the following properties hold:

(i) cl(A) = (int(A)), int(A) = (cl(A));
(ii) int(A) ⊆ A ⊆ cl(A).
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Definition 2.7. [12] Let A be an IFS in an IFTS(X,T ). A is called an intuitionistic fuzzy
e?-open set (IFe?OS, for short) in X if A ⊆ clintclδ(A). The Complement of A is called
an intuitionistic fuzzy e?-closed set (IFe?CS, for short) in X .

Definition 2.8. Let A be IFS in an IFTS (X,T ). A is called an intuitionistic fuzzy regular
open set [13] (briefly IFROS) if A = intcl(A) and intuitionistic fuzzy regular closed set
(briefly IFRCS) if A = clint(A)

Definition 2.9. [13] Let (X,T ) be an IFTS and A =< x, µA(x), νA(x) > be a IFS in X .
Then the fuzzy δ closure of A are denoted and defined by clδ(A) = ∩{K : K is an IFRCS
in X and A ⊆ K} and intδ(A) = ∪{G : G is an IFROS in X and G ⊆ A}.

Definition 2.10. [3] Let (X,T ) and (Y, S) be IFTS’s. A function f : (X,T )→ (Y, S) is
called intuitionistic fuzzy continuous if f−1(B) is an IFOS in X for every B ∈ S.

Lemma 2.2. [14]
(i) A ∩B = 0∼ ⇒ A ⊆ B.

(ii) A 6⊆ B ⇒ A ∩B 6= 0∼

Definition 2.11. [4] Two intuitionistic fuzzy sets A and B are said to be q-coincident
(AqB) if and only if there exists an element x ∈ X such that µA(x) > νB(x) or νA(x) <
µB(x). If A and B are said to be not q-coincident (AqB) if and only if A ⊆ B.

Definition 2.12. [11] An IFTS (X, T ) is called intuitionistic fuzzy C5-connected between
two intuitionistic fuzzy sets A and B if there is no IFOS E in (X, T ) such that A ⊆ E
and EqB.

3. TYPES OF INTUITIONISTIC FUZZY e?-CONNECTEDNESS IN INTUITIONISTIC FUZZY
TOPOLOGICAL SPACES

Definition 3.1. Let (X,T ) and (Y, S) be IFTS’s. A function f : (X,T )→ (Y, S) is called
intuitionistic fuzzy e?-continuous if f−1(B) is an IFe?OS in X for every B ∈ S.

Definition 3.2. Let (X,T ) be an IFTS and A =< x, µA, νA > be an IFS in X . Then the
intuitionistic fuzzy e?-interior and intuitionistic fuzzy e?-closure are defined and denoted
by:

e?cl(A) = ∩{K : K is an IFe?CS in X and A ⊆ K}
and

e?int(A) = ∪{G : G is an IFe?OS in X and G ⊆ A}.
It is clear that A is an IFe?CS (IFe?OS) in X iff A = cle?(A)(A = inte?(A)).

Definition 3.3. Let A be IFS in an IFTS (X,T ). A is called an intuitionistic fuzzy e?-
regular open set (briefly IFe?ROS) if A = e?int(e?cl(A)) and intuitionistic fuzzy e?-
regular closed set (briefly IFe?RCS) if A = e?cl(e?int(A))

Definition 3.4. An IFTS (X, T ) is IFe?-disconnected if there exists intuitionistic fuzzy
e?-open sets P, Q in X, P 6= 0∼, Q 6= 0∼ such that P ∪Q = 1∼ and P ∩Q = 0∼. If X is not
IFe?-disconnected then it is said to be IFe?-connected.

Example 3.5. LetX = {a, b}, T = {0∼, 1∼, P}whereP = {< x, ( a
0.3 ,

b
0.4 ), (

a
0.7 ,

b
0.5 ) >

, x ∈ X}, Q = {< x, ( a
0.2 ,

b
0.3 ), (

a
0.8 ,

b
0.5 ) >, x ∈ X}, P and Q are intuitionistic

fuzzy e?-open sets in X , P 6= 0∼, Q 6= 0∼ and P ∪Q = P 6= 1∼, P ∩Q = Q 6= 0∼. Hence
X is IFe?-connected.
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Example 3.6. In Example 3.5, Consider the intuitionistic fuzzy setsQ = {< x, (a0 ,
b
1 ), (

a
1 ,

b
0 ) >, x ∈ X}, R = {< x, (a1 ,

b
0 ), (

a
0 ,

b
1 ) >, x ∈ X}, Q and R are intuitionistic fuzzy

e?-open sets in X , Q 6= 0∼, R 6= 0∼ and Q ∪ R = 1∼, Q ∩ R = 0∼. Hence X is IFe?-
disconnected.

Definition 3.7. An IFTS (X, T ) is IFe?C5-disconnected if there exists IFS P inX , which
is both IFe?OS and IFe?CS such that P 6= 0∼, and P 6= 1∼. IfX is not IFe?C5-disconnected
then it is said to be IFe?C5-connected.

Example 3.8. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, ( a
0.6 ,

b
0.5 ),

( a
0.3 ,

b
0.3 ) >, x ∈ X}Q is an IFe?OS inX , butQ is not IFe?CS since clint(clδ(Q)) 6⊆ Q

Example 3.9. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, (a0 ,
b
1 ),

(a1 ,
b
0 ) >, x ∈ X}, Q is an intuitionistic fuzzy e?-open sets in X . Also Q is IFe?CS since

clint(clδ(Q)) = 0∼ ≤ Q. Hence there exists an IFS Q in X such that 1∼ 6= Q 6= 0∼ which
is both IFe?OS and IFe?CS in X . Thus X is IFe?C5-disconnected.

Proposition 3.1. IFe?C5-connectedness implies IFe?-connectedness.

Proof. Suppose that there exists nonempty intuitionistic fuzzy e?-open sets P and Q such
that P ∪ Q = 1∼ and P ∩ Q = 0∼(IFe?-disconnected) then µP ∨ µQ = 1, νP ∧ νQ = 0

and µP ∨ µQ = 0, νP ∧ νQ = 1. In other words Q = P . Hence P is IFe?-clopen which
implies X is IFe?C5-disconnected. �

But the converse need not be true as shown by the following example.

Example 3.10. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, ( a
0.2 ,

b
0.3 ),

( a
0.8 ,

b
0.5 ) >, x ∈ X}, P andQ are IFe?OS inX . Also P∪Q 6= 1∼ = P, P∩Q 6= 0∼ = Q.

Hence X is IFe?-connected. Since IFS P is both IFe?OS and IFe?CS in X , X is IFe?C5-
disconnected.

Proposition 3.2. Let f : (X, T ) → (Y, S) be a IFe?-irresolute surjection, (X, T ) is an
IFe?-connected, then (Y, S) is IFe?-connected.

Proof. Assume that (Y, S) is not IFe?-connected then there exists nonempty intuitionistic
fuzzy e?-open sets P and Q in (Y, S) such that P ∪ Q = 1∼ and P ∩ Q = 0∼. Since f is
IFe?-irresolute mapping, R = f−1(P ) 6= 0∼, U = f−1(Q) 6= 0∼ which are intuitionistic
fuzzy e?-open sets inX . And f−1(P )∪f−1(Q) = f−1(1∼) = 1∼ which impliesR∪U = 1∼.
f−1(P )∩f−1(Q) = f−1(0∼) = 0∼ which impliesR∩U = 0∼. ThusX is IFe?-disconnected,
which is a contradiction to our hypothesis. Hence Y is IFe?-connected. �

Proposition 3.3. (X, T ) is IFe?C5-connected iff there exists no nonempty intuitionistic
fuzzy e?-open sets P and Q in X such that P = Q

Proof. Suppose that P andQ are intuitionistic fuzzy e?-open sets inX such that P 6= 0∼ 6=
Q and P = Q. Since P = Q, Q is an IFe?OS and Q is an IFe?CS, and P 6= 0∼ implies
Q 6= 1∼. But this is a contradiction to the fact that X is IFe?C5-connected. Conversely, let
P be both IFe?OS and IFe?CS in X such that 0∼ 6= P 6= 1∼. Now take Q = P . Q is an
IFe?OS and P 6= 1∼ which implies Q = P 6= 0∼ which is a contradiction. �

Definition 3.11. An IFTS (X, T ) is IFe?-strongly connected if there exists no nonempty
IFe?CS’s P and Q in X such that µP + µQ ≤ 1, νP + νQ ≥ 1

In otherwords, an IFTS (X, T ) is IFe?-strongly connected if there exists no nonempty
IFe?CS’s P and Q in X such that P ∩Q = 0∼.
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Proposition 3.4. An IFTS (X, T ) is IFe?-strongly connected if there exists no IFe?OS’s
P and Q in X , P 6= 1∼ 6= Q such that µP + µQ ≥ 1, νP + νQ ≤ 1

Example 3.12. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, ( a
0.2 ,

b
0.3 ),

( a
0.8 ,

b
0.5 ) >, x ∈ X}, P is an IFe?OS in X . P and Q is an IFe?OS in X since

Q ⊆ clint(clδ(Q). Also µP + µQ ≤ 1, νP + νQ ≥ 1. Hence X is IFe?-strongly
connected.

Proposition 3.5. Let f : (X, T ) → (Y, S) be a IFe?-irresolute surjection. If X is an
IFe?-strongly connected, then so is Y .

Proof. Suppose that Y is not IFe?-strongly connected then there exists IFe?CS C andD in
Y such that C 6= 0∼, D 6= 0∼, C ∩D = 0∼. Since f is IFe?-irresolute, f−1(C), f−1(D) are
IFe?CSs in X and f−1(C)∩ f−1(D) = 0∼, f

−1(C) 6= 0∼, f
−1(D) 6= 0∼. (If f−1(C) = 0∼,

then f(f−1(C)) = C which implies f(0∼) = C. So C = 0∼ a contradiction) Hence X is
IFe?-strongly disconnected, a contradiction. Thus (Y, S) is IFe?-strongly connected. �

IFe?-strongly connected does not imply IFe?C5-connected, and IFe?C5-connected does
not imply IFe?-strongly connected. For this purpose we see the following examples:

Example 3.13. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, ( a
0.2 ,

b
0.3 ),

( a
0.8 ,

b
0.5 ) >, x ∈ X}, X is IFe?C5-connected. Since Q ⊆ clint(clδ(Q)). Also

µP + µQ ≤ 1, νP + νQ ≥ 1. Hence X is IFe?-strongly connected. But X is not
IFe?C5-connected, since Q is both IFe?OS and IFe?CS in X .

Example 3.14. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, ( a
0.6 ,

b
0.5 ),

( a
0.3 ,

b
0.3 ) >, x ∈ X}, R = {< x, ( a

0.6 ,
b
0.5 ), (

a
0.4 ,

b
0.4 ) >, x ∈ X}, X is IFe?C5-

connected. But X is not IFe?-strongly connected since Q and R are intuitionistic fuzzy
e?-open sets in X such that µQ + µR ≥ 1, νQ + νR ≤ 1.

Definition 3.15. P and Q are non-zero intuitionistic fuzzy sets in (X, T ). Then P and Q
are said to be

(i) IFe?-weakly separated if e?cl(P ) ⊆ Q and e?cl(Q) ⊆ P .
(ii) IFe?-q-separated if (e?cl(P )) ∩Q = 0∼ = P ∩ (e?cl(Q)).

Definition 3.16. An IFTS (X, T ) is said to be IFe?C5-disconnected if there exists IFe?-
weakly separated non-zero intuitionistic fuzzy sets P and Q in (X, T ) such that P ∪Q =
1∼.

Example 3.17. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, (a0 ,
b
1 ),

(a1 ,
b
0 ) >, x ∈ X}, R = {< x, (a1 ,

b
0 ), (

a
0 ,

b
1 ) >, x ∈ X}, Q and R are intuitionistic

fuzzy e?-open sets inX ,e?cl(Q) ⊆ R and e?cl(R) ⊆ Q. HenceQ andR are IFe?-weakly
separated and Q ∪R = 1∼. So X is IFe?C5-disconnected.

Definition 3.18. An IFTS (X, T ) is said to be IFe?CM -disconnected if there exists IFe?-
q-separated non-zero intuitionistic fuzzy sets P and Q in (X, T ) such that P ∪Q = 1∼.

Example 3.19. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, (a0 ,
b
1 ),

(a1 ,
b
0 ) >, x ∈ X}, R = {< x, (a1 ,

b
0 ), (

a
0 ,

b
1 ) >, x ∈ X}, Q and R are intuitionistic

fuzzy e?-open sets in X ,(e?cl(Q)) ∩ R = 0∼ and Q ∩ (e?cl(R)) = 0∼ which implies Q
and R are IFe?-q-separated and Q ∪R = 1∼. Hence X is IFe?CM -disconnected.

Remark. An IFTS (X, T ) is IFe?CS-connected if and only if (X, T ) is IFe?CM -connected.
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Definition 3.20. An IFTS (X, T ) is said to be IFe?-super disconnected if there exists an
IFe?-regular open set P in X such that 0∼ 6= P 6= 1∼. X is called IFe?-super connected if
X is not IFe?-super disconnected.

Example 3.21. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, (a1 ,
b
0 ),

(a0 ,
b
1 ) >, x ∈ X}, R = {< x, (a0 ,

b
1 ), (

a
1 ,

b
0 ) >, x ∈ X}, Q and R are intuitionistic

fuzzy e?-open sets in X and e?int(e?cl(Q)) = Q. This implies Q is an IFe?-regular open
set in X . Hence X is an IFe?-super disconnected.

Proposition 3.6. Let (X, T ) be an IFTS. Then the following are equivalent:
(i) X is IFe?-super connected

(ii) For each IFe?OS P 6= 0∼ in X , we have e?clP = 1∼
(iii) For each IFe?CS P 6= 1∼ in X , we have e?intP = 0∼
(iv) There exists no IFe?OS’s P and Q in X such that P 6= 0∼ 6= Q and P ⊆ Q
(v) There exists no IFe?OS’s P and Q in X such that P 6= 0∼ 6= Q ,Q = e?clP and

P = e?clQ
(vi) There exists no IFe?CS’s P and Q in X such that P 6= 1∼ 6= Q ,Q = e?intP and

P = e?intQ

Proof. (i) ⇒ (ii): Assume that there exists an P 6= 0∼ such that e?cl(P ) 6= 1∼. Take
P = e?int(e?cl(P )). Then P is proper e?-regular open set in X which contradicts that X
is IFe?-super connectedness.

(ii) ⇒ (iii): Let P 6= 1∼ be an IFe?CS in X . If we take Q = P then Q is an IFe?OS
in X and Q 6= 0∼. Hence by (ii) e?cl(Q) = 1∼ ⇒ e?cl(Q) = 0∼ ⇒ e?int(Q) = 0∼ ⇒
e?int(A) = 0∼.

(iii)⇒ (iv): Let P and Q are IFe?OS in X such that P 6= 0∼ 6= Q and P ⊆ Q. Since Q
is an IFe?CS inX, Q 6= 1∼ by (iii) e?intQ = 0∼. But P ⊆ Q implies 0∼ 6= P = e?int(P ) ⊆
e?int(Q) = 0∼ which is a contradiction.

(iv)⇒ (i): Let 0∼ 6= P 6= 1∼ be an IFe?-regular open set in X . If we take Q = e?cl(P ),
we get Q 6= 0∼. (If not Q = 0∼ implies e?cl(P ) = 0∼ ⇒ e?cl(P ) = 1∼ ⇒ P =
e?int(e?cl(P )) = e?int(1∼) = 1∼ ⇒ P = 1∼ a contradiction to P 6= 1∼). We also have
P ⊆ Q which is also a contradiction. Therefore X is IFe?-super connected.

(i)⇒ (v): Let P and Q be two IFe?OS in (X, T ) such that P 6= 0∼ 6= Q, Q = e?cl(P )

and P = e?cl(Q). Now we have e?int(e?cl(P )) = e?int(Q) = e?cl(Q) = P, P 6= 0∼
and P 6= 1∼, since if P = 1∼ then 1∼ = e?cl(Q) ⇒ e?cl(Q) = 0∼ ⇒ Q = 0∼. But Q 6= 0∼.
Therefore P 6= 1∼ ⇒ P is proper IFe?-regular open set in (X, T ) which is contradiction
to (i). Hence (v) is true.

(v)⇒ (i): Let P be IFe?OS in X such that P = e?int(e?cl(P )), 0∼ 6= P 6= 1∼. Now
take Q = e?cl(P ). In this case, we get Q 6= 0∼ and Q is an IFe?OS in X and Q = e?cl(P )

and e?cl(Q) = e?cl(e?cl(P )) = (e?int(e?cl(P ))) = e?int(e?cl(P )) = P . But this is a
contradiction to (v). Therefore (X, T ) is IFe?-super connected space.

(v) ⇒ (vi): Let P and Q be IFe?-closed sets in (X, T ) such that P 6= 1∼ 6= Q, Q =

e?int(P ) and P = e?int(Q). TakingC = P andD = Q,C andD become IFe?-open sets
in (X, T ) and C 6= 0∼ 6= D, e?cl(C) = e?cl(P ) = (e?int(P )) = e?int(P ) = Q = D

and similarly e?cl(D) = C. But this is a contradiction to (v). Hence (vi) is true.
(vi)⇒ (i): We can prove this by the similar way as in (v)⇒ (vi). �

Proposition 3.7. Let f : (X, T ) → (Y, S) be a IFe?-irresolute surjection. If X is an
IFe?-super connected, then so is Y .
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Proof. Suppose that Y is IFe?-super disconnected. Then there exists IFe?OS’s C and D
in Y such that C 6= 0∼ 6= D, C ⊆ D. Since f is IFe?-irresolute, f−1(C) and f−1(D) are
IFe?OS’s in X and C ⊆ D implies f−1(C) ⊆ f−1(D) = f−1(D). Hence f−1(C) 6=
0∼ 6= f−1(D) which means thatX is IFe?-super disconnected which is a contradiction. �

Definition 3.22. An IFTS (X, T ) is called intuitionistic fuzzy e?C5-connected between
two intuitionistic fuzzy sets P and Q if there is no IFe?OS E in (X, T ) such that P ⊆ E
and EqQ.

Example 3.23. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, ( a
0.2 ,

b
0.3 ),

( a
0.8 ,

b
0.6 ) >, x ∈ X}, R = {< x, ( a

0.9 ,
b
0.6 ), (

a
0.1 ,

b
0.2 ) >, x ∈ X}, P is IFe?OS in

(X, T ). Then (X, T ) is intuitionistic fuzzy e?-connected between P and Q.

Theorem 3.8. If an IFTS (X, T ) is an intuitionistic fuzzy e?C5-connected between two
intuitionistic fuzzy sets P and Q, then it is intuitionistic fuzzy C5-connected between two
intuitionistic fuzzy sets P and Q.

Proof. Suppose (X, T ) is not intuitionistic fuzzy C5-connected between two intuitionistic
fuzzy sets P and Q then there exists an IFOS E in (X, T ) such that P ⊆ E and EqQ.
Since every IFOS in IFe?OS, there exists an IFe?OS E in (X, T ) such that P ⊆ E and
EqQ which implies (X, T ) is not intuitionistic fuzzy e?-connected between P and Q, a
contradiction to our hypothesis. Therefore, (X, T ) is intuitionistic fuzzy C5-connected
between P and Q. �

However, the converse of the above Theorem is need not be true, as shown by the
following example.

Example 3.24. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, ( a
0.1 ,

b
0.2 ),

( a
0.9 ,

b
0.6 ) >, x ∈ X}, R = {< x, ( a

0.7 ,
b
0.4 ), (

a
0.3 ,

b
0.4 ) >, x ∈ X} P is IFOS in

(X, T ). Then (X, T ) intuitionistic fuzzy C5-connected between Q and R. Consider IFS
D = {< x, ( a

0.2 ,
b
0.3 ), (

a
0.8 ,

b
0.5 ) >, x ∈ X}, D is an IFe?OS such that Q ⊆ D and

D ⊆ R which implies (X, T ) is intuitionistic fuzzy e?-disconnected between Q and R.

Theorem 3.9. Let (X, T ) be an IFTS and P and Q be intuitionistic fuzzy sets in (X, T ).
If PqQ then (X, T ) is intuitionistic fuzzy e?C5-connected between P and Q.

Proof. Suppose (X, T ) is not intuitionistic fuzzy e?C5-connected between P andQ. Then
there exists an IFe?OS E in (X, T ) such that P ⊆ E and E ⊆ Q. This implies that
P ⊆ Q. That is PqQ which is a contradiction to our hypothesis. Therefore (X, T ) is
intuitionistic fuzzy e?C5-connected between P and Q. �

However, the converse of the above Theorem is need not be true, as shown by the
following example.

Example 3.25. In Example 3.5, Consider the intuitionistic fuzzy sets Q = {< x, ( a
0.2 ,

b
0.3 ),

( a
0.8 ,

b
0.6 ) >, x ∈ X}, R = {< x, ( a

0.9 ,
b
0.6 ), (

a
0.1 ,

b
0.2 ) >, x ∈ X}, P is IFeOS in

(X, T ). Then (X, T ) is intuitionistic fuzzy e?-connected between P and Q. But P is not
q-coincident with Q, since µP (x) < νQ(x).

Definition 3.26. Let N be an IFS in IFTS (X, T )
(a) If there exists intuitionistic fuzzy e?-open sets M and W in X satisfying the following
properties, then N is called IFe?Ci-disconnected (i=1,2,3,4):
e?C1 : N ⊆M ∪W, M ∩W ⊆ N, N ∩M 6= 0∼, N ∩W 6= 0∼,
e?C2 : N ⊆M ∪W, N ∩M ∩W = 0∼, N ∩M 6= 0∼, N ∩W 6= 0∼,
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e?C3 : N ⊆M ∪W, M ∩W ⊆ N, M 6⊆ N, W 6⊆ N ,
e?C4 : N ⊆M ∪W, N ∩M ∩W = 0∼,M 6⊆ N, W 6⊆ N ,
(b) N is said to be IFe?Ci-connected (i = 1, 2, 3, 4) if N is not IFe?Ci-disconnected
(i = 1, 2, 3, 4).

Obviously, we can obtain the following implications between several types of IFe?Ci-
connected (i = 1, 2, 3, 4):

Example 3.27. In Example 3.5, M = {< x, ( a
0.6 ,

b
0.5 ), (

a
0.3 ,

b
0.3 ) >, x ∈ X}, W =

{< x, ( a
0.6 ,

b
0.5 ), ( a

0.4 ,
b
0.4 ) >, x ∈ X}, be IFe?OS. Consider the IFS N = {<

x, ( a
0.2 ,

b
0.3 ), (

a
0.6 ,

b
0.5 ) >, x ∈ X},N is IFe?C2-connected, IFe?C3-connected, IFe?C4-

connected but IFe?C1-disconnected.

Example 3.28. In Example 3.5, M = {< x, ( a
0.3 ,

b
0 ), (

a
0.4 ,

b
1 ) >, x ∈ X}, W = {<

x, (a0 ,
b
1 ), (

a
1 ,

b
0 ) >, x ∈ X}, be IFe?OS. Consider the IFSN = {< x, ( a

0.2 ,
b
0.3 ), (

a
0.6 ,

b
0.5 ) >, x ∈ X}, N is IFe?C2-disconnected but IFe?C4-connected.

Example 3.29. In Example 3.5, M = {< x, ( a
0.8 ,

b
0.7 ), (

a
0.2 ,

b
0.1 ) >, x ∈ X}, W =

{< x, ( a
0.6 ,

b
0.8 ), ( a

0.4 ,
b
0.4 ) >, x ∈ X}, be IFe?OS. Consider the IFS N = {<

x, ( a
0.2 ,

b
0.3 ), (

a
0.6 ,

b
0.5 ) >, x ∈ X}, N is IFe?C3-disconnected but IFe?C4-connected.

4. INTUITIONISTIC FUZZY e?-EXTREMALLY
DISCONNECTEDNESS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

Definition 4.1. Let (X, T ) be any IFTS. X is called IFe?-extremally disconnected if the
e?-closure of every IFe?OS in X is IFe?OS.

Theorem 4.1. For an IFTS (X, T ) the following are equivalent:
(i) (X, T ) is an IFe?-extremally disconnected space.

(ii) For each IFe?CS P , e?int(P ) is an IFe?CS.

(iii) For each IFe?OS P , e?cl(P ) = e?cl(e?cl(P )) is an IFe?CS.
(iv) For each intuitionistic fuzzy e?-open sets P and Q with e?cl(P ) = Q, e?cl(P ) =

e?clB.

Proof. (i)⇒ (ii): Let P be any IFe?CS. Then P is an IFe?OS. So e?cl(P ) = e?int(P ) is
an IFe?OS. Thus e?int(P ) is an IFe?CS in (X, T ).

(ii)⇒ (iii): LetP be an IFe?OS. Then e?cl(e?cl(P )) = e?cl(e?int(P )). e?cl(e?cl(P )) =

e?cl(e?int(P )). Since P is an IFe?OS, P is an IFe?CS. So by (ii) e?int(P ) is an IFe?CS.
That is e?cl(e?int(P )) = e?int(P ). Hence e?cl(e?int(P )) = e?int(P ) = e?cl(P ).

(iii)⇒ (iv): Let P and Q be any two intuitionistic fuzzy e?-open sets in (X, T ) such
that e?cl(P ) = Q. (iii) implies e?cl(P ) = e?cl(e?cl(P )) = e?cl(Q) = e?cl(Q).

(iv) ⇒ (i): Let P be any IFe?OS in (X, T ). Put Q = e?cl(P ). Then e?cl(P ) = Q.
Hence by (iv) e?cl(P ) = e?cl(Q). Therefore e?cl(P ) is IFe?OS in (X, T ). That is
(X, T ) is an IFe?-extremally disconnected space. �
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5. CONCLUSION

In this paper, we have introduced and studied the concept of types of intuitionistic fuzzy
e?-connected and intuitionistic fuzzy e?-extremally disconnected in intuitionistic fuzzy
topological spaces are introduced and studied. Here we introduce the concepts of intu-
itionistic fuzzy e?C5-connectedness, intuitionistic fuzzy e?CS-connectedness, intuitionis-
tic fuzzy e?CM -connectedness, intuitionistic fuzzy e?-strongly connectedness, intuitionis-
tic fuzzy e?-super connectedness, intuitionistic fuzzy e?Ci-connectedness (i = 1, 2, 3, 4),
and obtained several properties and some characterizations concerning connectedness in
these spaces.
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