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ON VARIOUS ALMOST IDEALS OF SEMIRINGS

M. PALANIKUMAR* AND K. ARULMOZHI

ABSTRACT. In this paper, we study various almost ideals (shortly .o -ideals), quasi <7-
ideals, bi quasi 7-ideals, tri <7-ideals and tri quasi .27-ideals in semiring and give some
characterizations. Some relevant counter examples are also indicated. We develop the
implications ideal == quasi ideal == bi quasi ideal == tri quasi ideal = tri
quasi «/-ideal = bi quasi «/-ideal =—> bi &/-ideal — quasi &/-ideal —-
o/-ideal and reverse implications do not holds with examples. We show that the union of
o -ideals (bi <7 -ideals, quasi <7 -ideals, bi quasi <7-ideals) is a o7 -ideal (bi .o/ -ideal, quasi
o7 -ideal, bi quasi .o/ -ideal) in semiring.

1. INTRODUCTION

Vandiver introduced the idea of semirings as a generalization of rings [[19]]. The notion
of quasi ideal was introduced by Otto Steinfeld both in semigroups and rings [[18]. Shabir
et al [[L7] characterized the semirings by the properties of quasi-ideals. Quasi-ideals of
different classes of semirings have been characterized by many authors in [2| I5]. The
notion of bi-ideals in semigroups introduced by Lajos [6]. The concept of a bi-ideal is a
very interesting and important thing in semiring. Bi ideal is a generalization of left ideal
and right ideal. Many mathematicians proved important results and characterizations of
algebraic structures by using various ideals. Rao introduced bi-quasi-ideals of semigroups.
The notion of tri-ideal is a generalization of quasi ideal, bi-ideal, ideal and properties of tri
ideals of a semiring [11]]. Grosek and Satko introduced the notion of .<7-ideal of semigroup
[4]]. In this paper, we give some properties of various .o/ -ideals in semiring. Our aim in
this paper is threefold.

(1) To study the relationship between quasi < -ideal and bi quasi <7-ideal in a semiring.
(2) To characterize tri <7 -ideal in a semiring.
(3) To characterize bi quasi ideal and tri quasi ideal in a semiring.

2. PRELIMINARIES

Definition 2.1. A non-empty subset I of a semiring (S, +, -) is called a subsemiring of S
ifi1 +1i9 € I and iy - 19 € I, for all 41,4 € 1.
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Definition 2.2. Suppose that I, B and @) are non-empty subsets of a semiring (.5, +, -).
Then

(1) I is called a right (left) ideal of S if I is a subsemiring of S and IS C I (respectively
SI C I).If I is aright and left ideal of S, then [ is called an ideal of S.

(ii) A subsemiring B of S is called a bi ideal if BSB C B.

(iii) A subsemiring ) of S is called a quasi ideal if QS N SQ C Q.

Definition 2.3. [[11]] Suppose that I and ) are non-empty subsets of a semiring (S, +, -).
Then

(i) I is called a right (left) tri ideal of S if 1251 C I(ISI? C I).

(i1) I is called a tri ideal of S if [ is a right tri ideal and left tri ideal of S.

(iii) @ is called a right (left) bi quasi ideal if @ is a subsemigroup of S and

RSNEASQ CRASQNASA C Q).

(iv) @ is called a bi quasi ideal of .S if @ is a left bi quasi ideal and right bi quasi ideal of
S.

Definition 2.4. [4] Suppose that [ is a non-empty subset of a semigroup S. Then
(1) I is called a right (left) o/-ideal of S if IS NI # (ST NI # ¢).

(ii) I is called a .o/-ideal of S if I is a right .«/'-ideal and left .« -ideal of S.

(iii) A subsemigroup B of S is called a bi <7-ideal if BSB N B # ¢.

(iv) A non-empty subset @ of S is called a quasi «7-ideal if [QS N SQ] N Q # ¢.

3. VARIOUS &7 -IDEALS

Here S stands for semiring unless otherwise mentioned.

Definition 3.1. Suppose that I, B and @) are non-empty subsets of a semiring (.5, +, -).
Then

(1) I is called a right (left) «7-ideal of S if [ is a subsemiring of S and IS NI # ¢
(SINI# o).

(ii) I is called a .o/-ideal of S if I is a right .o/-ideal and left <7-ideal of S.

(iii) A subsemiring B of S is called a bi «7-ideal if BSB N B # ¢.

(iv) A subsemiring () of S is called a quasi /-ideal if [QS N SQ] N Q # ¢.

Definition 3.2. Suppose that () is a non-empty subset of a semiring (.5, +, -). Then

(1) @ is called a right (left) bi quasi ideal of S if () is a subsemiring of .S and

RQSNEQSQ CASQNQRSQ C Q).

(ii) @ is called a bi quasi ideal of S if @ is a left bi quasi ideal and right bi quasi ideal of S.

Definition 3.3. Suppose that () is a non-empty subset of a semiring (.5, +, -). Then

(1) Q is called a right (left) bi quasi .«7- ideal of S if @) is a subsemiring of .S and
[QSNQSQINQ # ¢ (SQNQSQINQ # ¢).

(ii) @ is called a bi quasi .o7- ideal of S if @) is a left bi quasi .o7- ideal and right bi quasi
o/ - ideal of S.

Theorem 3.1. Every ideal (bi ideal, quasi ideal) is a <f -ideal (bi <f -ideal, quasi <f -ideal).

Proof. Suppose that [ is an ideal of S, then I is a subsemiring of S and .S C I and
SICI.Now,ISNICINI#¢andSINICINI# ¢. Hence I isa o/-ideal of S.
Converse of the Theorem [3.1may not be true by the following counter Example.
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Example 3.4. (i) The semiring S; = { (Z 2)

a,b,c,d e ZQ} and

0 0 0 0

. 0 0 1 0 0 1 1 1
1dealof51by151:{<0 O)’(O O)’(O 0),(0 O)}QIand
0 0 1 0 0 0 1 0
Sl[‘{(o 0)’(0 0)’(1 0)’(1 0)}*@1'
0 0 1 0 01 1 1 . . . .
Let Q = {(O O)’(O 1>,<1 1),(1 0)}1saqua51 o/ -ideal but () is not a

quasi ideal of S1 by @S1 N S1Q =51NS;1 =51 Z Q.

0’)"1 T2 T3 T4 T5

I= { <0 0> , (1 O) } Clearly ! is a subsemiring and <7-ideal of S; but I is not an

00 Te Ty T] T9 ,
(ii) The semiring So = 00 b e qiLriz o) Ay, are real numbers .
00 O 0 0 T15
0000 0 0
06,0000
000000 )
Clearly B = 000k 00 b,° are real numbers ¢ is a bi <7-ideal of S, but B
00000 bs
000000
010000
000000
is not a bi ideal of S;. Since the arbitrary element b = [ J383499 | € Bandr =
000001
000000

1111
1111
0111 | € Sy such that brb ¢ B.
8001

Theorem 3.2. Every quasi ideal (bi ideal) is a bi quasi ideal.
Proof. Suppose that () is a quasi ideal of .S, then QS N SQ C Q. Now, QS N QSQ C
QRSNSQ CRand SQNESQ C SQNQES C Q. Hence Q is a bi quasi ideal of S.
Converse of the Theorem [3.2]is not true by the following Example.

Example 3.5. In Example (3.4} the semiring S2 is not regular by a = € Sy

[elelelelole]
[elelelelole]
[elelelelele]
[elelelelele]
[elelelelele]
[elelelelely

there is no x € S5 such that a = aza.
1000

00z
OOIQOQZgO ,
Let@Q = 0909909 ||z arereal numbers ; is a subsemiring of So.
000000
000000
000 y1 y2 y3
000 ys4 ys Y6 ‘s
= 0000 0 0 ,
Now, Q.5 0009000 y,° are real numbers , and
0000 0 0
0000 0 0
00210220
000000 |1y
—_ S
S2Q) = 90902983 | |#° are real numbers ;.
000000
000000 i . . i
Thus, S2Q N QS2Q C @ and Q@S2 N QS2Q C Q. Hence, @ is a bi quasi ideal but @) is
0000wu0
000000
not a quasi ideal of Sy by QS3 N S2Q = 9080608 | |uisareal numbers p  Q
000000
000000
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Corollary 3.3. Every bi quasi <f -ideal is a quasi <7 -ideal.

Proof. Suppose that () is a bi quasi .«7-ideal of S, then Q? C @ and [QS N QSQ] N
Q # oand [SQNQSQINQ # ¢. Now, ¢ # [QSNESYINEQ C QSN and
P #[QSNQRSQOINEQ C SQNQ. Thus, ¢ # [QSNAQSQINQ C [QSNSQ]NQ. Hence
Q is a quasi <7-ideal of S.
Converse of the Corollary |3.3|is not true by the following Example.

0ry rers
Example 3.6. Let S = (8 0w )

00 0 rr
Oz10
J— OIQO
@ = (88°>
x3

/g
r;® are real numbers}.

[=lejeie]

1‘;3 are real numbers } is a quasi .«/-ideal of S but @ is not

a bi quasi «7-ideal of S by [rF'¢gNgr q/N ¢ = ¢and [gr Ngr g N ¢ = ¢, where
0010 ) 0100 ., 0111
q_<3353)eQandr _<3ggl € Sandr’ = 8801>6S.
0001 0001 0000

Theorem 3.4. Every bi o7 -ideal is a quasi o7 -ideal.

Proof. Suppose that B is a bi «7-ideal of .S, B is a subsemiring of S and BSBNB # ¢.
Now, ¢ # BSBNB C BSNBand ¢ # BSBNB CSBNB. Thus, p # BSBNB C
[BS N SB]N B. Hence B is a quasi < -ideal of S.

Converse of the Theorem 3.4/ may not be true by the following counter Example.

Example 3.7. The semiring S in Example 3.6}

000 0
B = { (8 i ) ;% are are real numbers } is a subsemiring of .S and
000 x3
00 y1 y2
SB = { (88 8 v y,® are are real numbers } and
000 ys
000 0 )
BS = (8 004 ) z;% are are real numbers .
000 2

Hence [BS N SB] N B # ¢. Thus, B is a quasi «7-ideal of S but B is not a bi .« -ideal of

, 0000 , 0111
Sbybrbn b= ¢, where b= (8855 ) €Bandr = <88(H ) €.
0001 0000

Theorem 3.5. Every quasi o/ -ideal is a <7 -ideal.

Proof. Suppose that @ is a quasi ©7-ideal of .S, then [QS N SQ] N Q # ¢. Now,

P A[QSNSQYINQ CSQNQRand ¢ #[QSNSQPINQ C QSNQ. Hence Q is a
o -ideal of S.
Converse of the Theorem [3.5]not true by the following Example.

Ory r
Example 3.8. The semiring S = { (0 0 s )

00 0
000
Q: (00(]1)
000

’ " 000 ’ 011 ” 010
=owhereq = (§81) € Q' = (351 ) = (351 ) es
[gr Nr q]Nq = ¢, where g 001 eqQ,r 001 € Sandr 001 eSS

’
r;° are real numbers} and

g1 is a real numbers p is a o7-ideal but () is not a quasi <7-ideal of S by

Theorem 3.6. Every bi quasi ideal is a bi quasi < -ideal.
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Proof. Suppose that () is a bi quasi ideal of .S, then QS NQSQ C Q and SQNQSQ C

Q. Now, [QSNQRSQINQ C QN # ¢dand [SRNRSQINQ C QNEQ # ¢. Hence Q
is a bi quasi .7-ideal of S.
Converse of the Theorem [3.6]is not true as by the Example.

Example 3.9. The semiring S in Example[3.6]

00z 0
Q= { (8 ot s > x;s are real numbers } is a subsemiring of .S,
00 0 4
00y1 y2 ,
SQ = { (88 0 e ) ‘yis are real numbers },
000 ys
000z /
QS = { <8 002 > z;% are real numbers » and
000 z3
0001 )
QSQ = { (8 o0k ) 1,* are real numbers } Thus, [SQNQSQINQ = [QSNQSQ]|N
00013
0000
Q= { 900u ) |u, v are real numbers p # &.
0000w
Hence b

Theorem 3.7. If Q) is a <7-ideal (bi <f -ideal, quasi <f -ideal, bi quasi <f -ideal) of S and
QCQ C8, thenQ isa o -ideal (bi <f -ideal, quasi < -ideal, bi quasi < -ideal) of S.

Proof. Suppose that @ is a bi quasi 7 ideal of S with Q C Q C S. Then ¢ #+
[QSNQSQINQ C [Q SNQ SQINQ and ¢ # [SQNQSQINEQ C [SQ NQ SQINQ..
Therefore ) is a bi quasi ¢/ ideal of S.

Corollary 3.8. The union of <f -ideals (bi <f -ideals, quasi <7 -ideals, bi quasi <f -ideals)
of S is a of -ideal (bi < -ideal, quasi <7 -ideal, bi quasi <f -ideal) of S.

Proof. Let I; and I, be any two «7-ideals of S. Then I; C I; U I5, by Theorem [3.7]
Iy U is a @7-ideal of S.

4. VARIOUS TRI &7 -IDEALS

Definition 4.1. Suppose that I and @) are non-empty subsets of a semiring (.5, +, -). Then
(i) I is called a right (left) tri ideal of S if I is a subsemiring of R and I2SI C I(ISI? C I).
(ii) @ is called a right (left) tri quasi ideal of S if @ is a subsemiring of R and
QSNQ*SQ CQ(SQNQRSQ* C Q).

(iii) @ is called a tri quasi ideal of .S if () is a right tri quasi ideal and left tri quasi ideal of
S.

Definition 4.2. Suppose that I and @) are non-empty subsets of a semiring (.5, +, -). Then
(i) I is called a right (left) tri 27-ideal of S if I is a subsemiring of S and I2SI N1 # ¢
ISI?’N 1 # ¢).

(ii) I is called a tri .o/-ideal of S if I is a right tri .«/-ideal and left tri .<7-ideal of S.

(iii) @ is called a right (left) tri quasi o/-ideal of S if () is a subsemiring of .S and
[QSNQ25QINQ # ¢ (SQNQSQY N Q # ¢).

(iv) @ is called a tri quasi &7- ideal of S if () is a right tri quasi .27 - ideal and left tri quasi
of -ideal of S.
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Theorem 4.1. Every ideal (bi ideal, quasi ideal, tri ideal) is a tri <f -ideal.

Converse of the Theorem 4.1 may not true by the following Example.

a b
Example 4.3. Let S = { <c d>

. .. 0 0 1 0 0 0 1 0 . .
(1) The subsemiring I; = { (O 0) , <O O> , (O 1) , <O 1> } is a tri «7-ideal of

S but I; isnot an ideal of Sby 1S =S5 Z I and SI; =S € I;.

. .. 0 0 10 0 1 1 1 . .
(i1) The subsemiring B = { (0 0) , (O 1) , (1 1) , (1 0) } is a tri .<7-ideal of

S but B is not a bi ideal of Sby BSB =S ¢ B.

.. 0 0 11 10 0 1 . ..
(iii) The subsemiring Q) = { (0 0) , (1 1> , (0 1) , (1 0) } is a tri &/-ideal of
S but ) is not a quasi ideal of Sby QSN SQ =5 € Q.

a,b,c,d e Zg} as a semiring.

@iv) I, = { (8 8) , <é (1)) } is a tri «7-ideal of S but I5 is not a tri ideal of S by
I3S1, € I and I,S12 Z I of S.
Theorem 4.2. Every tri of -ideal is a </ -ideal (bi <f -ideal).

Proof. Suppose that [ is a tri .<7-ideal of S, then I is a subsemiring of S and I2ST NI #
¢and IST?’NI # ¢. Now, ¢ # 12SINI C ISINI C ISNTand ¢ # ISIINI C SINI.
Hence [ is a o7-ideal of S.

Converse of the Theorem 4.2 may not be true as in the given Example.

0ry rors
Example 4.4. (i) Let S; = { (8 00T )

000 0
00 i1 is
_ 00 i3 44
Let ] = <000i5)
000 0

not a tri <7-ideal of Sy by i?ri N4 = ¢ and iri2 Ni = ¢, where i = (

04
r=10001 € 5.
0000

/ . ..
r,;° are real numbers} is a semiring.

i;® are are real numbers } Clearly [ is a o7/-ideal of .S; but [ is

ocooo
ocooo

11
1 ) €land
00

Oryrog rg 74 75
00 r¢g rv g 719 ,
.. o 00 0 rip r11 T12 s . ..
(ii) Let So = 00 0 0 rsria r,;° are real numbers  is a semiring.
00 O 0 0 T15
000 0 0 0
0b:00 0 0
0000 00 ,
Clearly B = 00 02 ba bs b,® are real numbers ; is a bi .o/-ideal but B is not a
000 0 bs bg i
0000 0 by
0000 00
010000
ot 2 : aa000e
tri .o7-ideal of S3 by brb* Nb = ¢ and b*rbNb = ¢, whereb= | g0 o516 | € B and
000001
000000
011111
000171
r=1{o000010 | €5
000001
000000
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Theorem 4.3. Every tri o/ -ideal is a quasi <f -ideal.

Proof. Suppose that Q is a tri .7-ideal of S, then Q2SQ N Q # ¢ and QSR> N Q # ¢.
Since @ is a subsemiring of S, ¢ # Q?SQNQ C QSQNQ C RSN Q and ¢ #
Q%SQNQ C RSYNQ C SQNQ. Hence ¢ # Q2SQNQ C [QSNSQINQ. Similarly,
d#QSQ*NQ C[QSNSQ|N Q. Hence Q is a quasi <7 -ideal of S.

Converse of the Theorem [4.3]may not be true in the given Example.

Example 4.5. The semiring S in Example[4.4]

g2 0
|

q3 q4
0 gs
ideal of Sy by ¢°rqNq = ¢ and qr¢®> N q = ¢, where ¢ =

00
00
00

cocococoR

q;S are real numbers} is a quasi .7-ideal but () is not a tri <7~

[eleleieloio)]
[=]leleloiel)
[=]eleNoiel)

€ @ and

[slelelelele)
[slelelelele)
[elelelelel]
[elelelelely
[=lelelel oo
[=leleldde]

€ 5s.

[=lelel g
OO
OO

1
0
0
0
0
0

<
[e]e]elelele)
[e]e]elelele)

Corollary 4.4. Every tri o/ -ideal is a bi quasi <7 -ideal.

Proof. Suppose that Q is a right tri &7-ideal of S, then Q25Q N Q # ¢. Since Q is a
subsemiring of S, ¢ # Q%2SQ NQ C QSNQand ¢ # Q*>SQNQ C QSQ N Q. This
implies that ¢ # Q2SQ N Q C [QS N QRSQ] N Q. Thus, Q is a right bi quasi .«7-ideal of
S. Suppose that @ is a left tri .o7-ideal of S, then @ is a left bi quasi .2/ -ideal of S. Hence,
() is a bi quasi o7 -ideal of S.

Converse of the Corollary .4 may not be true in the given Example.

T4 T5 Te T'7

0000
Example 4.6. Let S = <2 ,93 o0 >

7
r;% are real numbers } and

’

g;° are real numbers } be subsemirings.

—N—
7N
oR oo
2% oco
ocooco
L coo

S coo
\—/

!
¢;® are real numbers } and

!
d,® are real numbers .,

N~ Ceee

/o
e,;® are real numbers .

Thus, [QS N QRSO NQ # ¢ and [SQ NQRSQ] N Q # ¢. Hence Q is a bi quasi /-
ideal of S. But @ is not a tri «7-ideal of S by ¢2r'¢Nq = ¢ and qr' ¢> N q = ¢, where

904 (2388
g=1(9900 | €Qandr = ;9009 ) €S.
011
l

0101

Theorem 4.5. Every bi quasi ideal is a tri quasi ideal.

Proof. Suppose that () is a bi quasi ideal of S then SQNQSQ C Q and QSNQSQ C
Q. Now, SQNQSQ?* C SQNQERSQ CQand QSNQ?*SQ C QSNQSQ C Q, since Q
is a subsemiring of S. Hence () is a tri quasi ideal of .S.

Converse of Theorem [.5|not true by the following Example.
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Example 4.7. The semiring S in Example 4.6,

0 00O
— 0 0 0
Q* a; 0 0
0(12 as

0

0

0

C2

’ . ..
a;® are real numbers » is a subsemiring of S.

!
¢;® are real numbers },

S

/
d,® are real numbers ,

’
e,;® are real numbers } and

e

00 ,

59 ) f;* are real numbers 3. Thus, SQ N QSQ? C Q. Hence
0 f

O
N
<
[
—

2
@ is a tri quasi ideal of S but @ is not a left bi quasi ideal of S by SQ N QSQ =

0 00O
0 00O
0 00O
h1 ha 0 hs

Corollary 4.6. Every tri quasi of -ideal is a bi quasi o7 -ideal.

h;* are real numbers } Z Q.

Proof. Suppose that () is a tri quasi o7 ideal of S then [QS N Q?SQ] N Q # ¢ and
[SQ N QRSQ?] N Q # ¢. Since Q is a subsemiring of S, ¢ # [QS N Q*SQ) N Q C
[RQSNQSQINQ and ¢ # [SQNQSQ?*NQ C [SQNQRSQ]NQ. Hence Q is a bi quasi
o/ -ideal of S.

Converse of the Corollary 4.6]is not true in the following Example.

Example 4.8. The semiring S in Example 4.6]
0000

Q= <a1 000 )
0 az 0 as

a tri quasi «7-ideal of S by [r'q N qr ¢] Nq = ¢ and [gr' N ¢*" ¢l N q = ¢, where

ngrq
0000 r_ (9800 v (980890
g=19000 |€Qandr = (9900 | €Sandr = (1990 ) €5.
0 1111 0111

101
Theorem 4.7. If Q) is a tri &7 -ideal (tri quasi <f -ideal) of S and ) C Q' C S, then Q' is
a tri &/ -ideal (tri quasi <7 -ideal) of S.

a;s are real numbers } is a bi quasi «7-ideal of S but @ is not

Proof. Suppose that () is a tri quasi <7 -ideal of .S with Q) C Q' C S. Then P #£[QSN
QSQ*NQ Cl@SNQ SQQINQ and ¢ # [SRNQ*SQINQ C [SQ NQ Q SQ|NQ .
Therefore, () is a tri quasi <7-ideal of S.

Corollary 4.8. The union of tri o7 -ideals(tri quasi <7 -ideals) of S is a tri of -ideal(tri
quasi of -ideal) of S.

Proof. Let Q1 and Q2 be any two tri o/-ideals of S. Then 1 C Q1 U @2, by Theorem
Q1 U Q2 is atri o/-ideal of S.
5. CONCLUSIONS

The main goal of this work is to present a various ideals and <7-ideals in semirings. So
in future, we should consider the various generalized ideals and generalized <7-ideals in
semirings.
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