ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 2, Number 2 (2019), 91-100 ISSN: 2582-0818 © http://www.technoskypub.com

GENERALIZED FUZZY Γ -IDEALS OF ORDERED Γ -SEMIGROUPS

AHSAN MAHBOOB* AND NOOR MOHAMMAD KHAN

ABSTRACT. In this paper, the notions of $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideals, $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideals and $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideals in ordered Γ -semigroups are introduced and their related properties are investigated. Furthermore, (k^*, k) -lower parts of $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideals, $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideals and $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideals are also defined. Finally, left regular, right regular and regular ordered Γ -semigroups in terms of $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideals and $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideals are characterized.

1. INTRODUCTION

In 1986, Sen and Saha [26] introduced the notion of a Γ -semigroup as follows: Let S and Γ be two nonempty sets. Then S is called a Γ -semigroup if there exists a mapping from $S \times \Gamma \times S$ to S which maps $(a, \alpha, b) \rightarrow a\alpha b$ satisfying $(a\gamma b)\mu c = a\gamma(b\mu c)$ for all $a, b, c \in S$ and $\gamma, \mu \in \Gamma$. Later on in 1993, the notion of an ordered Γ -semigroup was introduced by Sen and Seth [27]. Many classical notions such as ideals, bi-ideals and quasi-ideals in ordered semigroups and regular ordered semigroups have been generalized to ordered Γ -semigroups, and these classical notions of ordered Γ -semigroups have been studied by [6, 7, 3, 10, 14]

Zadeh [29], in 1965, introduced the concept of a fuzzy set. The concept of a fuzzy subgroup introduced by Rosenfeld [23]. In 1979, Kuroki [20] introduced fuzzy sets in semigroup theory. Fuzzy sets in ordered semigroups were first studied by Kehayopulu and Tsingelis in [11]. In [28], Tang characterized ordered semigroups by $(\in, \in \lor q)$ -fuzzy ideals. Later on, the concept of $(\in, \in \lor q_k)$ - fuzzy subalgebras in BCK/BCI-algebras is introduced by Jun [1]. In [24] Shabir et al. characterized the regular semigroups by $(\in, \in \lor q_k)$ -fuzzy ideals. In [16, 17, 18] Khan et al characterized ordered semigroups in terms of fuzzy bi-ideals and intuitionistics fuzzy bi-ideals. The concepts $(\in, \in \lor (k^*, q_k))$ -fuzzy left ideals, $(\in, \in \lor (k^*, q_k))$ -fuzzy right ideals and $(\in, \in \lor (k^*, q_k))$ -fuzzy generalized bi-ideals of ordered semigroups are introduced by Khan et al. [13]. Recently, Muhiuddin et al. [21] introduced the concept of $(\in, \in \lor (k^*, q_k))$ -fuzzy semiprime ideals using the concept of (k^*, k) qusi-coincidence.

²⁰¹⁰ Mathematics Subject Classification. 06F05, 08A72.

Key words and phrases. ordered Γ -semigroup; $(\in, \in \lor(k^*, q_k))$ -fuzzy left (right) Γ -ideals; $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideals.

^{*}Corresponding author.

The $(\in, \in \lor q_k)$ -fuzzy left Γ -ideals, $(\in, \in \lor q_k)$ -fuzzy right Γ -ideals and $(\in, \in \lor q_k)$ -fuzzy ideals of an ordered Γ -semigroup are introduced and characterized by Khan et al. [19]. In [4], Gambo et al. characterized left regular, right regular, regular and completely regular ordered Γ -semigroups in terms of $(\in, \in \lor q_k)$ -fuzzy left Γ -ideals, $(\in, \in \lor q_k)$ -fuzzy right Γ -ideals and $(\in, \in \lor q_k)$ -fuzzy ideals. By generalizing the concept of fuzzy generalized bi Γ -ideals, the concept of $(\in, \in \lor q_k)$ -fuzzy bi Γ -ideals in ordered Γ -semigroups is introduced by Gambo et al. [5].

Motivated by the work of Khan et al. [19] and Gambo et al. [4, 5], in the present paper, we have given some new types of fuzzy left (resp. right) Γ -ideals and Γ -ideals in ordered Γ -semigroups. As a follow up, we introduce the concept of an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal, $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideal and $(\in, \in \lor(k^*, q_k))$ -fuzzy ideal in an ordered Γ -semigroup, and investigate some vital properties of these new types of fuzzy Γ -ideals. Moreover, we characterize left (resp. right) regular ordered Γ -semigroups in terms (k^*, k) -lower part of $(\in, \in \lor(k^*, q_k))$ -fuzzy left (resp. right) Γ -ideals and also regular ordered Γ -semigroups in terms of $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideals and $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideals.

2. PRELIMINARIES

Let S and Γ be the nonempty sets. Then the triplet (S, Γ, \leq) is called an ordered Γ -semigroup if S is a Γ -semigroup and (S, \leq) is a partially ordered set such that

$$a \leq b \Rightarrow a\gamma c \leq b\gamma c \text{ and } c\gamma a \leq c\gamma b$$

for all $a, b, c \in S$ and $\gamma \in \Gamma$.

For a subset A of an ordered Γ -semigroup S, we denote $(A] = \{t \in S \mid t \leq a \text{ for some } a \in A\}$. For any nonempty subsets A and B of S, the following properties hold: (1) $A \subseteq (A]$; (2) ((A]] = (A]; (3) If $A \subseteq B$, then $(A] \subseteq (B]$; (4) $(A]\Gamma(B] \subseteq (A\Gamma B]$ and (5) $((A]\Gamma(B)] = (A\Gamma B]$.

A nonempty subset T of S is said to be a Γ -subsemigroup of S if for all $x, y \in T$ and $\gamma \in \Gamma$, $x\gamma y \in T$. A nonempty subset A of S is called left (right) Γ -ideal of S if $S\Gamma A \subseteq A$ ($A\Gamma S \subseteq A$) and (A] $\subseteq A$. If A is both left and right Γ -ideal of S, then A is called a Γ -ideal of S.

Let S be an ordered Γ -semigroup and let A be any nonempty subset of S. Then by L(A), R(A) and J(A), we denote the left Γ -ideal, the right Γ -ideal and the Γ -ideal of S generated by A respectively. It is easy to verify that $L(A) = (A \cup S\Gamma A], R(A) = (A \cup A\Gamma S]$ and $J(A) = (A \cup S\Gamma A \cup A\Gamma S \cup S\Gamma A\Gamma S]$.

Let (S, Γ, \leq) be an ordered Γ -semigroup. A mapping f from S to real closed interval [0, 1] is called the fuzzy subset of S (or fuzzy set of S). We denote by f_A the characteristic function of a subset A of S, which is defined as:

$$f_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

For any fuzzy subsets f and g of S, the fuzzy subsets $f \cap g$, $f \cup g$ and $f \circ g$ are defined as follows:

$$(f \cap g)(x) = \min\{f(x), g(x)\} = f(x) \land g(x) (f \cup g)(x) = \max\{f(x), g(x)\} = f(x) \lor g(x)$$

92

and

$$f \circ g)(x) = \begin{cases} \bigvee_{(y,z) \in A_x} \{f(y) \land g(z)\} & \text{if } A_x \neq \phi\\ 0 & \text{if } A_x = \phi \end{cases}$$

where $A_x = \{(y, z) \in S \times S \mid x \leq y \alpha z \text{ for some } \alpha \in \Gamma\}$. Define an order relation \preceq on the set of all fuzzy subsets of S by

$$f \preceq g \Leftrightarrow f(x) \leq g(x) \text{ for all } x \in S.$$

If f, g are fuzzy subsets of S such that $f \leq g$, then for each fuzzy subset h of S, $f \circ h \leq g \circ h$ and $h \circ f \prec h \circ q$.

A fuzzy subset f of S is called a fuzzy Γ -subsemigroup of S if $f(x\alpha y) \ge \min\{f(x), f(y)\}$ for all $x, y \in S$ and $\alpha \in \Gamma$. A fuzzy subset f of S is called a fuzzy left (resp. right) Γ -ideal of S if (1) $x \le y \Rightarrow f(x) \ge f(y)$ and (2) $f(x\alpha y) \ge f(y)$ (resp. $f(x\alpha y) \ge f(x)$) for all $x, y \in S$ and $\alpha \in \Gamma$. A fuzzy subset f of S is called a fuzzy Γ -ideal of S if it is both a fuzzy left and right Γ -ideal of S.

Lemma 2.1. [12] Let S be an ordered Γ -semigroups. Then the following are equivalent:

(1) S is regular;

(

(2) $A \cap B = (AB)$ for every right ideal A and left ideal B of S.

3. $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideals of ordered Γ -semigroups

Let S be an ordered Γ -semigroup, $a \in S$ and $u \in (0, 1]$. An ordered fuzzy point a_u is a mapping from S into [0,1] which is defined as follows:

$$a_u(x) = \begin{cases} u, & \text{if } x \in (a], \\ 0, & \text{if } x \notin (a]. \end{cases}$$

For any fuzzy subset f of S, we shall also denote $a_u \subseteq f$ by $a_u \in f$ in the sequel. Then $a_u \in f$ if and only if $f(a) \geq u$.

An ordered fuzzy point a_u of an ordered Γ -semigroup S is said to be quasi-coincident with a fuzzy subset f of S, written as $a_u qf$, if f(a) + u > 1.

Definition 3.1. An ordered fuzzy point x_u of ordered Γ -semigroup S, for any $k^* \in (0, 1]$, is said to be (k^*, q) -quasi-coincident with a fuzzy subset f of S, written as $x_u(k^*, q)f$, if

 $f(x) + u > k^*.$

Let S be an ordered Γ -semigroup and $0 \le k < k^* \le 1$. For an ordered fuzzy point x_u , we say that

- (1) $x_u(k^*, q_k)f$ if $f(x) + u + k > k^*$;
- (2) $x_u \in \lor(k^*, q_k)f$ if $x_u \in f$ or $x_u(k^*, q_k)f$; (3) $x_u \overline{\alpha} f$ if $x_u \alpha f$ does not hold for $\alpha \in \{(k^*, q_k), \in \lor(k^*, q_k)\}$.

Definition 3.2. A fuzzy subset f of an ordered Γ -semigroup S is called an $(\in, \in \lor(k^*, q_k))$ fuzzy Γ -subsemigroup of S if $x_u \in f$ and $y_v \in f$ imply $(x\gamma y)_{\min\{u,v\}} \in \forall (k^*, q_k) f$ for all $x, y \in S, \gamma \in \Gamma$ and $u, v \in (0, 1]$.

Definition 3.3. A fuzzy subset f of an ordered Γ -semigroup S is called an $(\in, \in \lor(k^*, q_k))$ fuzzy left (resp. right) Γ -ideal of S if:

(1) $x \leq y, y_u \in f \Rightarrow x_u \in \lor(k^*, q_k)f$ and

(2) $x \in S, y_u \in f$ implies $(x\gamma y)_u \in \lor(k^*, q_k)f$ (resp. $(y\gamma x)_u \in \lor(k^*, q_k)f$) for all $x, y \in S$ and $\gamma \in \Gamma$.

A fuzzy subset f of an ordered Γ -semigroup S is called an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal if it is both $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal and $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideal of S.

Example 3.4. Let $S = \{0, w, b, y\}$ and $\Gamma = \{\alpha, \beta\}$ be the nonempty sets. Define binary operations as:

α	0	w	x	y	β	0	w	x	y
0	0	0	0	0	0	0	0	0	0
w	0	x	0	w	w	w	w	w	w
x	0	x	0	y	x	0	0	0	0
y	0	0	0	x	y	w	w	w	y

Define order relation on S as, $\leq := \{(0,0), (w,w), (x,x), (y,y), (0,w), (0,x), (0,y)\}$. Clearly S is an ordered Γ -semigroup. The fuzzy set $\mu : S \to [0,1]$ is defined by

$$\mu(a) = \begin{cases} 0.2 & \text{if } a \in \{0, w, x\} \\ 0 & \text{if } a = y. \end{cases}$$

Take $k^* = 0.5$ and k = 0.1. It is easy to verify that μ is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of S.

Theorem 3.1. Let S be an ordered Γ -semigroup and A be a nonempty subset of S. Then the fuzzy subset f_A of A defined as

$$f_A(x) = \begin{cases} \frac{k^* - k}{2}, & \text{if } x \in A; \\ 0, & \text{if } x \notin A, \end{cases}$$

is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left (resp. right) Γ -ideal of S if and only if A is a left (resp. right) Γ -ideal of S.

Proof. Suppose that A is left Γ -ideal of S. Let $x, y \in S$ with $x \leq y$ and $u \in (0, 1]$ such that $y_u \in f_A$. Then $f_A(y) \geq u$. As L is a left Γ -ideal of S, $x \in A$. Thus $f_A(x) = \frac{k^* - k}{2}$. If $u \leq \frac{k^* - k}{2}$, then $f_A(x) \geq u$, so $x_u \in f_A$. If $u > \frac{k^* - k}{2}$, then $f_A(x) + u > \frac{k^* - k}{2} + \frac{k^* - k}{2} = k^* - k$. Thus $x_u(k^*, q_k)f_A$. Therefore $x_u \in \vee(k^*, q_k)f_A$.

Let $x, y \in S$ and $u \in (0, 1]$ such that $y_u \in f$. Then $y \in A$, $f(y) \ge u$. As A is a left Γ -ideal of S, we have $x\gamma y \in A$ for each $\gamma \in \Gamma$. Thus $f(x\gamma y) \ge \frac{k^*-k}{2}$. If $u \le \frac{k^*-k}{2}$, then $f(x\gamma y) \ge u$. Therefore $(x\gamma y)_u \in f$. Again, if $u > \frac{k^*-k}{2}$, then $f(x\gamma y) + u > \frac{k^*-k}{2} = k^* - k$. So $(x\gamma y)_u(k^*, q_k)f$. Therefore $(x\gamma y)_u \in \lor(k^*, q_k)f$.

then $f(x + y) \ge u$. Therefore $(x + y)u \in f$. Again, if $u \ge j_2$, then $f(x + y) + u \ge j_2$, $\frac{k^* - k}{2} + \frac{k^* - k}{2} = k^* - k$. So $(x \gamma y)_u (k^*, q_k) f$. Therefore $(x \gamma y)_u \in \vee (k^*, q_k) f$. Conversely, assume that f_A is an $(\in, \in \vee (k^*, q_k))$ -fuzzy left Γ -ideal of S. Let $x, y \in S$ such that $x \le y$. If $y \in A$, then $f_A(y) = \frac{k^* - k}{2}$. As f_A is an $(\in, \in \vee (k^*, q_k))$ -fuzzy left Γ -ideal of S and $x \le y$, we have $f_A(x) \ge \min\{f_A(y), \frac{k^* - k}{2}\} = \frac{k^* - k}{2}$. It follows that $f_A(x) = \frac{k^* - k}{2}$ and so $x \in A$. Let $x \in S$ and $y \in A$. Then $f_A(y) = \frac{k^* - k}{2}$. Now we have

$$f_A(x\gamma y) \ge \min\left\{f_A(y), \frac{k^* - k}{2}\right\} = \frac{k^* - k}{2}.$$

Thus $f_A(x\gamma y) = \frac{k^* - k}{2}$ and so $x\gamma y \in A$. Hence A is a left Γ -ideal of S.

Corollary 3.2. Let S be an ordered Γ -semigroup and A be a nonempty subset of S. Then the fuzzy subset f_A of A is defined as

$$f_A(x) = \begin{cases} \frac{k^* - k}{2}, & \text{if } x \in A; \\ 0, & \text{if } x \notin A, \end{cases}$$

is an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal of S if and only if A is a Γ -ideal of S.

94

Theorem 3.3. A fuzzy subset f of S is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left (resp. right) Γ -ideal of S if and only if

- $\begin{array}{ll} (1) & x \leq y \Rightarrow f(x) \geq \min\{f(y), \frac{k^*-k}{2}\}; \\ (2) & f(x\gamma y) \geq \min\{f(y), \frac{k^*-k}{2}\} \mbox{ (resp. } f(x\gamma y) \geq \min\{f(x), \frac{k^*-k}{2}\}); \end{array}$ for all $x, y \in S$ and $\gamma \in \Gamma$.

Proof. Let f be an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of S and $x, y \in S$. If f(x) < $\begin{array}{l} \min\{f(y), \frac{k^*-k}{2}\} \text{ for some } x, y \in S. \text{ Choose } u \in (0, 1] \text{ such that } f(x) < u \leq \min\{f(y), \frac{k^*-k}{2}\} \text{ for some } x, y \in S. \text{ Choose } u \in (0, 1] \text{ such that } f(x) < u \leq \min\{f(y), \frac{k^*-k}{2}\}. \text{ Then } y_u \in f, \text{ but } (x)_u \in \vee(k^*, q_k)f, \text{ a contradiction. Thus } f(x) \geq \min\{f(y), \frac{k^*-k}{2}\}. \text{ Again, if } f(x\gamma y) < \min\{f(y), \frac{k^*-k}{2}\} \text{ for some } x, y \in S \text{ and } \gamma \in \Gamma. \text{ Choose } u \in (0, 1] \text{ such that } f(x\gamma y) < u \leq \min\{f(y), \frac{k^*-k}{2}\}. \text{ Then } y_u \in f \text{ but } (x\gamma y)_u \in \vee(k^*, q_k)f, \end{array}$ which is a contradiction. Hence $f(x\gamma y) \ge \min\{f(y), \frac{k^*-k}{2}\}$.

Conversely assume that $f(x) \ge \min\{f(y), \frac{k^*-k}{2}\}$ for all $x, y \in S$. Let $y_u \in f(u \in (0,1])$. Then $f(y) \ge u$. So $f(x) \ge \min\{f(y), \frac{k^*-k}{2}\} \ge \min\{u, \frac{k^*-k}{2}\}$. If $u \le \frac{k^*-k}{2}$, then $f(x) \ge u$ implies $x_u \in f$. Again, if $u > \frac{k^*-k}{2}$, then $f(x) \ge \frac{k^*-k}{2}$. So f(x) + u > 1. then $f(x) \ge u$ implies $x_u \in f$. Again, if $u \ge \frac{1}{2}$, then $f(x) \ge \frac{1}{2}$. So $f(x) + u \ge \frac{k^*-k}{2} + \frac{k^*-k}{2} = k^* - k$, which implies that $x_u(k^*, q_k)f$. Thus $x_u \in \vee(k^*, q_k)f$. Let $f(x\gamma y) \ge \min\{f(y), \frac{k^*-k}{2}\}$ for all $x, y \in S$ and $\gamma \in \Gamma$. Let $y_u \in f$ ($u \in (0, 1]$). Then $f(y) \ge u$. So $f(x\gamma y) \ge \min\{f(y), \frac{k^*-k}{2}\} \ge \min\{u, \frac{k^*-k}{2}\}$. If $u \le \frac{k^*-k}{2}$, then $f(x\gamma y) \ge u$ implies $(x\gamma y)_u \in f$. If $u > \frac{k^*-k}{2}$, then $f(x\gamma y) \ge \frac{k^*-k}{2}$. So $f(x\gamma y) + u > \frac{k^*-k}{2} + \frac{k^*-k}{2} = k^* - k$, it follows that $(x\gamma y)_u(k^*, q_k)f$. Thus $(x\gamma y)_u \in \vee(k^*, q_k)f$. Hence f is an $(\in, \in \vee(k^*, q_k))$ -fuzzy left Γ -ideal of S.

Corollary 3.4. A fuzzy subset f of S is an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal of S if and only if

- (1) $x \leq y \Rightarrow f(x) \geq \min\{f(y), \frac{k^*-k}{2}\};$ (2) $f(x\gamma y) \geq \min\{f(y), \frac{k^*-k}{2}\}$ and $f(x\gamma y) \geq \min\{f(x), \frac{k^*-k}{2}\};$ for all $x, y \in S$ and $\gamma \in \Gamma$.

Definition 3.5. Let f be any fuzzy subset of an ordered Γ -semigroup S. For any $u \in (0, 1]$, the set

$$U(f;u) = \{x \in S \mid f(x) \ge u\}$$

is called a level subset of f.

Theorem 3.5. Let f be a fuzzy subset of S. Then f is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left (resp. right) Γ -ideal of S if and only if $U(f; u) \neq \emptyset$ ($u \in (0, \frac{k^* - k}{2}]$) is a left (resp. right) Γ -ideal of S.

Proof. Suppose that f is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of S. Let $x, y \in S$ be such that $x \leq y \in U(f; u)$, where $u \in (0, \frac{k^*-k}{2}]$. Then $f(y) \geq u$. By Theorem 3.3, $f(x) \geq \min\{f(y), \frac{k^*-k}{2}\} \geq \min\{u, \frac{k^*-k}{2}\} = u$. Therefore $x \in L$ and $y \in U(f; u)$. Let $x \in S$ and $y \in U(f; u)$. Then $f(x) \geq u$. So, by Theorem 3.3, $f(x\gamma y) \geq \min\{f(y), \frac{k^*-k}{2}\} \geq \max\{f(y), \frac{k^*-k}{2}\} \geq u$. $\min\{u, \frac{k^*-k}{2}\} = u$. Thus $f(x\gamma y) \ge u$. Therefore $x\gamma y \in U(f; u)$. Hence U(f; u) is a left Γ-ideal.

Conversely assume that $U(f; u) \neq \emptyset$ is a left Γ -ideal of S for all $u \in (0, \frac{k^*-k}{2}]$. Take any $x, y \in S$ with $x \leq y$. If $f(x) < \min\{f(y), \frac{k^*-k}{2}\}$. Then $f(x) < \tilde{u} \leq v$. $\min\{f(y), \frac{k^*-k}{2}\}$, for some $u \in (0, \frac{k^*-k}{2}]$. It follows that $y \in U(f; u)$ but $x \notin U(f; u)$, which is a contradiction. Thus $f(x) \ge \min\{f(y), \frac{k^*-k}{2}\}$ for all $x, y \in S$ with $x \le y$. Again, if $f(x\gamma y) < \min\{f(y), \frac{k^*-k}{2}\}$ for some $x, y \in S$. Therefore there exist $u \in (0, \frac{k^*-k}{2}]$ such that $f(x\gamma y) < u \le \min\{f(y), \frac{k^*-k}{2}\}$ implies $y_u \in U(f; u)$ but $(x\gamma y)_u \notin U(f; u)$, which is again a contradiction. Thus $f(x\gamma y) \ge \min\{f(y), \frac{k^*-k}{2}\}$ for all $x, y \in S$. Hence by Theorem 3.3, f is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of S. \Box

Corollary 3.6. Let f be a fuzzy subset of S. Then f is an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal of S if and only if $U(f; u) \neq \emptyset$ $(u \in (0, \frac{k^*-k}{2}])$ is a Γ -ideal of S.

Lemma 3.7. If f is a nonzero $(\in, \in \lor(k^*, q_k))$ -fuzzy left (resp. right) Γ -ideal of S, then the set $f_0 = \{x \in S \mid f(x) > 0\}$ is a left (resp. right) Γ -ideal of S.

Proof. Let f be an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of S. Let $x, y \in S, x \leq y$ and $y \in f_0$. Then f(y) > 0. As f is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of $S, f(x) \geq \min\{f(y), \frac{k^*-k}{2}\} > 0$. Since f(y) > 0, we have f(x) > 0 and so $x \in f_0$. Let $x \in S$ and $y \in f_0$. Then f(y) > 0. Therefore $f(x\gamma y) \geq \min\{f(y), \frac{k^*-k}{2}\} > 0$. Thus $x\gamma y \in f_0$, as required. \Box

Corollary 3.8. If f is a nonzero $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal of S, then the set $f_0 = \{x \in S \mid f(x) > 0\}$ is a Γ -ideal of S.

4. (k^*, k) -lower parts of $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideals

Let f be a fuzzy subset of an ordered Γ -semigroup S. The (k^*, k) -lower part $\underline{f_k^{k^*}}$ of f is defined as follows:

$$\frac{f_k^{k^*}}{k}(x) = \min\left\{f(x), \frac{k^* - k}{2}\right\}$$

for all $x \in S$ and $0 \le k < k^* \le 1$.

For any nonempty subset A of S and fuzzy subset f of S, $(\underline{f_A})_k^{k^*}$, the (k^*, k) -lower part of the characteristic function f_A , will be denoted by $(f_k^{k^*})_A$ in the sequel.

Let f and g be any fuzzy subsets of S. Define $\overline{f(\cap)}_k^{k^*}g$, $f(\cup)_k^{k^*}g$ and $f(\circ)_k^{k^*}g$ as follows:

$$(f(\cap)_{k}^{k^{*}}g)(x) = \min\left\{(f \cap g)(x), \frac{k^{*}-k}{2}\right\}$$
$$(f(\cup)_{k}^{k^{*}}g)(x) = \min\left\{(f \cup g)(x), \frac{k^{*}-k}{2}\right\}$$
$$(f(\circ)_{k}^{k^{*}}g)(x) = \min\left\{(f \circ g)(x), \frac{k^{*}-k}{2}\right\}$$

for all $x \in S$ and $0 \le k < k^* \le 1$.

Let f and g be any fuzzy subsets of S. Then we have: (1) $(\underline{f_k^{k^*}})_k^{k^*} = \underline{f_k^{k^*}}$ and $\underline{f_k^{k^*}} \subseteq f$; (2) If $f \subseteq g$, and $h \in F(S)$, then $f(\circ)_k^{k^*}h \subseteq g(\circ)_k^{k^*}h$ and $h(\circ)_k^{k^*}f \subseteq h(\circ)_k^{k^*}g$; (3) $f(\cap)_k^{k^*}g = \underline{f_k^{k^*}} \cap \underline{g_k^{k^*}}$; (4) $f(\cup)_k^{k^*}g = \underline{f_k^{k^*}} \cup \underline{g_k^{k^*}}$; (5) $f(\circ)_k^{k^*}g = \underline{f_k^{k^*}} \circ \underline{g_k^{k^*}}$.

Lemma 4.1. Let A and B be any nonempty subsets of an ordered Γ -semigroup S. Then

- (1) $f_A(\cap)_k^{k^*} f_B = (\underline{f_k^{k^*}})_{A \cap B};$
- (2) $f_A(\cup)_k^{k^*} f_B = (\overline{\underline{f_k^{k^*}}})_{A\cup B};$
- (3) $f_A(\circ)_k^{k^*} f_B = (\underline{f_k^{k^*}})_{(A\Gamma B]}.$

Proof. Straightforward.

Theorem 4.2. The (k^*, k) -lower part $(\underline{f}_k^{k^*})_A$ of the characteristic function f_A of a nonempty subset A is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left (resp. right) Γ -ideal of S if and only if A is a left (resp. right) Γ -ideal of S.

Proof. Let A be a left Γ -ideal of S. Let $x, y \in S, x \leq y$ and $u \in (0,1]$ be such that $y_u \in (\underline{f}_k^{k^*})_A$. Then $y \in A, (\underline{f}_k^{k^*})_A(y) \geq u$. As A is a left Γ -ideal of S and $x \leq y \in A$, $x \in A$. Thus $f_A(x) \geq \frac{k^*-k}{2}$. If $u \leq \frac{k^*-k}{2}$, then $f_A(x) \geq u$, so we have $x_u \in (\underline{f}_k^{k^*})_A$. If $u > \frac{k^*-k}{2}$, then $f_A(x) + u > \frac{k^*-k}{2} + \frac{k^*-k}{2} = k^* - k$. So $x_u(k^*, q_k)(\underline{f}_k^{k^*})_A$. Therefore $x_u \in \vee(k^*, q_k)(f_k^{k^*})_A$.

Next suppose that $x \in S, y_u \in (\underline{f}_k^{k^*})_A$ and $\gamma \in \Gamma$. Then $y \in A, (\underline{\eta}_k^{k^*})_A(y) \ge u$. As A is a left Γ -ideal of $S, x\gamma y \in A$. Thus $f_A(x\gamma y) \ge \frac{k^*-k}{2}$. If $u \le \frac{k^*-k}{2}$, then $f_A(x\gamma y) \ge u$, so $(x\gamma y)_u \in (\underline{f}_k^{k^*})_A$. If $u > \frac{k^*-k}{2}$, then $f_A(x\gamma y) + u > \frac{k^*-k}{2} + \frac{k^*-k}{2} = k^* - k$. So $(x\gamma y)_u(k^*, q_k)(\underline{f}_k^{k^*})_A$. Therefore $(x\gamma y)_u \in \lor(k^*, q_k)(\underline{f}_k^{k^*})_A$.

Conversely assume that $(\underline{f}_k^{k^*})_A$ is an $(\in, \in \vee(k^*, \overline{q_k}))$ -fuzzy left Γ -ideal of S. Let $x, y \in S$ such that $x \leq y$. If $y \in A$, then $(\underline{f}_k^{k^*})_A(y) = \frac{k^* - k}{2}$. Since $(\underline{f}_k^{k^*})_A$ is an $(\in, \in \vee(k^*, q_k))$ -fuzzy left Γ -ideal of S, and $x \leq y$, we have $(\underline{f}_k^{k^*})_A(x) \geq \min\{(\underline{f}_k^{k^*})_A(y), \frac{k^* - k}{2}\} = \frac{k^* - k}{2}$. It follows that $(\underline{f}_k^{k^*})_A(x) = \frac{k^* - k}{2}$ and so $x \in A$. Let $x \in S$ and $y \in A$. $(\underline{f}_k^{k^*})_A(y) = \frac{k^* - k}{2}$. Now, $(\underline{f}_k^{k^*})_A(x\gamma y) \geq \min\{(\underline{f}_k^{k^*})_A(y), \frac{k^* - k}{2}\} = \frac{k^* - k}{2}$. Hence $(\underline{f}_k^{k^*})_A(x\gamma y) = \frac{k^* - k}{2}$ and so $x\gamma y \in A$. Therefore A is a left Γ -ideal of S.

Corollary 4.3. The (k^*, k) -lower part $(\underline{f}_k^{k^*})_A$ of the characteristic function f_A of a nonempty subset A is an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal of S if and only if A is a Γ -ideal of S.

Lemma 4.4. If f is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left (resp. right) Γ -ideal of S, then $\underline{f_k^{k^*}}$ is a fuzzy left (resp. right) Γ -ideal of S.

Proof. Let $x, y \in S$ such that $x \leq y$. As f is an $(∈, ∈ ∨(k^*, q_k))$ -fuzzy left Γ-ideal of S, $f(x) \geq \min\{f(y), \frac{k^*-k}{2}\}$. It follows that $\min\{f(x), \frac{k^*-k}{2}\} \geq \min\{f(y), \frac{k^*-k}{2}\}$ and so, $(\underline{f}_k^{k^*})(x) \geq (\underline{f}_k^{k^*})(y)$. Let $x, y \in S$ and $γ \in Γ$, then we have $f(xγy) \geq \min\{f(y), \frac{k^*-k}{2}\}$. Then $\min\{f(xγy), \frac{k^*-k}{2}\} \geq \min\{f(y), \frac{k^*-k}{2}\}$, and so $(\underline{f}_k^{k^*})(xγy) \geq \min\{(\underline{f}_k^{k^*})(y)\}$. Therefore $f_k^{k^*}$ is a fuzzy left Γ-ideal of S. □

Corollary 4.5. If f is an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal of S, then $\underline{f_k^{k^*}}$ is a fuzzy Γ -ideal of S.

Theorem 4.6. An ordered Γ -semigroup S is left (resp. right) regular if and only if $(\underline{f}_k^{k^*})(a) = (\underline{f}_k^{k^*})(a\alpha a)$, for each $(\in, \in \lor(k^*, q_k))$ -fuzzy left (resp. right) Γ -ideal f of S and for each $a \in S, \alpha \in \Gamma$.

Proof. Let $a \in S$. As S is left regular, $a \in (S\Gamma a\Gamma a]$. Then there exist $x \in S$ and $\gamma, \beta \in \Gamma$ such that $a \leq x\gamma a\alpha a$. Since f is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of S, we have

$$f(a) \ge \min\left\{f(x\gamma a\alpha a), \frac{k^* - k}{2}\right\}$$
$$\ge \min\left\{f(a\alpha a), \frac{k^* - k}{2}\right\}$$

$$\geq \min\left\{f(a), \frac{k^* - k}{2}\right\}$$

Therefore $(\underline{f}_k^{k^*})(a) = (\underline{f}_k^{k^*})(a\alpha a).$

Conversely take any $a \in S$, $\alpha \in \Gamma$. Consider the left Γ -ideal $L(a\alpha a) = (a\alpha a \cup S\Gamma a\alpha a]$ of S generated by $a\alpha a(a \in S)$. Then, by Theorem 4.2, $(f_k^{k^*})_{L(a\alpha a)}$ is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of S. Therefore by hypothesis, $(f_k^{k^*})_{L(a\alpha a)}(a) = (f_k^{k^*})_{L(a\alpha a)}(a\alpha a)$. Since $a^2 \in L(a\alpha a)$, we have $(f_k^{k^*})_{L(a\alpha a)}(a\alpha a) = \frac{k^*-k}{2}$, and so, $(f_k^{k^*})_{L(a\alpha a)}(a) = \frac{k^*-k}{2}$. Thus, $a \in L(a\alpha a)$. Thus $a \leq a\alpha a$ or $a \leq x\gamma a\alpha a$. If $a \leq a\alpha a$, then $a \leq a\alpha a = a\alpha a \leq a\alpha a \leq a\alpha a = a\alpha a \alpha a \in S\Gamma a\Gamma a$ and $a \in (S\Gamma a\Gamma a]$. Again, if $a \leq x\gamma a\alpha a$, then $a \in (S\Gamma a\Gamma a]$. So $a \in (S\Gamma a\Gamma a]$. Therefore S is left regular.

Theorem 4.7. The following assertions are equivalent in S:

- (1) S is regular.
- (2) $f(\circ)_k^{k^*}g = f(\cap)_k^{k^*}g$ for each $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideal f and $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal g of S.

Proof. (1) \Rightarrow (2). Suppose that f and g are $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideal and an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal of S, and $a \in S$. Then there exists $r \in S$ and α, β such that $a \leq ara$, it follows that $(a\alpha r, a) \in A_a$. Then we have

$$(f(\circ)_k^{k^*}g)(a) = \bigvee_{(y,z)\in A_a} \min\left\{\frac{f_k^{k^*}(y), g_k^{k^*}(z)}{k^*}\right\}$$
$$\geq \min\left\{\frac{f_k^{k^*}(a\alpha r), g_k^{k^*}(a)}{k^*}\right\}$$
$$= \min\left\{f(a\alpha r), g_k^{k^*}(a), \frac{k^*-k}{2}\right\}$$
$$= \min\left\{f(a), g_k^{k^*}(a), \frac{k^*-k}{2}\right\}$$
$$= \min\left\{\frac{f_k^{k^*}(a), g_k^{k^*}(a)}{k^*}\right\}$$
$$= (f(\cap)_k^{k^*}g)(a).$$

Thus $f(\cap)_k^{k^*}g \subseteq f(\circ)_k^{k^*}g$. Inverse inclusion is obvious. Therefore $f(\cap)_k^{k^*}g = f(\circ)_k^{k^*}g$.

 $(2) \Rightarrow (1)$. Suppose that L and R are left and right Γ -ideal of S. Take any $x \in L \cap R$. Then $x \in L$ and $x \in R$. As L is a left Γ -ideal and R is a right Γ -ideal of S, by Theorem 4.2, $(\underline{f}_k^{k^*})_L$ is an $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal and $(\underline{f}_k^{k^*})_R$ is an $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideal of S. So, we have $(f_R(\circ)_k^{k^*}f_L)(x) \ge (f_R(\cap)_k^{k^*}f_L)(x) = \min\{(\underline{f}_k^{k^*})_R(x), (\underline{f}_k^{k^*})_L(x)\}$. Since $x \in L$ and $x \in R$, $(\underline{f}_k^{k^*})_L = \frac{k^*-k}{2}$ and $(\underline{f}_k^{k^*})_R = \frac{k^*-k}{2}$. Thus $(f_R(\cap)_k^{k^*}f_A)(x) = \frac{k^*-k}{2}$. Therefore $(f_R(\circ)_k^{k^*}f_A)(x) \ge \frac{k^*-k}{2}$. Since $(f_R(\circ)_k^{k^*}f_L)(x) \le \frac{k^*-k}{2}$. Therefore $(f_R(\circ)_k^{k^*}f_L)(x) \ge \frac{k^*-k}{2}$. By Lemma 4.1(3), we have

$$(f_R(\circ)_k^{k^*} f_L)(x) = (\underline{f_k^{k^*}})_{(R\Gamma L]}(x).$$

Therefore, $(\underline{f_k^{k^*}})_{(R\Gamma L]}(x) = \frac{k^*-k}{2}$ and so, $x \in (R\Gamma L]$. It follows that $L \cap R \subseteq (R\Gamma L]$. Also $(R\Gamma L] \subseteq L \cap R$. Thus $L \cap R = (R\Gamma L]$. Hence by Lemma 2.1, S is regular. \Box

5. CONCLUSION

The main purpose of the present paper is to introduce the concept of an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal, $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal and $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideal in ordered semigroups by generalizing the concept of $(\in, \in \lor q_k)$ -fuzzy Γ -ideal, $(\in, \in \lor q_k)$ -fuzzy left Γ -ideal and $(\in, \in \lor q_k)$ -fuzzy right Γ -ideal. Also, we enhance the understanding of regular ordered Γ -semigroups by considering the structural influence of the $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideals, $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideals and $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideals. In our future work, by using the concept of (k^*, q) -quasicoincident with a fuzzy subset of ordered Γ -semigroups, the concept of $(\in, \in \lor(k^*, q_k))$ -fuzzy interior Γ -ideals and $(\in, \in \lor(k^*, q_k))$ -fuzzy quasi Γ -ideals of ordered Γ -semigroups will be introduced.

Following are the particular cases of the present paper:

(1). If we take $k^* = 1$, then the definition of an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal, $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal and $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideal reduce to a concept and we call as an $(\in, \in \lor q_k)$ -fuzzy Γ -ideal, $(\in, \in \lor q_k)$ -fuzzy left Γ -ideal and $(\in, \in \lor q_k)$ -fuzzy right Γ -ideal. Thus we can apply all the results of this paper in the setting of $(\in, \in \lor q_k)$ -fuzzy Γ -ideals.

(2). If we take $k^* = 1$ and k = 0, then the definition of an $(\in, \in \lor(k^*, q_k))$ -fuzzy Γ -ideal, $(\in, \in \lor(k^*, q_k))$ -fuzzy left Γ -ideal and $(\in, \in \lor(k^*, q_k))$ -fuzzy right Γ -ideal reduce to a concept and we call as an $(\in, \in \lor q)$ -fuzzy Γ -ideal, $(\in, \in \lor q)$ -fuzzy left Γ -ideal and $(\in, \in \lor q)$ -fuzzy right Γ -ideal. Thus all the results of this paper may be applied in the setting of $(\in, \in \lor q)$ -fuzzy (m, n)-ideals.

REFERENCES

- Y. B. Jun. Generalization of (∈, ∈ ∨q)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl., 58 (2009), 1383 1390.
- [2] M. Y. Abbasi and A. Basar. Some properties of ordered 0-minimal (0, 2)-bi-Γ-ideals in po-Γ-semigroups, Hacettepe Journal of Mathematics and Statistics, 44 (2) (2015), 247-254.
- [3] T. Changphas and B. Thongkam. A Note on Maximal Ideals in Ordered Γ-Semigroups, International Mathematical Forum, 6 (2011), 3343-3347.
- [4] I. Gambo, N. H. Sarmin, H. U. Khan and F. M. Khan. The characterization of regular ordered Γ-semigroups in terms of (∈, ∈ ∨q_k)-fuzzy Γideals, Malaysian Journal of Fundamental and Applied Sciences, 13(4) (2017), 576-580.
- [5] I. Gambo, N. H. Sarmin, H. U. Khan and F. M. Khan. New fuzzy generalized bi Γ -ideals of the type $(\in, \in \forall q_k)$ in ordered Γ -semigroups, Malaysian Journal of Fundamental and Applied Sciences, 13(4) (2017) 666-670.
- [6] K. Hila. On quasi prime, weakly quasi-prime left ideal in ordered Γ-semigroups, Mathematical Slovica, 60 (2010), 195-212.
- [7] K. Hila and E. Pisha. Characterizations on ordered Γ-semigroup, International Journal of Pure and Applied Mathematics, 28 (2006), 423-439.
- [8] K. Hila and E. Pisha. On bi-ideals on ordered Γ-semigroups, Hacettepe Journal of Mathematics and Statistics, 40(6)(2011), 793-804.
- [9] A. Iampan. Characterizing Ordered Bi-Ideals in Ordered Γ-Semigroups, Iranian Journal of Mathematical Sciences and Informatics, 4 (2009), 17-25.
- [10] A. Iampan. Characterizing intuitionistic fuzzy Γ-Ideals of ordered Γ-semigroups by means of intuitionistic fuzzy points, Notes on Intuitionistic Fuzzy Sets, 21(3), 2015, 2439.
- [11] N. Kehayopulu and M. Tsingelis. Fuzzy sets in ordered groupoids, Semigroup Forum, 65 (2002), 128–132.
- [12] N. Kehayopulu. On Ordered Γ-semigroup, Scientiae Mathematicae Japonicae Online, (2010), 37-43.
- [13] N. M. Khan, B. Davvaz and M. A. Khan. Ordered semigroups characterized in terms of generalized fuzzy ideals, J. Intell. Fuzzy Syst., 32(1) (2017), 1045-1057.

- [14] Y. I. Kwon and S. K. Lee. The weakly prime ideals of ordered Γ -semigroups, Commun. Korean Math. Soc., 13 (1998), 251-256.
- [15] Y. I. Kwon and S. K. Lee. Some special elements in ordered Γ -semigroups, Kyungpook Math. J., 35(3) (1996), 679-685.
- [16] A. Khan, Y. B. Jun, N. H. Sarmin and F. M. Khan. Ordered semigroups characterized by $(\in, \in \lor q_k)$ -fuzzy generalized bi-ideals, Neural Comput. and Applic., 21(suppl.) (2012), 121 132.
- [17] A. Khan, N. H. Sarmin, B. Davvaz and F. M. Khan. New types of fuzzy bildeals in ordered semigroups, Neural Computing and Applications, 21 (2012), 295 – 305.
- [18] A. Khan, B. Davvaz, N. H. Sarmin and H. U. Khan. Redefined intuitionistic fuzzy bildeals of ordered semigroups, Journal of Inequalities and Applications, (2013), 2013, 397.
- [19] F. M. Khan, N. H. Sarmin and A. Khan. A novel approach towards fuzzy Γ-ideals in ordered Γ-semigroups, Indian Journal of Pure and pplied Mathematics, 45(3) (2014), 343-362.
- [20] N. Kuroki. Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli 28 (1979), 17 21.
- [21] G. Muhiuddin, A. Mahboob and N. M. Khan. A new type of fuzzy semiprime subsets in ordered semigroups, J. Intell. Fuzzy Syst., vol. Pre-press, no. Pre-press, 2019, 1-10.
- [22] P. Pal, S. K. Majumder, B. Davvaz and S. K. Sardar. Regularity of Po-Γ-semigroups in terms of fuzzy subsemigroups and fuzzy bi-ideals, Fuzzy information and Engineering, 7 (2015), 165-182.
- $\left[23\right]$ A. Rosenfeld. Fuzzy subgroups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [24] M. Shabir, Y. B. Jun and Y. Nawaz. Characterizations of regular semigroups by $(\in, \in \lor q_k)$ -fuzzy ideals, Comput. Math. Appl. 59 (2010), 539 549.
- [25] J. Sanborisoot and T. Changphas. On Pure ideals in ordred Ternary Semigroups, Thai Journal of Mathematics, 12 (2014), 455-464.
- [26] M. K. Sen and N. K. Saha. On Γ-semigroup I, Bull. Cal. Math. Soc. 78 (1986), 181-186.
- [27] M. K. Sen and A. Seth. On po-Γ-semigroups, Bull. Calcutta Math. Soc., 85 (1993), 445450.
- [28] J. Tang. Characterization of ordered semigroups by of $(\in, \in \lor q)$ -fuzzy ideals, World Acad. of Sci., Eng. and Tech., 6 (2012), 518 530.
- [29] L. A. Zadeh. Fuzzy sets, Information and Control, 8 (1965), 338 353.

AHSAN MAHBOOB

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH-202002, INDIA *Email address*: khanahsan56@gmail.com

NOOR MOHAMMAD KHAN

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH-202002, INDIA *Email address*: nm_khan123@yahoo.co.in