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r-FUZZY <s-COMPACTNESS AND r-FUZZY <s-CONNECTEDNESS IN THE
SENSE OF ŠOSTAK’S

E. ELAVARASAN

ABSTRACT. The purpose of this paper is to introduce the concepts of fuzzy regular semi
compactness, fuzzy regular semi connectedness, fuzzy regular semi strongly connected-
ness and fuzzy regular semi-C5-connectedness. Some interesting properties of these no-
tions are studied. In this connection, interrelations are discussed. Examples are provided
wherever necessary.

1. INTRODUCTION

Šostak [11], introduced the concept of fuzzy topological spaces as an extension of
Chang’s fuzzy topological spaces [2]. It has been developed in many direction [4, 7, 9].
Mashhour et. al., [8], A. M. Zahran [13] and E. E. Kerre et. al., [6] introduced the notion of
fuzzy regular semi open and regular semi closed sets and investigate the relationship among
fuzzy regular semi continuity and fuzzy regular semi irresolute mappings. Recently, Vadi-
vel and Elavarasan [12] introduce and study the concept of fuzzy regular semi open sets
and fuzzy regular semi continuous functions in fuzzy topological spaces in the sense of
Šostak’s. In this paper, we introduce the concepts of r-fuzzy regular semi compactness,
r-fuzzy regular semi connectedness, r-fuzzy regular semi strongly connectedness and r-
fuzzy regular semi-C5-connectedness in the sense of Šostak’s. Some interesting properties
of these notions are studied. In this connection, interrelations are discussed. Examples are
provided wherever necessary.

2. PRELIMINARIES

Throughout this paper, let X be a non-empty set, I = [0, 1], I0 = (0, 1]. A fuzzy
set λ of X is a mapping λ : X → I , and IX be the family of all fuzzy sets on X . The
complement of a fuzzy set λ is denoted by 1−λ. For λ ∈ IX , λ(x) = λ for all x ∈ X . For

each x ∈ X and t ∈ I0, a fuzzy point xt is defined by xt(y) =

{
t if y = x

0 if y 6= x.
Let Pt(X)

2010 Mathematics Subject Classification. 54A40, 03E72, 54D30.
Key words and phrases. r-fuzzy <s-compact, r-fuzzy <s-connected, r-fuzzy <s-strongly connected and

r-fuzzy <s-C5-connected.
Received: November 17, 2020. Accepted: December 14, 2020. Published: December 31, 2020.

273



274 ELAVARASAN

be the family of all fuzzy points in X . All other notations and definitions are standard in
the fuzzy set theory.

Definition 2.1. [11] A function τ : IX → I is called a fuzzy topology on X if it satisfies
the following conditions:

(1) τ(0) = τ(1) = 1,
(2) τ(

∨
i∈J µi) ≥

∧
i∈J τ(µi), for any {µi : i ∈ J} ≤ IX .

(3) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), for all µ1, µ2 ∈ IX .

The pair (X, τ) is called a fuzzy topological space (for short, fts). A fuzzy set λ is
called an r-fuzzy open (for short, r-fo) if τ(λ) ≥ r and a fuzzy set λ is called an r-fuzzy
closed (for short, r-fc) if τ(1− λ) ≥ r.

Theorem 2.1. [3] Let (X, τ) be a fts. Then for each λ ∈ IX and r ∈ I0, we define an
operator Cτ : IX×I0 → IX as follows: Cτ (λ, r) =

∧
{µ ∈ IX : λ ≤ µ, τ(1−µ) ≥ r}.

For λ, µ ∈ IX and r, s ∈ I0, the operator Cτ satisfies the following statements:
(C1) Cτ (0, r) = 0,
(C2) λ ≤ Cτ (λ, r),
(C3) Cτ (λ, r) ∨ Cτ (µ, r) = Cτ (λ ∨ µ, r),
(C4) Cτ (λ, r) ≤ Cτ (λ, s) if r ≤ s,
(C5) Cτ (Cτ (λ, r), r) = Cτ (λ, r).

Theorem 2.2. [3] Let (X, τ) be a fts. Then for each λ ∈ IX and r ∈ I0, we define an
operator Iτ : IX × I0 → IX as follows: Iτ (λ, r) =

∨
{µ ∈ IX : µ ≤ λ, τ(µ) ≥ r}. For

λ, µ ∈ IX and r, s ∈ I0, the operator Iτ satisfies the following statements:
(I1) Iτ (1, r) = 1,
(I2) Iτ (λ, r) ≤ λ,
(I3) Iτ (λ, r) ∧ Iτ (µ, r) = Iτ (λ ∧ µ, r),
(I4) Iτ (λ, r) ≤ Iτ (λ, s) if s ≤ r,
(I5) Iτ (Iτ (λ, r), r) = Iτ (λ, r).
(I6) Iτ (1− λ, r) = 1− Cτ (λ, r) and Cτ (1− λ, r) = 1− Iτ (λ, r)

Definition 2.2. [10] Let (X, τ) be a fts, λ ∈ IX and r ∈ I0. Then a fuzzy set λ is called
(1) r-fuzzy regular open (for short, r-fro) if λ = Iτ (Cτ (λ, r), r).
(2) r-fuzzy regular closed (for short, r-frc) if λ = Cτ (Iτ (λ, r), r).

Definition 2.3. [12] Let (X, τ) be a fts and λ ∈ IX , r ∈ I0. Then
(1) λ is called r-fuzzy regular semi open (for short, r-frso) if there exists r-fro set

µ ∈ IX and µ ≤ λ ≤ Cτ (µ, r).
(2) λ is called r-fuzzy regular semi closed (for short, r-frsc) if there exists r-frc set

µ ∈ IX and Iτ (µ, r) ≤ λ ≤ µ.
(3) The r-fuzzy regular semi interior of λ, denoted by RSIτ (λ, r), is defined by

RSIτ (λ, r) =
∨
{µ ∈ IX | µ ≤ λ, µ is r-frso }.

(4) The r-fuzzy regular semi closure of λ, denoted by RSCτ (λ, r) is defined by
RSCτ (λ, r) =

∧
{µ ∈ IX | µ ≥ λ, µ is r-frsc }.

We denote the set of all r-frso sets and r-frsc sets by FRSO(X) and FRSC(X).

Theorem 2.3. [12] Let (X, τ) be a smooth topological space. For λ ∈ IX , r ∈ I0, the
following statements are equivalent:

(1) λ is r-frso.
(2) 1− λ is r-frso.
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(3) Iτ (λ, r) = Iτ (Cτ (λ, r), r).
(4) Cτ (λ, r) = Cτ (Iτ (λ, r), r).

Definition 2.4. [12] Let (X, τ) and (Y, η) be fts’s. Let f : (X, τ) → (Y, η) be a
mapping. Then f is said to be:

(1) fuzzy regular semi irresolute (resp. fuzzy regular semi continuous) iff f−1(µ) is
r-frso for each r-frso set µ ∈ IY (resp. µ ∈ IY , η(µ) ≥ r).

(2) fuzzy regular semi irresolute open (resp. fuzzy regular semi open) iff f(λ) is
r-frso in Y for each r-frso set λ ∈ IX (resp. λ ∈ IX , τ(λ) ≥ r).

(3) fuzzy regular semi irresolute closed (resp. fuzzy regular semi closed) iff f(λ) is
r-frsc in Y for each r-frsc set λ ∈ IX (resp. λ ∈ IX , τ(1− λ) ≥ r).

Definition 2.5. [1] Let (X, τ) and (Y, σ) be a fts’s. Let f : (X, τ) → (Y, σ) be a
function. Then f is called

(1) weakly continuous if for each µ ∈ IY , where σ(µ) ≥ r, r ∈ I0, f−1(µ) ≤
Iτ (f−1(Cσ(µ, r)), r).

(2) weakly open if for each µ ∈ IX , where τ(µ) ≥ r, r ∈ I0, f(µ) ≤ Iσ(f(Cτ (µ, r)), r).

Definition 2.6. [5] A fts (X, τ) is called an r-fuzzy compact ( r-fuzzy nearly compact and
r-fuzzy almost compact) if and only if for every family {λi|i ∈ J} in {λ : λ ∈ IX , τ(λ) ≥
r} such that

∨
i∈J λi = 1, there exists a finite subset J0 of J such that

∨
i∈J0 λi = 1 (resp.∨

i∈J0 Iτ (Cτ (λi, r), r) = 1 and
∨
i∈J0 Cτ (λi, r) = 1).

Theorem 2.4. Let (X, τ) and (Y, σ) be two fts and f : (X, τ) → (Y, σ) is fuzzy weakly
open and fuzzy weakly continuous, then f−1(λ) is an r-fro (resp. r-frc) set for every r-fro
λ ∈ IY , r ∈ I0.

Proof. Let λ be an r-fro set in Y , we have σ(λ) ≥ r. Since f is fuzzy weakly continuous,
τ(f−1(λ) ≥ r. Hence f−1(λ) = Iτ (f−1(λ), r) ≤ Iτ (Cτ (f−1(λ), r), r). Since f is fuzzy
weakly open, f(Iτ (Cτ (f−1(λ), r), r)) ≤ Iσ(f(Cτ (f−1(λ), r), r)). Since f is fuzzy
weakly continuous, Iσ(f(Cτ (f−1(λ), r), r)) ≤ Iσ(ff−1(Cσ(λ, r), r)) ≤ Iσ(Cσ(λ, r), r)) =
λ. Hence Iτ (Cτ (f−1(λ), r), r) ≤ f−1(λ). Thus f1(λ) is r-fro. An r-frc case will be sim-
ilar. �

3. r-FUZZY <s-COMPACTNESS

The most important of all covering properties is compactness. In this section, we intro-
duce the concept of fuzzy <s-compactness and study some of its basic properties.

Definition 3.1. A fts (X, τ) is called

(1) r-fuzzy <s compact if for every r-fuzzy regular semiopen cover {λi : i ∈ J} of
X , there exists a finite subset J0 of J such that

∨
i∈J0 λi = 1.

(2) r-fuzzy weakly <s compact if for every r-fuzzy regular semiopen cover {λi : i ∈
J} of X , there exists a finite subset J0 of J such that

∨
i∈J0 Iτ (λi, r) = 1.

(3) r-fuzzy almost <s compact if for every r-fuzzy regular semiopen cover {λi : i ∈
J} of X , there exists a finite subset J0 of J such that

∨
i∈J0 Cτ (λi, r) = 1.

Remark. (1) Every r-fuzzy weakly <s compact is r-fuzzy <s compact.
(2) Every r-fuzzy <s compact is r-fuzzy almost <s compact.

From Theorem 2.3, we have the following theorem:
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Theorem 3.1. A fts (X, τ) is r-fuzzy <s-compact if and only if for each family {λi|i ∈ J}
of r-frso sets of X such that

∧
i∈J λi = 0, there exists a finite subset J0 of J such that∧

i∈J0 λi = 0.

Theorem 3.2. A fts (X, τ) is r-fuzzy weakly <s-compact if and only if for each family
{λi|i ∈ J} of r-frso sets of X such that

∧
i∈J λi = 0, there exists a finite subset J0 of J

such that
∧
i∈J0 Cτ (λi, r) = 0.

Proof. Suppose that (X, τ) is r-fuzzy weakly <s-compact. Let {λi|i ∈ J} be a family of
r-frso sets of X such that

∧
i∈J λi = 0. Then by Theorem 2.3, {1− λi|i ∈ J} is a family

of r-frso sets of X such that
∨
i∈J 1 − λi = 1 −

∧
i∈J λi = 1. Since (X, τ) is r-fuzzy

weakly <s compact, there exists a finite subset J0 of J such that
∨
i∈J0 Iτ (1− λi, r) = 1.

Hence
∧
i∈J0 Cτ (λi, r) = 1− (

∨
i∈J0 Iτ (1− λi, r) = 0. �

Converse follows by reversing the previous arguments.

Theorem 3.3. Let (X, τ) be a fts. Then the following are equivalent:
(1) (X, τ) is r-fuzzy weakly <s-compact.
(2) For each family {λi|i ∈ J} of r-frso sets of X such that

∧
i∈J λi = 0, there exists

a finite subset J0 of J such that
∧
i∈J0 Cτ (λi, r) = 0.

(3) For each r-fuzzy regular closed cover {λi|i ∈ J} of X , there exists a finite subset
J0 of J such that

∨
i∈J0 Iτ (λi, r) = 1.

Proof. (1)⇒(2): Trivial.
(2)⇒(1): Let {λi|i ∈ J} be a family of r-frso sets of X such that

∧
i∈J λi = 0. Since

λi is an r-frso set for each i ∈ J , Cτ (λi, r) = Cτ (Iτ (λi, r), r) for each i ∈ J . Since
{Iτ (λi, r)|i ∈ J} is a family of r-fro sets of X such that

∧
i∈J Iτ (λi, r) = 0, by (2) there

exists a finite subset J0 of J such that
∧
i∈J0 Cτ (λi, r) =

∧
i∈J0 Cτ (Iτ (λi, r), r) = 0.

Thus (X, τ) is r-fuzzy weakly <s-compact.
(2)⇔(3): It is obvious. �

Theorem 3.4. Let (X, τ) and (Y, σ) be two fts’s and let f : (X, τ)→ (Y, σ) be surjective,
fuzzy weakly open and fuzzy weakly continuous function. If (X, τ) is r-fuzzy weakly <s-
compact, then so is (Y, σ).

Proof. Let {ηi|i ∈ J} be an r-fuzzy regular closed cover over Y . By Theorem 2.4,
{f1(ηi)|i ∈ J} is an r-fuzzy regular closed cover of X . Since X is r- fuzzy weakly <s-
compact, by Theorem 3.2, there exists a finite subset J0 of J such that

∨
i∈J0 Iτ (f−1(ηi), r) =

1. From the surjectivity and fuzzy weakly openness of f , we have
1 = f(

∨
i∈J0(Iτ (f−1(ηi, r))))

=
∨
i∈J0 f(Iτ (f−1(ηi, r)))

≤
∨
i∈J0 Iσ(f(Cτ (Iτ (f−1(ηi), r), r)), r)

=
∨
i∈J0(Iσ(f(f−1(ηi)), r)

=
∨
i∈J0 Iσ(ηi, r).

Hence
∨
i∈J0 Iσ(ηi, r) = 1, and thus (Y, σ) is r-fuzzy weakly <s compact. �

Theorem 3.5. A fts (X, τ) is r-fuzzy almost <s compact if and only if for each family
{λi|i ∈ J} of r-frso sets of X such that

∧
i∈J λi = 0, there exists a finite subset J0 of J

such that
∧
i∈J0 Iτ (λi, r) = 0.

Proof. Let (X, τ) be r-fuzzy almost <s-compact and let {λi|i ∈ J} be a family of r-
frso sets of X such that

∧
i∈J λi = 0. Then {1 − λi|i ∈ J} is a family of r-frso sets
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of X such that
∨
i∈J 1 − λi = 1 − (

∧
i∈J λi) = 1. Since (X, τ) is r-fuzzy almost <s-

compact, there exists a finite subset J0 of J such that
∨
i∈J0 Cτ (1 − λi, r) = 1. Hence∧

i∈J0 Iτ (λi, r) = 1−
∨
i∈J0 Cτ (1− λi, r) = 0.

The converse can be proved similarly. �

Theorem 3.6. Let (X, τ) be a fts. Then the following statements are equivalent:

(1) (X, τ) is r-fuzzy almost <s-compact.
(2) For each family {λi|i ∈ J} of r-fro sets of X such that

∧
i∈J λi = 0, there exists

a finite subset J0 of J such that
∧
i∈J0 λi = 0.

(3) For each r-fuzzy regular closed cover {λi|i ∈ J} of X , there exists a finite subset
J0 of J such that

∨
i∈J0 λi = 1.

Proof. Straightforward. �

Definition 3.2. A fts (X, τ) is called an r-fuzzy S-closed if and only if for every an r-
fuzzy semiopen cover {λi|i ∈ J} of X , there exists a finite subset J0 of J such that∨
i∈J0 Cτ (λi, r) = 1.

Theorem 3.7. A fts (X, τ) is r-fuzzy almost <s-compact if and only if (X, τ) is r-fuzzy
S-closed.

Proof. Let (X, τ) be r-fuzzy S-closed. Since every r-frso set is r-fuzzy semiopen, (X, τ)
is r-fuzzy almost <s-compact.

Conversely, suppose that (X, τ) is r-fuzzy almost <s-compact and let {λi|i ∈ J} be
an r-fuzzy semiopen cover of X . Then there exists µi ∈ IX with τ(µi) ≥ r, such that
µi ≤ λi ≤ Cτ (µi, r), for each i ∈ J . We can easily show that Cτ (µi, r) is an r-frc
for each i ∈ J . Since µi ≤ λi ≤ Cτ (λi, r), for each i ∈ J , Cτ (µi, r) ≤ Cτ (λi, r) ≤
Cτ (Cτ (µi, r), r) for each i ∈ J . Thus Cτ (λi, r) = Cτ (µi, r) for each i ∈ J . Thus
{Cτ (λi, r)|i ∈ J} is an r-fuzzy regular closed cover of X . Since (X, τ) is r-fuzzy almost
<s-compact, there exists a finite subset J0 of J such that

∨
i∈J0 Cτ (λi, r) = 1. Hence

(X, τ) is r-fuzzy S-closed. �

Theorem 3.8. A fts (X, τ) is an r-fuzzy weakly <s-compact if and only if for every an
r-fuzzy semiopen cover {λi|i ∈ J} of X, there exists a finite subset J0 of J such that∨
i∈J0 Iτ (Cτ (λi, r), r) = 1.

Proof. Similar to Theorem 3.7. �

Theorem 3.9. Let (X, τ) and (Y, σ) be two fts’s and let f : (X, τ)→ (Y, σ) be a surjec-
tive, fuzzy weakly open and fuzzy weakly continuous function. If (X, τ) is r-fuzzy almost
<s-compact, then so is (Y, σ).

Proof. Let {ηi|i ∈ J} be an r-fuzzy regular closed cover of Y.By Theorem 2.4, {f−1(ηi)|i ∈
J} is an r-fuzzy regular closed cover of X . Since (X, τ) is r-fuzzy almost <s-compact,
by Theorem 2.4, there exists a finite subset J0 of J such that

∨
i∈J0 f

−1(ηi) = 1. From
the surjectivity of f we have

1 = f(
∨
i∈J0 f

−1(ηi)) =
∨
i∈J0 f(f−1(ηi)) =

∨
i∈J0 ηi.

Hence
∨
i∈J0 ηi = 1. Thus (Y, σ) is r-fuzzy almost <s-compact. �

Definition 3.3. A fts (X, τ) is called r-fuzzy extremally disconnected if τ(Cτ (λ, r)) ≥ r
for every λ ∈ IX with τ(λ) ≥ r.
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Theorem 3.10. Let (X, τ) and (Y, σ) be two fts, and let f : (X, τ) → (Y, σ) be a sur-
jective, fuzzy weakly open and fuzzy weakly continuous function. If (X, τ) is r-fuzzy ex-
tremally disconnected, then so is (Y, σ).

Proof. Let λ ∈ IY with σ(λ) ≥ r. Then λ = Iσ(λ, r). Hence Cτ (λ, r) is r-frc set. By
Theorem 2.4, f−1(Cσ(λ, r)) is r-frc, i.e., f−1(Cσ(λ, r)) = Cτ (Iτ (f−1(Cσ(λ, r)), r), r).
Since (X, τ) is r-fuzzy extremally disconnected and τ(Iτ (f−1(Cσ(λ, r)), r)) ≥ r and
τ(Cτ (Iτ (f−1(Cσ(λ, r)), r), r)) ≥ r. From the surjectivity and fuzzy weakly openness of
f we have
Cσ(λ, r) = f(f−1(Cσ(λ, r)))

= f(Cτ (Iτ (f−1(Cσ(λ, r)), r), r))
≤ Iσ(f(Cτ (Iτ (f−1(Cσ(λ, r)), r), r)), r)
= Iσ(f(Cτ (f−1(Cσ(λ, r)), r)), r)
= Iσ(f(f−1(Cσ(λ, r))), r)
= Iσ(Cσ(λ, r), r).

Hence Cσ(λ, r) = Iσ(Cσ(λ, r), r) and so σ(Cσ(λ, r)) ≥ r. Thus (Y, σ) is r-fuzzy
extremally disconnected. �

Theorem 3.11. Let a fts (X, τ) be r-fuzzy extremally disconnected. If λ ∈ IX is r-frso,
then Iτ (λ, r) = λ = Cτ (λ, r).

Proof. Let λ be an r-frso set. Then there exists an r-fro µ such that µ ≤ λ ≤ Cτ (µ, r).
Since X is r-fuzzy extremally disconnected, µ = Cτ (µ, r). And we get µ = Iτ (µ, r),
since µ is an r-fro set. Thus we have the following, µ = Iτ (µ, r) ≤ Iτ (λ, r) ≤ λ ≤
Cτ (λ, r) ≤ Cτ (µ, r) = µ. Hence Iτ (λ, r) = λ = Cτ (λ, r). �

From the above theorem, we get the following:

Theorem 3.12. Let a fts (X, τ) be r-fuzzy extremally disconnected. Then the following
are equivalent:

(1) (X, τ) is r-fuzzy weakly <s-compact.
(2) (X, τ) is r-fuzzy <s-compact.
(3) (X, τ) is r-fuzzy almost <s-compact.

Theorem 3.13. For an r-fuzzy extremally disconnected fts (X, τ), the following are true:
(1) r-fuzzy compactness implies r-fuzzy weakly <s-compactness.
(2) r-fuzzy nearly compactness implies r-fuzzy <s-compactness.
(3) r-fuzzy almost compactness implies r-fuzzy almost <s-compactness.

Proof. (2) Let (X, τ) be an r-fuzzy extremally disconnected and r-fuzzy nearly compact
space, let {λi|i ∈ J} be an r-fuzzy regular semiopen cover ofX. Then there exists an r-fro
set µi such that µi ≤ λi ≤ Cτ (µi, r) for each i ∈ J . Since (X, τ) is r-fuzzy extremally
disconnected and µi = Iτ (Cτ (µi, r)) for each i ∈ J, λi = Iτ (λi, r) for each i ∈ J. Thus
we get λi = Iτ (Cτ (λi, r), r) for each i ∈ J from Theorem 2.3. Hence (X, τ) is r-fuzzy
<s-compact since X is r-fuzzy nearly compact.

(1) and (3) are similar to (2). �

Corollary 3.14. If a fts (X, τ) is r-fuzzy extremally disconnected, then the following are
equivalent:

(1) r-fuzzy nearly compactness.
(2) r-fuzzy almost compactness.
(3) r-fuzzy S-closeness.

Proof. We get the results from Theorems 3.7, 3.12 and 3.13. �
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4. r-FUZZY <s-CONNECTEDNESS

Definition 4.1. Let (X, τ) be a fts and λ, µ ∈ IX , r ∈ I0. A r-fuzzy <s-separation on 1
is a pair of non null proper r-frso sets λ and µ such that λ ∧ µ = 0 and λ ∨ µ = 1.

Definition 4.2. A fts (X, τ) is said to be r-fuzzy <s-connected if and only if there is no
r-fuzzy<s-separation of 1.Otherwise, (X, τ) is said to be r-fuzzy<s-disconnected space.

Example 4.3. Let X = {a, b, c}, λ, µ, δ ∈ IX , r ∈ I0 are defined as λ(a) = 0.2, λ(b) =
0.3, λ(c) = 0.4; µ(a) = 0.6, µ(b) = 0.3, µ(c) = 0.4; δ(a) = 0.7, δ(b) = 0.4, δ(c) = 0.5.
We define fuzzy topology τ : IX → I as follows:

τ(λ) =


1 if λ ∈ {0, 1},
1
3 if λ = λ,

0 otherwise.

For r = 1
3 , µ and δ are r-frso sets in (X, τ), µ 6= 0, δ 6= 0, µ ∨ δ 6= 1 and µ ∧ δ 6= 0.

Hence (X, τ) is r-fuzzy <s-connected.

Proposition 4.1. A fts (X, τ) is a r-fuzzy <s-connected if and only if there exists no non-
null r-frso sets λ, µ ∈ IX , r ∈ I0 such that λ = 1− µ.

Proof. Necessity: Let λ and µ be two r-frso sets in (X, τ) such that λ 6= 0, 1−µ 6= 0 and
λ = 1 − µ. Therefore 1 − µ is a r-frsc set. Since λ 6= 0, µ 6= 1. This implies that µ is a
proper fuzzy set which is both r-frso and r-frsc in (X, τ). Hence (X, τ) is not a r-fuzzy
<s-connected space. But this is a contradiction to our hypothesis. Thus there exists no
non-null r-frso sets λ and µ in (X, τ) such that λ = 1− µ.

Sufficiency: Let λ be both r-frso and r-frsc in (X, τ) such that λ 6= 0, λ 6= 1. Let
1− λ = µ. Then µ is a r-frso set and 1− µ 6= 1. This implies that µ = 1− λ 6= 0, which
is a contradiction to our hypothesis. Hence (X, τ) is a r-fuzzy <s-connected space. �

Proposition 4.2. A fts (X, τ) is a r-fuzzy <s-connected space if and only if there exists no
non-null r-frso sets λ, µ ∈ IX with r ∈ I0 such that λ = 1 − µ, µ = 1 − RSCτ (λ) and
λ = 1−RSCτ (µ).

Proof. Necessity: Assume that there exists a fuzzy sets λ and µ such that λ 6= 0, 1−µ 6= 0,
λ = 1−µ, µ = 1−RSCτ (λ) and λ = 1−RSCτ (µ). Since 1−RSCτ (λ) and 1−RSCτ (µ)
are r-frso sets in (X, τ), λ and µ are r-frso sets in (X, τ). This implies (X, τ) is not a r-
fuzzy <s-connected space, which is a contradiction. Thus there exists no non-null r-frso
sets λ and µ in (X, τ) such that λ = 1− µ, µ = 1−RSCτ (λ) and λ = 1−RSCτ (µ).

Sufficiency: Let λ be both r-frso and r-frsc in (X, τ) such that λ 6= 0, λ 6= 1. Now by
taking 1 − λ = µ, we obtain a contradiction to our hypothesis. Hence (X, τ) is a r-fuzzy
<s-connected space. �

Definition 4.4. A fts (X, τ) is said to be r-fuzzy C5-disconnected if there exists fuzzy set
λ ∈ IX , r ∈ I0, which is both r-fo and r-fc set such that λ 6= 0 and λ 6= 1. If (X, τ) is not
r-fuzzy C5-disconnected then it is said to be r-fuzzy C5-connected.

Proposition 4.3. Let (X, τ) and (Y, σ) be two fts’s. Let f : (X, τ) → (Y, σ) is a fuzzy
regular semi continuous and surjective function. If (X, τ) is r-fuzzy <s-connected, then
(Y, σ) is a r-fuzzy C5-connected.

Proof. Let (X, τ) is r-fuzzy <s-connected. Suppose (Y, σ) is not a r-fuzzy C5-connected
space, then there exists a proper fuzzy set λ ∈ IY , r ∈ I0 which is both r-fo and r-fc set.
Since f is a fuzzy regular semi continuous function, f−1(λ) is both r-frso and r-frsc in
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(X, τ). But this is a contradiction to hypothesis. Hence (Y, σ) is a r-fuzzy C5-connected
space. �

Definition 4.5. A fuzzy set in a fts (X, τ) is said to be r-frsco set, which is both r-frso and
r-frsc set.

Definition 4.6. A fts (X, τ) is said to be r-fuzzy <s-C5-disconnected if there exists r-
frsco set λ ∈ IX , r ∈ I0 such that λ 6= 0 and λ 6= 1. If (X, τ) is not r-fuzzy <s-C5-
disconnected then it is said to be r-fuzzy <s-C5-connected.

Proposition 4.4. A fts (X, τ) is r-fuzzy <s-C5 connected, then it is r-fuzzy <s-connected.

Proof. Suppose that there exists non-null r-frso sets λ and µ such that λ ∨ µ = 1 and λ ∧
µ = 0 (r-fuzzy<s-disconnected), then λ = λ∨µ and λ = λ∧µ. In other words, λ = 1−µ.
Hence λ is a r-frsco set which implies that (X, τ) is r-fuzzy <s-C5-disconnected. �

Remark. The converse of the above Proposition need not be true as shown by the following
example.

Example 4.7. Let X = {a, b, c}, λ1, λ2, λ3, λ4, λ5, µ, δ ∈ IX are defined as λ1(a) =
0.4, λ1(b) = 0.5, λ1(c) = 0.6; λ2(a) = 0.4, λ2(b) = 0.5, λ2(c) = 0.4; λ3(a) =
0.5, λ3(b) = 0.5, λ3(c) = 0.5; λ4(a) = 0.5, λ4(b) = 0.5, λ4(c) = 0.6; λ5(a) =
0.4, λ5(b) = 0.5, λ5(c) = 0.5; µ(a) = 0.5, µ(b) = 0.5, µ(c) = 0.4; δ(a) = 0.6, δ(b) =
0.5, δ(c) = 0.6. We define fuzzy topology τ : IX → I as follows:

τ(λ) =



1 if λ ∈ {0, 1},
1
3 if λ = λ1,
1
3 if λ = λ2,
1
3 if λ = λ3,
1
3 if λ = λ4,
1
3 if λ = λ5,

0 otherwise.

For r = 1
3 , The fuzzy sets µ and δ are r-frso sets over 1 (since there exist r-fro set λ1 such

that λ1 ≤ µ ≤ Cτ (λ1) = 1−λ4 and there exist r-fro set λ4 such that λ4 ≤ δ ≤ Cτ (λ4) =
1− λ2). Also, µ ∧ δ = µ 6= 0, µ ∨ δ = δ 6= 1, hence (X, τ) is r-fuzzy <s-connected. But
(X, τ) is r-fuzzy <s-C5-disconnected, since λ3 is both r-frso set and r-frsc set.

Proposition 4.5. Let (X, τ) and (Y, σ) be fts’s. Let f : (X, τ)→ (Y, σ) be a fuzzy regular
semi irresolute and surjective function. If (X, τ) is r-fuzzy <s-connected, then (Y, σ) is
r-fuzzy <s-connected.

Proof. Assume that (Y, σ) is not r-fuzzy <s-connected. Thus there exists non-null r-frso
sets λ, µ ∈ IY , r ∈ I0 such that λ ∨ µ = 1 and λ ∧ µ = 0. Since f is fuzzy regular semi
irresolute function, ν = f−1(λ), η = f−1(µ) are r-frso sets in (X, τ). From λ 6= 0, we
get ν = f−1(λ) 6= 0. (If f−1(λ) 6= 0, then λ = f(f−1(λ)) = f(0) = 0, which is a
contradiction.) Similarly we obtain η = 0. Now, λ ∨ µ = 1 f−1(λ) ∨ f−1(µ) = f−1(1),
ν ∨ η = 1, λ ∧ µ = 0 f−1(λ) ∧ f−1(µ) = f−1(0) ν ∧ η = 0. This implies that ν ∨ η = 1
and ν ∧ η = 0. Thus (X, τ) is r-fuzzy <s-connected, which is a contradiction to our
hypothesis. Hence (Y, σ) is r-fuzzy <s-connected. �

Proposition 4.6. A fts (X, τ) is r-fuzzy <s-C5-connected if and only if there exists no
non-null r-frso sets λ, µ ∈ IX , r ∈ I0 such that λ = 1− µ.



r-FUZZY <s-COMPACTNESS AND r-FUZZY <s-CONNECTEDNESS IN THE SENSE OF ŠOSTAK’S 281

Proof. Suppose that λ and µ are r-frso sets in X such that λ 6= 0, µ 6= 0, λ = 1 − µ.
Since λ = 1− µ, 1− µ is a r-frso set and µ is a r-frsc set. And λ 6= 0 implies µ 6= 1. But
this is a contradiction to the fact that (X, τ) is r-fuzzy <s-C5-connected.

Conversely, let λ be both r-frso and r-frsc in X such that λ 6= 0, λ 6= 1. Now take
µ = 1 − λ. In this case µ is a r-frso set and λ 6= 1. Which implies that µ = 1 − λ = 0,
which is a contradiction. �

Proposition 4.7. A fts (X, τ) is r-fuzzy <s-C5-connected if and only if there exists no
non-null fuzzy sets λ, µ ∈ IX , r ∈ I0 such that 1 − λ = µ, µ = 1 − RSCτ (λ),
λ = 1−RSCτ (µ).

Proof. Assume that there exists a fuzzy sets λ and µ such that λ 6= 0, µ 6= 0, 1− λ = µ,
µ = 1 − RSCτ (λ) and λ = 1 − RSCτ (µ). Since 1 − RSCτ (λ) and 1 − RSCτ (µ) are
r-frso sets over X , λ and µ are r-frso sets in X , which is a contradiction.

Conversely, let λ be both r-frso and r-frsc in X such that λ 6= 0, λ 6= 1. Taking
µ = 1− λ, we obtain a contradiction. �

Definition 4.8. A fts (X, τ) is said to be r-fuzzy <s-strongly connected if there exists no
non-null r-frsc sets λ, µ ∈ IX , r ∈ I0 such that λ+ µ ≤ 1.

In otherwords, a fts (X, τ) is said to be r-fuzzy <s-strongly connected if there exists no
non-null r-frsc sets λ, µ ∈ IX , r ∈ I0 such that λ ∧ µ = 1.

Proposition 4.8. A fts (X, τ) is r-fuzzy <s-strongly connected if and only if there exists
no non-null r-frso sets λ, µ ∈ IX with r ∈ I0 such that λ 6= 1, µ 6= 1 and λ+ µ ≥ 1.

Proof. Necessity: Let λ and µ are r-frso sets in (X, τ) such that λ 6= 1, µ 6= 1 and
λ + µ ≥ 1. If we take ν = 1 − λ and η = 1 − µ, then ν and η become r-frsc sets in
X and ν 6= 0, η 6= 0 and ν + η ≤ 1. Which is a contradiction. Hence (X, τ) is r-fuzzy
<s-strongly connected.

Sufficiency: Let λ and µ be non-null r-frsc sets in (X, τ) such that λ + µ ≤ 1. If
ν = 1− λ and η = 1−µ, then ν and η become r-frso sets in (X, τ) and ν 6= 1, η 6= 1 and
ν + η ≥ 1. Which is a contradiction. Thus there exists no non-null r-frso sets λ and µ in
(X, τ) such that λ 6= 1, µ 6= 1 and λ+ µ ≥ 1. �

Proposition 4.9. Let (X, τ) and (Y, σ) be fts’s. Let f : (X, τ) → (Y, σ) be a fuzzy
regular semi irresolute and surjective function. If (X, τ) is r-fuzzy <s-strongly connected,
then (Y, σ) is r-fuzzy <s-strongly connected.

Proof. Suppose that (Y, σ) is not r-fuzzy <s-strongly connected. Then there exists non-
null r-frsc sets ν1 and ν2 in (Y, σ) such that ν1 6= 0, ν2 6= 0, ν1 + ν2 ≤ 0. Since f
is fuzzy regular semi irresolute function, f−1(ν1), f−1(ν2) are r-frsc sets in (X, τ) and
f−1(ν1)∧f−1(ν2) = 0, f−1(ν1) 6= 0, f−1(ν2) 6= 0. (If f−1(ν1) = 0, then f(f−1(ν1)) =
ν1 which implies f(0) = ν1. So 0 = ν1 a contradiction.) Hence (X, τ) is r-fuzzy <s-
strongly connected, a contradiction to our hypothesis. Thus (Y, σ) is r-fuzzy <s-strongly
connected. �

Remark. r-fuzzy <s-strongly connected does not imply r-fuzzy <s-C5-connected.

Example 4.9. In Example 4.7, (X, τ) is r-fuzzy <s-strongly connected, since there is no
r-frsc sets λ1, λ2, λ1 + λ2 ≤ 1. But (X, τ) is r-fuzzy <s-C5-disconnected.

Remark. r-fuzzy <s-C5-connected does not imply r-fuzzy <s-strongly connected.
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Example 4.10. In Example 4.3, (X, τ) is r-fuzzy <s-C5-strongly connected, since there
is no fuzzy set λ is both r-frso and r-frsc set. But (X, τ) is not r-fuzzy <s-strongly
connected, since there is the r-frsc sets λ and µ, λ+ µ ≤ 1.

Definition 4.11. Let (X, τ) be fts, λ, µ ∈ IX , r ∈ I0. The non-null fuzzy sets λ and µ
are said to be

(1) r-fuzzy <s-weakly separated if RSCτ (λ) ≤ 1− µ and RSCτ (µ) ≤ 1− λ.
(2) r-fuzzy <s-q-separated if RSCτ (λ) ∧ µ = 0 = λ ∧RSCτ (µ).

Definition 4.12. A fts (X, τ) is said to be r-fuzzy <s-CW -disconnected if there exists
r-fuzzy <s-weakly separated non-null fuzzy sets λ and µ in X such that λ ∨ µ = 1.

Example 4.13. Let X = {a, b, c}, λ, µ ∈ IX , r ∈ I0 are defined as λ(a) = 0, λ(b) =
1, λ(c) = 0; µ(a) = 1, µ(b) = 0, µ(c) = 1. We define fuzzy topology τ : IX → I as
follows:

τ(λ) =


1 if λ ∈ {0, 1},
1
3 if λ = λ,
1
3 if λ = µ,

0 otherwise.

For r = 1
3 , the fuzzy sets λ and µ are r-frso sets in (X, τ),RSCτ (λ) ≤ 1−µ,RSCτ (µ) ≤

1 − λ. Hence λ and µ are r-fuzzy <s-weakly separated and λ ∨ µ = 1. Hence (X, τ) is
r-fuzzy <s-CW -disconnected.

Definition 4.14. A fts (X, τ) is said to be r-fuzzy <s-CQ-disconnected if there exists
r-fuzzy <s-q-separated non-null fuzzy sets λ and µ in X such that λ ∨ µ = 1.

Example 4.15. In Example 4.13, the fuzzy sets λ and µ are r-frso sets, RSCτ (λ) =
1−µ∧µ = 0 and RSCτ (µ) = 1−λ∧λ = 0. Hence λ and µ are r-fuzzy <s-q-separated
and λ ∨ µ = 1. Thus (X, τ) is r-fuzzy <s-CQ-disconnected.

Remark. A fts (X, τ) is said to be r-fuzzy <s-CW -connected if and only if (X, τ) is r-
fuzzy <s-CQ-connected.

Definition 4.16. Let (X, τ) be a fts and Y ≤ X . Let λY is defined as follows λY (x) ={
1 if x ∈ Y
0 if x /∈ Y

. Let τY = {λY ∧µ : τ(µ) ≥ r}, then the fuzzy topology τY on Y is called

fuzzy subspace topology and (Y, τY ) is called fuzzy subspace of (X, τ).

Definition 4.17. A fuzzy subspace (Y, τY ) of fts (X, τ) is said to be r-fuzzy <s-open
(resp. r- fuzzy <s-closed, r-fuzzy <s-connected) subspace if λY ∈ FRSO(X) (resp.
λY ∈ FRSC(X), λY is r-fuzzy <s-connected).

Theorem 4.10. Let (Y, τY ) be a r-fuzzy <s-connected subspace of fts (X, τ) such that
γY ∧ µ ∈ FRSO(X). If 1 has a r-fuzzy <s-separations λ and µ, then either γY ≤ λ or
γY ≤ µ.

Proof. Let λ, µ be r-fuzzy <s-separation on 1. By hypothesis, λ ∧ γY ∈ FRSO(X),
µ ∧ γY ∈ FRSO(X) and [λ ∧ γY ] ∨ [µ ∧ γY ] = γY . Since γY is r-fuzzy <s-connected.
Then either λ ∧ γY = 0 or µ ∧ γY = 0. Therefore, either γY ≤ λ or γY ≤ µ. �

Theorem 4.11. If (X, τ2) is a r-fuzzy <s-connected space and τ1 is fuzzy coarser than τ2,
then (X, τ1) is also a r-fuzzy <s-connected.
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Proof. Let λ, µ ∈ IX , r ∈ I0 be r-fuzzy <s-separation on (X, τ1). Then λ, µ are r-frso
sets. Since τ1 ≤ τ2. Then λ, µ in (X, τ2) such that λ, µ is r-fuzzy <s-separation on
(X, τ2), which is a contradiction with the r-fuzzy <s-connectedness of (X, τ2). Hence,
(X, τ1) is r-fuzzy <s-connected. �

Remark. The converse of Theorem 4.11 is not true in general, as shown in the following
example.

Example 4.18. Let X = {a, b, c, d, e, f}, λ1, λ2, λ3, λ4 ∈ IX , r ∈ I0 are defined
as λ1(a) = 1, λ1(b) = 1, λ1(c) = 1, λ1(d) = 0, λ1(e) = 0, λ1(f) = 0; λ2(a) =
0.2, λ2(b) = 0.3, λ2(c) = 0.4, λ2(d) = 0, λ2(e) = 0, λ2(f) = 0; λ3(a) = 0, λ3(b) =
0, λ3(c) = 0, λ3(d) = 1, λ3(e) = 1, λ3(f) = 1; λ4(a) = 0.2, λ4(b) = 0.3, λ4(c) =
0.4, λ4(d) = 1, λ4(e) = 1, λ4(f) = 1. We define fuzzy topology τ1, τ2 : IX → I as
follows:

τ1(λ) =

{
1 if λ ∈ {0, 1},
0 otherwise.

τ2(λ) =



1 if λ ∈ {0, 1},
1
3 if λ = λ1,
1
3 if λ = λ2,
1
3 if λ = λ3,
1
3 if λ = λ4,

0 otherwise.
Let τ1 be the indiscrete fuzzy <s-topology, then τ1 is r-fuzzy <s-connected, on the other
hand, Clearly, τ2 defines a fuzzy topology on X such that τ1 ≤ τ2. For r = 1

3 , λ1 and λ3

are r-frso sets in which form a r-fuzzy <s-separation of (X, τ2) where λ1 ∧ λ3 = 0 and
λ1 ∨ λ3 = 1. Hence (X, τ2) is r-fuzzy <s-disconnected.

Theorem 4.12. A fuzzy subspace (Y, τY ) of a r-fuzzy <s-disconnected space (X, τ) is
r-fuzzy <s-disconnected if γY ∧ µ ∈ FRSO(X), ∀µ ∈ FRSO(X).

Proof. Let (Y, τY ) be r-fuzzy <s-connected. Since (X, τ) is r-fuzzy <s-disconnected.
Then there exists r-fuzzy <s-separation λ, µ on (X, τ). By hypothesis, λ ∧ γY ∈
FRSO(X), µ ∧ γY ∈ FRSO(X) and [λ ∧ γY ] ∨ [µ ∧ γY ] = γY , which is a con-
tradiction with the r-fuzzy <s-connectedness of (Y, τY ). Therefore (Y, τY ) is r-fuzzy
<s-disconnected. �

Remark. A r-fuzzy <s-disconnectedness property is not hereditary property in general,
as in the following example.

Example 4.19. In Example 4.18, let Y = {a, b} ≤ X . We consider the fuzzy set λY of
Y defined as follows, λY (a) = 1, λY (b) = 1. Then we define fuzzy subspace topology
τY : IY → I as follows:

τY (λ) =



1 if λ ∈ {0, 1},
1
3 if λ = λY ∧ λ1,
1
3 if λ = λY ∧ λ2,
1
3 if λ = λY ∧ λ3,
1
3 if λ = λY ∧ λ4,

0 otherwise.

Thus, the collection τY = {λY ∧µ : τ(µ) ≥ r} is a fuzzy subspace topology on Y in which
there is no r-fuzzy <s-separation on (Y, τY ). Therefore, (Y, τY ) is r-fuzzy <s-connected
at the time that (X, τ) is r-fuzzy <s-disconnected as shown in Example 4.18.
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5. CONCLUSION

Sostak’s fuzzy topology has been recently of major interest among fuzzy topologies. In
this paper, we have introduced r-fuzzy regular semi compactness and gave basic definition
and theorems of the concept. Also, we introduce r-fuzzy regular semi connectedness, r-
fuzzy regular semi strongly connectedness and r-fuzzy regular semi-C5-connectedness.
Some interesting properties of these notions are studied.
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