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FUZZY STABILITY RESULTS OF ADDITIVE FUNCTIONAL EQUATION IN
DIFFERENT APPROCHES

K.TAMILVANAN, LAKSHMI NARAYAN MISHRA, VISHNU NARAYAN MISHRA∗ AND K.
LOGANATHAN

ABSTRACT. In this paper, we investigate some stability results of the following finite
dimensional additive functional equation

f

(
n∑

i=1

kxi

)
+

n∑
j=1

f

−kxj +

n∑
i=1;i 6=j

kxi

 = (n− 1)

[
n∑

i=1

(2i− 1)f(xi)

]
where n is the positive integer with N − {0, 1, 2} and k is the only odd positive integers,
in Fuzzy Normed space using direct and fixed point approaches.

1. INTRODUCTION

Hyers [7] gave a positive answer to the question of Ulam for Banach spaces. In 1950,
T. Aoki [3] was the second author to treat this problem for additive mappings. One of the
most famous functional equations is the additive functional equation

f(x+ y) = f(x) + f(y) (1.1)

In 1821, it was first solved by A. L. Cauchy in the class of continuous real-valued function.
It is often called Cauchy additive functional equation in honor of A. L. Cauchy. The theory
of additive functional equations is frequently applied to the development of theories of
other functional equations. Moreover, the properties of additive functional equations are
tools in almost every field of natural and social sciences. Every solution of the additive
functional equation (1.1) is called an additive function. The solution and stability of the
following additive functional equations

f(x+ ay) + af(x− y) = f(x− ay) + af(x+ y), a 6= −1, 0, 1 (1.2)

f(2x− y) + f(x− 2y) = 3f(x)− 3f(y) (1.3)
were studied by K. W. Jun and H. M. Kim [8] and D. O. Lee [16]. Few functional equation
papers which were discussed additive and non-additive functional equations properties in
fuzzy normed spaces [see ( [1, 2, 6, 15, 17, 18, 22]. Mishra et al., and Tamilvanan et al.,
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were used to develop this work as more clear (see. Ref.[4, 9, 10, 11, 12, 13, 14, 19, 20, 21]).
In this paper, the authors investigate the stability of the n-dimensional additive functional
equation

f

(
n∑
i=1

kxi

)
+

n∑
j=1

f

−kxj +

n∑
i=1;i6=j

kxi

 = (n− 1)

[
n∑
i=1

(2i− 1)f(xi)

]
(1.4)

where n is the positive integer with N −{0, 1, 2} and k is the only odd positive integers in
Fuzzy Normed Space is discussed.

2. FUZZY STABILITY RESULTS

In this section, the authors present basic definition in fuzzy normed space and investigate
the fuzzy stability of the finite dimensional functional equation (1.4).

Definition 2.1. Let X be a real linear space. A function N : X ×R −→ [0, 1] is said to be
fuzzy norm on X if for all x, y ∈ X and a, b ∈ R.
(N1) N(x, a) = 0 for a ≤ 0;
(N2) x = 0 iff N(x, a) = 1 for all a > 0;
(N3) N(ax, b) = N

(
x, b
|a|

)
if a 6= 0

(N4) N(x+ y, a+ b) ≥ min{N(x, a), N(y, b)};
(N5) N(x, .) is a non-decreasing function on R and lima−→∞N(x, a) = 1.
(N6) For x 6= 0, N(x, .) is continuous on R.

The pair (X,N) is called a fuzzy normed linear space. One may regard N(x, a) as the
truth value of the statement the norm of x is less than or equal to the real number a.

Definition 2.2. Let (X,N) be a fuzzy normed linear space. Let xn be a sequence in X .
Then xn is said to be convergent if there exists x ∈ X such that limn→∞N (xn − x, t) =
1 for all t > 0. In that case, x is called the limit of the sequence xn and we denote it by
N − limn→∞xn = x.

Definition 2.3. A sequence xn in X is called Cauchy if for each ε > 0 and each t > 0
there exists n0 such that for all n ≥ n0 and all p > 0, we have N (xn+p − xn, t) > 1− ε.

Definition 2.4. Every convergent sequence in a fuzzy normed space is Cauchy. If each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy
normed space is called a fuzzy Banach space.

Definition 2.5. A mapping f : X → Y between fuzzy normed spaces X and Y is contin-
uous at a point x0 if for each sequence {xn} converging to x0 in X, the sequence f{xn}
converges to f{x0}. If f is continuous at each point of x0 ∈ X , then f is said to be
continuous on X.

In section 3 and 4, assume that X , (Z,F
′
) and (Y, F ) are linear space, Fuzzy Normed

space and Fuzzy Banach space respectively. We define a function f : X → Y by

Df(x1, x2, · · · , xn) = f

(
n∑
i=1

kxi

)
+

n∑
j=1

f

−kxj +

n∑
i=1;i 6=j

kxi

−(n−1)

[
n∑
i=1

(2i− 1)f(xi)

]
for all x1, x2, · · · , xn ∈ X .
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3. STABILITY OF THE FUNCTIONAL EQUATION (1.4)- DIRECT METHOD

Theorem 3.1. Let β ∈ {1,−1} be fixed and let ψ : Xn −→ Z be a mapping such that for
some d > 0 with 0 <

(
d
3

)β
< 1.

N ′
(
ψ(0, 2βx, 0, · · · , 0), r

)
≥ N ′(dβψ(0, x, 0, · · · , 0), r) (3.1)

for all x ∈ X and all r > 0, d > 0, and

limk−→∞N
′ (ψ(3βkx1, 3

βkx2, ..., 3
βkxn), 3βkr

)
= 1 (3.2)

for all x1, x2, ..., xn ∈ X and all r > 0. Suppose that a function f : X −→ Y satisfies the
inequality

N(Df(x1, x2, ..., xn), r) ≥ N ′(ψ(x1, x2, ..., xn), r) (3.3)
for all r > 0 and x1, x2, ..., xn ∈ X. Then the limit

A(x) = N − limk−→∞
f(3βkx)

3βk
(3.4)

exists for all x ∈ X and the mapping A : X −→ Y is the unique additive mapping such
that

N(f(x)−A(x), r) ≥ N ′(ψ(0, x, 0, · · · , 0), (n− 1)r|3− d|) (3.5)
for all x ∈ X and for all r > 0.

Proof. First assume that β = 1. Letting (x1, x2, x3, ..., xn) by (0, x, 0, ..., 0) in (3.3), we
get

N (3(n− 1)f(x)− (n− 1)f(3x), r) ≥ N ′(ψ(0, x, 0, ..., 0), r) (3.6)
for all x ∈ X and all r > 0. Replacing x by 3kx in (3.6), we obtain

N

(
f(3k+1x)

3
− f(3kx),

r

3(n− 1)

)
≥ N ′(ψ(0, 3kx, 0, ..., 0), r) (3.7)

for all x ∈ X and for all r > 0. Using (3.1), we get

N

(
f(3k+1x)

3
− f(3kx),

r

3(n− 1)

)
≥ N ′(ψ(0, x, 0, ..., 0),

r

dk
) (3.8)

for all x ∈ X and for all r > 0. It is easy to verify from (3.8) that

N

(
f(3k+1x)

3k+1
− f(3kx)

3k
,

r

3(n− 1)3k

)
≥ N ′(ψ(0, x, 0, ..., 0),

r

dk
) (3.9)

holds for all x ∈ X and for all r > 0. Replacing r by dkr in (3.9),we get

N

(
f(3k+1x)

3k+1
− f(3kx)

3k
,

dkr

3(n− 1)3k

)
≥ N ′(ψ(x, x, 0, ..., 0), r) (3.10)

for all x ∈ X and for all r > 0. It is follows from

f(3kx)

3k
− f(x) =

k−1∑
i=0

[
f(3i+1x)

3i+1
− f(3ix)

3i

]
(3.11)

for all x ∈ X. From the equations (3.10) and (3.11), we arrive

N

(
f(3kx)

3k
− f(x),

k−1∑
i=0

dir

3(n− 1)3i

)

≥ min
k−1⋃
i=1

{
N

(
f(3i+1x)

3i+1
− f(3ix)

3i
,

dir

3(n− 1)3i

)}
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≥ min
k−1⋃
i=1

N ′(ψ(0, x, 0, ..., 0), r)

≥ N ′(ψ(0, x, 0, ..., 0), r) (3.12)
for all x ∈ X and for all r > 0. Replacing x by 3mx in (3.12), we obtain

N

(
f(3k+mx)

3k+m
− f(3mx)

3m
,

m+k−1∑
i=m

dir

3(n− 1)3i

)
≥ N ′(ψ(0, x, 0, ..., 0),

r

dm
) (3.13)

for all x ∈ X and for all r > 0 and all m, k ≥ 0. Replacing r by dmr in (3.13), we get

N

(
f(3k+mx)

3k+m
− f(3mx)

3m
,

k−1∑
i=0

dir

3(n− 1)3i

)
≥ N ′(ψ(0, x, 0, ..., 0), r) (3.14)

for all x ∈ X and for all r > 0 and all m, k ≥ 0. Using (N3) in (3.13), we obtain

N

(
f(3k+mx)

3k+m
− f(3mx)

3m
, r

)
≥ N ′

(
ψ(0, x, 0, ..., 0),

r∑m+k−1
i=m

di

3(n−1)3i

)
(3.15)

for all x ∈ X , r > 0 and all m, k ≥ 0. Since 0 < d < 3 and
∑k
i=0

(
d
3

)i
<∞, the Cauchy

criterion for convergence and (N5) implies that
{
f(3kx)

3k

}
is a Cauchy sequence in (Y,N).

Since (Y,N)is a fuzzy Banach Space, this sequence converges to some point A(x) ∈ Y.
So one can define the mapping A : X −→ Y by

A(x) := N − limk−→∞
f(3kx)

3k

for all x ∈ X. Letting m = 0 in (3.15), we get

N

(
f(3kx)

3k
− f(x), r

)
≥ N ′

(
ψ(0, x, 0, ..., 0),

r∑k−1
i=0

di

3(n−1)3i

)
(3.16)

for all x ∈ X. Taking the limits as k −→∞ and using (N6), we arrive

N(f(x)−A(x), r) ≥ N ′(ψ(0, x, 0, ..., 0), 3(n− 1)r(3− d))

for all x ∈ X and for all r > 0. Now, we claim that A is additive. Replacing (x1, x2, x3, ..., xn)
by (3kx1, 3

kx2, ..., 3
kxn) in (3.3), we obtain

N

(
1

3k
Df(3kx1, 3

kx2, ..., 3
kxn), r

)
≥ N ′(ψ(3kx1, 3

kx2, ..., 3
kxn), 3kr) (3.17)

for all r > 0 and for all x1, x2, ..., xn ∈ X. Since

limk−→∞N
′ (ψ(3βkx1, 3

βkx2, ..., 3
βkxn), 3βkr

)
= 1

Hence A satisfies the additive functional equation (1.4). In order to prove A(x) is unique,
we let A′(x) be another additive functional equation satisfying (1.4) and (3.5). Hence

N(A(x)−A′(x), r) = N

(
A(3kx)

3k
− A′(3kx)

3k
, r

)
≥ min

{
N

(
A(3kx)

3k
− f(3kx)

3k
,
r

2

)
, N

(
f(3kx)

3k
− A′(3kx)

3k
,
r

2

)}
≥ N ′

(
ψ(0, 3kx, 0, ..., 0),

3r(n− 1)3k(3− d)

2

)
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≥ N ′
(
ψ(0, 3kx, 0, ..., 0),

3r(n− 1)3k(3− d)

2dk

)
for all x ∈ X and r > 0. Since limk−→∞

3r(n−1)3k(3−d)
2dk

=∞, we obtain

limk→∞N
′
(
ψ(0, x, 0, ..., 0),

3r(n− 1)3k(3− d)

2dk

)
= 1

Thus N(A(x)− A′(x), r) = 1 for all x ∈ X and r > 0. Hence A(x) = A′(x). Therefore
A(x) is unique. For β = −1, we can prove the result by a similar method. This completes
the proof of the theorem. �

The following corollary is an immediate consequence of Theorem 3.1, concerning the
stability for the functional equation (1.4).

Corollary 3.2. Suppose that the function f : X −→ Y satisfies the inequality

N(Df(x1.x2, ...., xn), r) ≥


N ′(θ, r)

N ′(θ
∑n
i=1 ||xi||s, r)

N ′(θ(
∑n
i=1 ||xi||ns + Πn

i=1||xi||s), r)
for all x1, x2, ..., xn ∈ X and all r > 0, where θ, s are constants then there exists a unique
additive mapping A : X → Y such that

N(f(x)−A(x), r) ≥


N ′(θ, |2|r(n− 1)

N ′ (θ||x||s, r(n− 1) | 3− 3s |) ; s 6= 1

N ′ (θ||x||ns, r(n− 1) | 3− 3ns |) ; s 6= 1
n

4. STABILITY OF THE FUNCTIONAL EQUATION (1.4) FIXED POINT METHOD

In this section, the authors investigate the generalized Ulam-Hyers stability of the func-
tional equation (1.4) in fuzzy normed space using fixed point method.

For to prove the stability result, we define the following µi is a constant such that

ηi =

{
3 if i = 0
1
3 if i = 1

and Ω is the set such that Ω = {t/t : X −→ Y, t(0) = 0} .

Theorem 4.1. Let f : X −→ Y be a mapping for which there exists a function ψ :
Xn −→ Z with condition

limk−→∞N
′ (ψ(ηkx1, η

kx2, ..., η
kxn), ηkr

)
= 1 (4.1)

for all x1, x2, ..., xn ∈ X and all r > 0 and satisfying the inequality

N(Df(x1, x2, ..., xn), r) ≥ N ′(ψ(x1, x2, ..., xn), r) (4.2)

for all x ∈ X and r > 0. If there exist L = L[i] such that the function x −→ β(x) =
1

(n−1)ψ
(
0, x3 , 0, ..., 0

)
has the property

N ′
(
L

1

ηi
β(ηix), r

)
= N ′ (β(x), r) (4.3)
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for all x ∈ X and r > 0, then there exist unique additive function A : X −→ Y satisfying
the functional equation (1.4) and

N(f(x)−A(x), r) ≥ N ′
(
L1−i

1− L
β(x), r

)
for all x ∈ X and r > 0.

Proof. Let d be a general metric on Ω such that

d(t, u) = inf {k ∈ (0,∞)|N(t(x)− u(x), r) ≥ N ′(β(x), kr), x ∈ X, r > 0}
It is easy to see that (Ω, d) is complete. Define T : Ω −→ Ω by Tt(x) = 1

ηi
t(ηix) for all

x ∈ X,for t, u ∈ Ω, we have

d(t, u) = k ⇒ N (t(x)− u(x), r) ≥ N ′(β(x), kr)

⇒ N

(
t(ηix)

ηi
− u(ηix)

ηi
, r

)
≥ N ′(β(ηix), kηir) (4.4)

⇒ N(Tt(x)− Tu(x), r) ≥ N ′(β(ηix), kηir)

⇒ N(Tt(x)− Tu(x), r) ≥ N ′(β(x), kLr)

⇒ d(Tt(x)− Tu(x)) ≥ kL
⇒ d(Tt− Tu, r) ≥ Ld(t, u)

for all t, u ∈ Ω.Therefore T is strictly contractive mapping on Ω with Lipschitz constant
L, replacing (x1, x2, x3, ..., xn) by (0, x, 0, ..., 0) in (4.2), we get

N ((n− 1)f(3x)− 3(n− 1)f(x), r) ≥ N ′ (ψ(0, x, 0, ..., 0), r) (4.5)

for all x ∈ X and r > 0. Using (N3) in (4.5), we arrive

N

(
f(3x)

3
− f(x), r

)
≥ N ′

(
ψ(0, x, 0, ..., 0)

(n− 1)
, r

)
(4.6)

for all x ∈ X and r > 0 with the help of (4.3) when i = 0, it follows from (4.6) that

⇒ N

(
f(3x)

3
− f(x), r

)
≥ N ′(Lβ(x), r)

⇒ d(Tf, f) ≥ L = L1 = L1−i. (4.7)
Replacing x by x

3 in (4.5), we obtain

N
(
f(x)− 3f

(x
3

)
, r
)
≥ N ′

(
3

(n− 1)
ψ
(

0,
x

3
, 0, ..., 0

)
, r

)
(4.8)

for all x ∈ X and r > 0, when i = 1, it follows from (4.8), we get

⇒ N
(
f(x)− 3f

(x
3

)
, r
)
≥ N ′(β(x), r)

⇒ T (f, Tf) ≤ 1 = L0 = L1−i. (4.9)
Then from (4.7) and (4.9), we can conclude

⇒ T (f − Tf) ≤ L1−i <∞.
Now from the fixed point alternative in both cases, it follows that there exists a fixed point
A of T in Ω such that

A(x) = N − limk−→∞
f(ηkx)

ηk
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for all x ∈ X and r > 0. Replacing (x1, x2, ..., xn) by (ηki x1, η
k
i x2, ..., η

k
i xn) in (4.2), we

arrive

N

(
1

ηki
Df(ηki x1, η

k
i x2, , η

k
i xn), r

)
≥ N ′(ψ(ηki x1, η

k
i x2, ..., η

k
i xn), ηki r)

for all r > 0 and all x1, x2, ..., xn ∈ X . By proceeding the same procedure of the Theorem
3.1 , we can prove the function A : X −→ Y is additive and its satisfies the functional
equation (1.4). By a fixed point alternative, since A is unique fixed point of T in the set

∆ = {f ∈ Ω/d(f,A) <∞} .
Therefore A is a unique function such that

N(f(x)−A(x), r) ≥ N ′(β(x), kr)

for all x ∈ X and r > 0. Again using the fixed point alternative, we obtain

d(f,A) ≤ 1

1− L
d(f, Tf)

⇒ d(f,A) ≤ L1−i

1− L

⇒ N(f(x)−A(x), r) ≥ N ′
(
β(x)

L1−i

1− L
, r

)
for all x ∈ X and r > 0. This completes the proof of the Theorem. �

The following Corollary is an immediate consequence of Theorem 4.1 concerning the
stability of (1.4).

Corollary 4.2. Suppose a function f : X −→ Y satisfies the inequality

N(Df(x1.x2, ..., xn), r) ≥


N ′(θ, r)

N ′(θ
∑n
i=1 ||xi||s, r)

N ′(θ(
∑n
i=1 ||xi||ns + Πn

i=1||xi||s), r)
for all x1, x2, ..., xn ∈ X and r > 0, where θ, s are constants with θ > 0. Then there
exists a unique additive mapping A : X −→ Y such that

N(f(x)−A(x), r) ≥


N ′(θ, r(n− 1) | 2 |
N ′ (θ||x||s, r(n− 1) | 3− 3s |) ; s 6= 1

N ′ (θ||x||ns, r(n− 1) | 3− 3ns |) ; s 6= 1
n

for all x ∈ X and r > 0.

Proof. Setting

ψ(x1, x2, x3, ..., xn) ≤


θ

θ(
∑n
i=1 ||xi||s)

θ(
∏n
i=1 ||xi||s +

∑n
i=1 ||xi||ns)

for all x1, x2, ..., xn ∈ X . Then

N ′
(
ψ
(
ηki x1, η

k
i x2, ..., η

k
i xn

)
, ηki r

)
=


N ′(θ, ηki r)

N ′
(
θ
∑n
i=1 ||xi||s, η

(1−s)k
i r

)
N ′
(
θ(
∑n
i=1 ||xi||ns + Πn

i=1||xi||s), η
(1−ns)k
i r

)
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=


−→ 1 as k −→∞,
−→ 1 as k −→∞,
−→ 1 as k −→∞.

Thus, (4.1) is holds. But we have

β(x) =
1

(n− 1)
ψ
(

0,
x

3
, 0, ..., 0

)
has the property

N ′
(
L

1

ηi
β(ηix), r

)
≥ N ′(β(x), r)

for all x ∈ X and r > 0. Hence

N ′(β(x), r) = N ′
(
ψ
(

0,
x

3
, 0, ..., 0

)
, (n− 1)r

)

=


N ′(θ, r(n− 1))

N ′
(

1
3s θ||x||

s, r(n− 1)
)

N ′
(

1
3ns θ||x||ns, r(n− 1)

)
.

Now,

N ′
(

1

ηi
β(ηix), r

)
=


N ′
(
θ
ηi
, r(n− 1)

)
N ′
(
θ
ηi

(
1
3s

)
||ηix||s, r(n− 1)

)
N ′
(
θ
ηi

(
1

3ns

)
||ηix||ns, r(n− 1)

)
=


N ′(η−1i β(x), r)

N ′(ηs−1i β(x), r)

N ′(ηns−1i β(x), r)

Now from the following cases for the conditions (i) and (vi).
Case(i):L = 3−1 for s = 0 if i = 0.

N(f(x)−A(x), r) ≥ N ′
(
L1−i

1−L β(x), r
)
≥ N ′

(
3−1

1−3−1
θ

(n−1) , r
)
≥ N ′ (θ, 2r(n− 1))

Case(ii):L =
(
1
3

)−1
for s = 0 if i = 1.

N(f(x)−A(x), r) ≥ N ′
(
L1−i

1−L β(x), r
)
≥ N ′

(
1

1−( 1
3 )
−1

θ
(n−1) , r

)
≥ N ′ (θ,−2r(n− 1))

Case(iii):L = (3)s−1 for s < 1 if i = 0.

N(f(x)−A(x), r) ≥ N ′
(
L1−i

1− L
β(x), r

)
≥ N ′

(
3s−1

1− 3s−1
θ||x||s

(n− 1)3s
, r

)
≥ N ′ (θ||x||s, r(n− 1)(3− 3s))

Case(iv):L = (3)1−s for s > 1 if i = 1.

N(f(x)−A(x), r) ≥ N ′
(
L1−i

1− L
β(x), r

)
≥ N ′

(
31−s

1− 31−s
θ||x||s

(n− 1)3s
, r

)
≥ N ′ (θ||x||s, r(n− 1)(3s − 3))
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Case(v):L = (3)ns−1 for s < 1
n if i = 0.

N(f(x)−A(x), r) ≥ N ′
(
L1−i

1− L
β(x), r

)
≥ N ′

(
3ns−1

1− 3ns−1
θ||x||ns

(n− 1)3ns
, r

)
≥ N ′ (θ||x||ns, r(n− 1)(3− 3ns))

Case(vi):L = (3)1−ns for s < 1
n if i = 1.

N(f(x)−A(x), r) ≥ N ′
(
L1−i

1− L
β(x), r

)
≥ N ′

(
31−ns

1− 31−ns
θ||x||ns

(n− 1)2ns
, r

)
≥ N ′ (θ||x||ns, r(n− 1)(3ns − 3))

Hence the proof is completed. �

5. CONCLUSION

In this work, in section 3, we investigated Hyers-Ulam stability results in Fuzzy normed
spaces by means of direct method, in section 4, we examined the Hyers-Ulam stability
results in fuzzy normed spaces by means of fixed point method.
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