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A NOTE ON SPACETIMES IN f(R)-GRAVITY

SUNIL KUMAR YADAV

ABSTRACT. In this work, the investigation of spacetimes admitting semiconformal curva-
ture tensor in f(R)-gravity theory is the major goal. First, semiconformally flat spacetimes
in the presence of f(R)-gravity are investigated, and the relationship between isotropic
pressure and energy density is discovered. Some energy conditions are then taken into ac-
count. Finally, spacetimes with divergence-free semiconformal curvature tensors in f(R)-
gravity are explored.

1. INTRODUCTION AND PRELIMINARIES

Ishii [17], introduced the set of conharmonic transformations as a subgroup of the confor-
mal group of transformations as given by

g̃lm = e2γglm, (1.1)

and it satisfying the condition

∇lγ
l +∇γ∇γl = 0, (1.2)

where glm and g̃lm are the metric tensors for Riemannian spaces V and Ṽ, respectively, and
γ is a real scalar function. A rank four tensor Hj

lmi which is invariant under conharmonic
transformation, on Riemannian manifold (Θn, g), n ≥ 4 is defined as [1]:

Hj
lmi = Rj

lmi +
1

n− 2
[δjmRli − δjiRlm + gliRj

m − glmRj
i ], (1.3)

where Rj
lmi, Rli are Riemann and Ricci curvature tensors respectively. The geometrical

and physical significance of these tensor has been discussed by several authors (see, [2,
4, 5]). Recently, Kim (see, [18, 19]) introduced a curvature like tensor which is remains
invariant under condition (1.2), this curvature-like tensor Sj

lmi of type (1, 3) on a (Θn, g)
is called semiconformal curvature tensor and is given by:

Sj
lmi = −(n− 2)µWj

lmi + [ν + (n− 2)µ]Hj
lmi, (1.4)
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where µ, ν are constants which are not simultaneously zero and the Weyl conformal cur-
vature tensor Wj

lmi as noted [24]:

Wj
lmi = Rj

lmi+
1

n− 2
[δjmRli−δjiRlm+gliRj

m−glmRj
i ]+

R
(n− 1)(n− 2)

[δji glm−δjmgli],

(1.5)
For ν=1 and µ=- 1

(n−2) , the semiconformal curvature tensor reduces to conformal curvature
tensor, while for ν=1 and µ=0, it reduces to conharmonic curvature tensor.
In Einstein’s theory of gravity, Einstein’s field equations (EFE)

Rlm − R
2
glm = κTlm, (1.6)

where κ being the Newtonian constant and Tlm is the EMT [20], imply that the EMT, Tlm
is of vanishing divergence if, Tlm is covariantly constant.
The f(R)-gravity theory is the most popular of such modification of the standard theory
of gravity. This important modification was first introduced in [6]. This modified theory
can be obtained by replacing the scalar curvature R with a generic function f(R) in the
Einstein-Hilbert action. We recall the modified Einstein-Hilbert action term [12]:

G =
1

κ2

∫
f(R)

√
−gdx4x+

∫
Lm

√
−gdx4x, (1.7)

where f(R) is an arbitrary function of the Ricci scalar R, Lm is the matter Lagrangian
density, and we define the stress-energy tensor of matter as

Tlm = − 2√
−g

δ(
√
−gLm)

δglm
. (1.8)

By varying the action G of the gravitational field with respect to the metric tensor compo-
nents gij and using the least action principle the field equations of f(R) gravity are given
as.

f
′
(R)Rlm − 1

2
f(R)glm + glm(3−∇l∇m)f

′
(R) = κ2Tlm, (1.9)

where 3 denote the d’Alembertian operator,f
′
=∂f(R)

∂R which must be positive to ensure
attractive gravity [9].The f(R) gravity represents a higher order and well-studied theory
of gravity. For example, an earlier investigation of quintessence and cosmic accelera-
tion in f(R) gravity theory as a higher order gravity theory are considered in [10]. Also,
Capoziello et al. proved that, in a generalized Robertson-Walker spacetime with divergence
free conformal curvature tensor, the higher order gravity tensor has the form of perfect fluid
[11]. In a series of recent studies, weakly Ricci symmetric spacetimes (WRS)4, almost
pseudo-Ricci symmetric spacetimes(APRS)4, conformally flat generalized Ricci recur-
rent spacetimes, energy conditions for a (WRS)4 spacetime in f(R)-gravity and space-
time with concircular curvature tensor are investigated in f(R) gravity theory, whereas
LP-Sasakian spacetimes is also studied (see, [13, 14, 15, 16, 26]). Motivated by these
studies, the main aim of this paper is to study some conditions on semiconformal curvature
tensor in f(R) gravity. Also we deduce the energy conditions under the condition of the
functional form of f(R).

2. SEMICONFORMALLY FLAT SPACETIME IN f(R) GRAVITY

In this section, we assume that the semiconformally flat spacetime in f(R) gravity and find
out some results.
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With the help of (1.3) and (1.4), equation (1.4) reduces for n=4:

Sj
lmi = ν[Rj

lmi +
1

2
(δjmRli − δjiRlm + gliRj

m − glmRj
i ]−

µR
3

(δji glm − δjmgli), (2.1)

If Sj
lmi=0, then (2.1) leads to

νRj
lmi = −ν

2
(δjmRli − δjiRlm + gliRj

m − glmRj
i )−

µR
3

(δji glm − δjmgli). (2.2)

After taking the transvection over j and m, we get

Rli = −
(
ν + 2µ

ν

)
R
4
gli. (2.3)

Also, let V4 be an Einstein spacetime, then (2.1) takes the form

Sj
lmi = νRj

lmi +
3ν + 4µ

12
R(δjmgli − δji glm. (2.4)

Using the condition Sj
lmi=0 and contracting with glj equation (2.4) implies that

Rmi = −
(
3ν + 4µ

4

)
Rgmi. (2.5)

As a consequence, we state:

Theorem 2.1. A semiconformally flat spacetime is an Einstein space and scalar curvature
R is constant.

Corollary 2.2. A semiconformally flat Einstein spacetime is of constant scalar curvature
R.

Corollary 2.3. A conharmonically flat spacetime is of constant scalar curvature R.

Corollary 2.4. A conformally flat Einstein spacetime is of constant scalar curvature R.

Corollary 2.5. A conharmonically flat Einstein spacetime is of constant scalar curvature
R.

In view of Theorem 2.1 , the field equation (1.9) in f(R)-gravity possess the form

Rlm − f

2f ′ glm =
κ

f ′ Tlm. (2.6)

In vacuum case (that is, Tlm=0), it gives

Rlm − f

2f ′ glm = 0.

After contracting with glm and integrating, we get

f = ψR− 2ν
(ν+2µ) , (2.7)

where ψ=constant. Conversely, if (2.6) holds, then we yields Tlm=0.
Thus we state:

Theorem 2.6. A semiconformally flat spacetime in f(R) gravity is vacuum if and only if
f=ψR− 2ν

(ν+2µ) .

Corollary 2.7. A semiconformally flat Eistein spacetime in f(R) gravity is vacuum if and
only if f=ψR− 2

(3ν+4µ) .

Corollary 2.8. A conharmonically flat spacetime in f(R) gravity is vacuum if and only if
f=ψR−2
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Corollary 2.9. A conformally flat Einstein spacetime in f(R) gravity is vacuum if and
only if f=ψR−1.

Corollary 2.10. A conharmonically flat Einstein spacetime in f(R) gravity is vacuum if
and only if f=ψR− 2

3

A spacetime is said to admit a matter collineation with respect to a vector field ζ if the Lie
derivative of the energy momentum tensor T with respect to ζ satisfies

LζTlm = 0. (2.8)

Thus, every Killing vector field is a matter collineation, but the converse is not generally
true. The energy-momentum tensor Tlm has the Lie inheritance property along the flow
lines of the vector field ζ if the Lie derivative of Tlm with respect to ζ satisfies (see, [3, 25]:

LζTlm = 2ψ♭Tlm. (2.9)

With the help of (2.3) and (2.6), we have

−
[(

ν + 2µ

ν

)
R
4

+
f

2f ′

]
glm =

κ

f ′ Tlm. (2.10)

We suppose that a non-vacuum semiconformally flat spacetime. Then the Lie derivative
Lζ of (2.10) indicate that

−
[(

ν + 2µ

ν

)
R
4

+
f

2f ′

]
Lζglm =

κ

f ′ LζTlm. (2.11)

Let that vector field ζ is Killing on Θ, then (2.11) implies (2.8). Conversely, if (2.8) holds
then it follows from (2.11) that Lζglm=0.
So, we state the following theorem:

Theorem 2.11. Let Θ be a non-vacuum semiconformally flat spacetime satisfying f(R)-
gravity, then the vector field ζ is Killing if and only if Θ admits matter collineation with
respect to ζ.

Corollary 2.12. Let Θ be a non-vacuum semiconformally flat Einstein spacetime satisfying
f(R)-gravity, then the vector field ζ is Killing if and only if Θ admits matter collineation
with respect to ζ.

The isometry of spacetimes prescriped by Killing vector fields represents a very important
type of spacetime symmetry. Spacetimes of constant curvature are known to have max-
imum such symmetry, that is, they admit the maximum number of linearly independent
Killing vector fields. The maximum numer of linearly independent Killing vector fields in
an n-dimensional spacetime is n(n+1)

2 [21]. Due to this fact and the above discussion, we
state

Corollary 2.13. A non-vacuum semiconformally flat spacetime satisfying f(R)-gravity
admits the maximum number of matter collineations 10.

Again, if ζ be a conformal Killing vector field, that is, Lζglm=2ψ♭glm holds on Θ. There-
fore (2.11) implies (2.9). Conversely, assume that (2.9) holds, then from (2.11) we obtain
Lζglm=2ψ♭glm. As per the consequence we state the result.

Theorem 2.14. Let Θ be a non-vacuum semiconformally flat spacetime satisfying f(R)-
gravity, then Θ has a conformal Killing vector filed ζ if only if the energy-momentum tensor
Tlm has the Lie inheritance property along ζ.
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Also, taking covariant derivative of both sides of (2.10) implies that ∇kTlm=0. Since in
a semiconformally flat spacetime R is constant, so f and f

′
are also constant. Thus from

(2.6) we yields ∇kRlm=0. At this sequel we state the results:

Theorem 2.15. Let Θ be a non-vacuum semiconformally flat spacetime satisfying f(R)-
gravity is Ricci symmetric.

.

3. SEMICONFORMALLY FLAT PERFECT FULID SPACETIME IN f(R)-GRAVITY

We consider the EMT for a perfect fluid spacetime:

Tlm = (p̃+ σ̃)vlvm + p̃glm, (3.1)

where p̃ is the isotropic pressure, σ̃ is the energy density, and ul is a unit timelike vector
field [20, 7].
By virtue of (3.1) and (2.3), one can get from (2.6) that

−
(
ν + 2µ

ν

)
R
4
glm =

κ

f ′ [(p̃+ σ̃)vlvm + p̃glm] +
f

2f ′ glm. (3.2)

After contracting (3.2) with vl, we yields

σ̃ =
(ν + 2µ)f

′R+ 2νf

4νκ
. (3.3)

Again taking transvecting (3.2) with glm and using (3.3), we get

p̃ = − (ν + 2µ)f
′R+ 2νf

4νκ
. (3.4)

So, we state the result:

Theorem 3.1. In a semiconformally flat perfect fluid spacetime satisfying f(R)-gravity the
energy density σ̃ and the isotropic pressure p̃ are constants and given by (3.3) and (3.4)
respectively.

In view of (3.3) and (3.4), we conclude that p̃+σ̃=0 that is, the spacetime behaves dark
matter era or the perfect fluid reduces to as a cosmological constant[23].
We finalize the corollary:

Corollary 3.2. A semiconformally flat perfect fluid spacetime satisfying f(R)-gravity is
dark matter era.

Again, in radiation era σ̃=3p̃, the EMT Tlm has the form

Tlm = 4p̃vlvm + p̃glm. (3.5)

Keep in mind this fact p̃+σ̃=0, we have p̃=0, it follows from (3.5) that Tlm=0.
In this sequel we state:

Corollary 3.3. Let Θ be a semiconformally flat spacetime admitting f(R)-gravity, then
the Radiation era in Θ is vacuum.

Further, for pressureless fluid spacetime p̃=0, the EMT takes the form[22]:

Tlm = σ̃vlvm. (3.6)

Due to this p̃+σ̃=0, we get σ̃=0, thus from (3.6), we obtain Tlm=0.
Thus we have the result:
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Corollary 3.4. Let Θ be a semiconformally flat dust fulid spacetime satisfying f(R)-
gravity, then Θ is vacuum.

In addition, we assume that p̃ and σ̃ are related by an equation of the form p̃=ϖσ̃. Then
from (3.3) and (3.4), we get either ϖ=-1 or f=ψR− 2ν

(ν+2µ) , where ψ is an integrating
constant.
This leads to the following result:

Theorem 3.5. The matter content in a semiconformally flat perfect fluid spacetime satis-
fying f(R)-gravity obeys the simple barotropic equation of state p̃=ϖσ̃ if and only if it
represents a dark matter or f=ψR− 2ν

(ν+2µ) .

Again we consider the EMT Tlm of a Viscus fluid spacetime [20]:

Tlm = (p̃+ σ̃)vlvm + p̃glm +Hlm, (3.7)

where Hlm denotes the anisotropic pressure of the fluid.
Using (3.7) and (2.3) in (2.6), we get

−
(
ν + 2µ

ν

)
R
4
glm =

κ

f ′ [(p̃+ σ̃)vlvm + p̃glm +Hlm] +
f

2f ′ glm. (3.8)

Taking contraction of (3.8) with glm, we obtain

3p̃− σ̃ = −

[
(ν + 2µ)Rf ′ − 2νf

′

νR

]
− I. (3.9)

where I=glmHlm.
Thus we can state:

Theorem 3.6. A semiconformally flat viscous fluid spacetime satisfying f(R)-gravity, the
isotropic pressure and the energy density are given by the relations(3.9).

Corollary 3.7. If a semiconformally flat viscous fluid spacetime satisfying f(R)-gravity,
then the trace of anisotropic pressure for radiation era is

I = −

[
(ν + 2µ)Rf ′ − 2νf

′

νR

]

Next, we investigate whether or not a viscous fluid in semiconformally flat spacetime obey-
ing f(R)-gravity may permit heat flux. In order to do this, we take the EMT, Tlm[20]:

Tlm = (p̃+ σ̃)vlvm + p̃glm + vmFl + Fmvl, (3.10)

where Fl=g(B1, ξ) and vl=g(B1,V) for all vector fields B1; ξ being the heat flux vector
field and g(V, ξ)=0, that is, F(V)=0. In view of (3.10), (2.3) and (2.6), we get

−
[(

ν + 2µ

ν

)
R
4

+
f

2f ′

]
glm =

κ

f ′ [(p̃+ σ̃)vlvm + p̃glm + vmFl + Fmvl]. (3.11)

On contracting (3.11) with vl, we get

Fm = −(p̃+ σ̃) +
f

′

4κ

[
4κ+ (1 + 2µ)R+ 2ff

′
]
. (3.12)

Therefore, we have:
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Theorem 3.8. A viscous fluid in semiconformally flat spacetime obeying f(R)-gravity,
admits heat flux, provided

p̃+ σ̃ ̸= f
′

4κ

[
4κ+ (1 + 2µ)R+ 2ff

′
]

.

3.1. Energy conditions in semiconformally flat spacetime admitting f(R)-gravity. In
both standard and modified theories of gravity, the energy conditions act as a filtration
system for the energy-momentum tensor (see, [13, 14, 15]). The authors of [8] inves-
tigated weak energy conditions (WEC), dominant energy conditions (DEC), null energy
conditions (NEC), and strong energy conditions (SEC) in two extended theories of gravity.
In order to state the energy condition, we need to determine the effective isotropic pres-
sure p̃eff and the effective energy density σ̃eff in semiconformally flat spacetime admitting
f(R)-gravity.
Since (2.6) takes the form

Rlm − R
2
glm =

κ

f ′ T eff
lm , (3.13)

where

T eff
lm = Tlm +

f −Rf ′

2κ
glm.

Also equation (3.1) can be written as follows

T eff
lm = (p̃eff + σ̃eff)vlvm + p̃effglm, (3.14)

where

p̃eff = p̃+
f −Rf ′

2κ
, σ̃eff = σ̃ − f −Rf ′

2κ
.

By using (3.2) and (3.3) it gives

p̃eff = −f
′R
4κ

[1− 2µ

ν
], σ̃eff =

f
′R
4κ

[3 +
2µ

ν
].

As per above consequence, the energy conditions are given by:
(i) Null energy condition (NEC): p̃eff + σ̃eff ≥ 0
(ii) Weak energy condition (WEC): σ̃eff ≥ 0 and p̃eff + σ̃eff ≥ 0
(iii) Strong energy condition (SEC): σ̃eff ≥ 0 and p̃eff ± σ̃eff ≥ 0
(vi) Dominant energy condition (DEC): 3p̃eff + σ̃eff ≥ 0 and p̃eff + σ̃eff ≥ 0.

4. SPACETIME WITH DIVERGENCE OF SEMICONFORMAL CURVATURE TENSOR IN
f(R)-GRAVITY

Taking covariant derivative on both sides of (2.1), we get

∇hSj
lmi = ν[∇hRj

lmi +
1
2 (δ

j
m∇hRli − δji∇hRlm + gli∇hRj

m − glm∇hRj
i ]

−µ∇hR
3 (δji glm − δjmgli).

(4.1)

After contracting (4.1) over h and j it leads to

∇jSj
lmi = ν[∇jRj

lmi +
1
2 (∇mRli −∇iRlm + gli∇mR− glm∇iR]

−µ
3 (glm∇iR− gli∇mR).

(4.2)

It is well-known that
∇jRj

lmi = ∇iRlm −∇mRli. (4.3)
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With the help of (4.3), equation (4.2), reduces to

∇jSj
lmi = ν

[
∇i

(
Rlm − 1

2
Rglm

)
−∇m

(
Rli −

1

2
Rgli

)]
− µ

3
(glm∇iR−gli∇mR).

(4.4)
For fix ∇jSj

lmi=0, equation (4.4) implies that

∇iRlm −∇mRli =

(
1 +

2µ

3ν

)
[glm∇iR− gli∇mR]. (4.5)

Taking contracting (4.5) with glm, we get

∇iR = 0. (4.6)

So, from (4.5) and (4.5), we obtain

∇iRlm = ∇mRli. (4.7)

Thus we can state:

Theorem 4.1. Let Θ be a spacetime with semiconformal curvature tensor, then Θ has
Codazzi type of Ricci tensor if and only if the semiconformal curvature tensor is divergence
free.

By virtue of (4.6), the field (1.9) in f(R)-gravity implies

Rlm − f

2f ′ glm =
κ

f ′ Tlm. (4.8)

So, from (4.7) and (4.8), we yields ∇iTlm=∇mTli.
This motivated us for the result:

Corollary 4.2. The energy-momentum tensor of a spacetime with divergence free semi-
conformal curvature tensor obeying f(R)-gravity is of Codazzi type.

The spacetime is called Ricci semi-symmetric [30] if

(∇h∇i −∇i∇h)Rlm = 0. (4.9)

From (4.8), one can get

(∇h∇i −∇i∇h)Rlm = (∇h∇i −∇i∇h)Tlm. (4.10)

So, we can state

Theorem 4.3. Let Θ be a spacetime with divergence free semiconformal curvature sat-
isfying f(R)-gravity, then Θ is Ricci semi-symmetric if and only if the energy-momentum
tensor is semi-symmetric.

The EMT Tlm is called (i) recurrent if there exists a non-zero 1-form εh such that

∇hTlm = εhTlm. (4.11)

(ii) bi-recurrent if there exists a non-zero tensor υki such that

∇h∇iTlm = υkiTlm.
After contracting (4.11) with glm, we have

εh =
1

T
∇hT , where T = glmTlm. (4.12)

Finally, taking the covariant derivative of (4.12) and (4.11), using (4.12), we yields

(∇h∇i −∇i∇h)Tlm = 0. (4.13)
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This implies the result.

Theorem 4.4. Let Θ be a spacetime with divergence free semiconformal curvature tensor
obeying f(R)-gravity. If the energy-momentum (Ricci) tensor is recurrent or bi-recurrent,
then the Ricci (energymomentum) tensor is semi-symmetric.

Finally, we consider perfect fluid spacetime with divergence free semiconformal curvature
tensor, whose energymomentum tensor is recurrent or bi-recurrent. Then from (3.1) and
(2.6), we get

Rlm = γ1glm + γ2vlvm, (4.14)

where

γ1 =
1

2f ′ (2κp̃+ f) and γ2 =
κ

f ′ (p̃+ σ̃). (4.15)

On contracting (4.14) with glm, we yields

R =
1

f ′ (3κp̃− κσ̃ + 2f). (4.16)

If the EMT, Tlm is recurrent or bi-recurrent, then (∇h∇i − ∇i∇h)Tlm=0 implies that
(∇h∇i −∇i∇h)Rlm=0. So from (4.14), we have

γ2vl(∇h∇i −∇i∇h)vm + γ2vm(∇h∇i −∇i∇h)vl = 0. (4.17)

After contracting (4.17) with vl, it gives

γ2(∇h∇i −∇i∇h)vm = 0 ⇒ γ2Rs
himvs = 0,

which implies the following cases:
Case (i): If Rs

himvs ̸= 0, then γ2=0, that is, p̃+σ̃=0 thus the spacetime indicates inflation
and the fluid behaves as a cosmological constant.
Case (ii): If γ2 ̸= 0 then Rs

himvs=0 so from (4.14), we get (γ1 − γ2)vl=0. Therefore from
(4.15), we obtain

σ̃ =
f

2κ
, p̃ =

2Rf ′ − f

6κ
. (4.18)

Theorem 4.5. If the EMT of a perfect fluid spacetime with divergence free semiconfor-
mal curvature tensor satisfying f(R)-gravity is recurrent or bi-recurrent then either the
spacetime be an inflation, or the isotropic pressure and the energy density are constants.

5. CONCLUSIONS

In light of the recent studies (see, [13, 14, 15, 16]). We have clarified the idea of semi-
conformally flat spacetime and perfect fluid spacetime in f(R)-gravity. We have also
obtained the strong, weak, null, and the dominant energy conditions in semiconformally
flat spacetime admitting f(R)-gravity. Moreover, the divergence-free semiconformal cur-
vature tensors in f(R)-gravity are also taken into account.
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