ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 4, Number 1 (2021), 17-25 ISSN: 2582-0818 © http://www.technoskypub.com

ON VARIOUS ALMOST IDEALS OF SEMIRINGS

M. PALANIKUMAR* AND K. ARULMOZHI

ABSTRACT. In this paper, we study various almost ideals (shortly \mathscr{A} -ideals), quasi \mathscr{A} -ideals, bi quasi \mathscr{A} -ideals, tri \mathscr{A} -ideals and tri quasi \mathscr{A} -ideals in semiring and give some characterizations. Some relevant counter examples are also indicated. We develop the implications ideal \Longrightarrow quasi ideal \Longrightarrow bi quasi ideal \Longrightarrow tri quasi ideal \Longrightarrow tri quasi ideal \Longrightarrow tri quasi \mathscr{A} -ideal \Longrightarrow bi quasi \mathscr{A} -ideal \Longrightarrow bi quasi \mathscr{A} -ideal \Longrightarrow tri quasi \mathscr{A} -ideal \Longrightarrow tri quasi \mathscr{A} -ideal \Longrightarrow bi quasi \mathscr{A} -ideal \Longrightarrow tri quasi \mathscr{A} -ideal and reverse implications do not holds with examples. We show that the union of \mathscr{A} -ideals (bi \mathscr{A} -ideals, quasi \mathscr{A} -ideals, bi quasi \mathscr{A} -ideal, quasi \mathscr{A} -ideal, bi quasi \mathscr{A} -ideal) in semiring.

1. INTRODUCTION

Vandiver introduced the idea of semirings as a generalization of rings [19]. The notion of quasi ideal was introduced by Otto Steinfeld both in semigroups and rings [18]. Shabir et al [17] characterized the semirings by the properties of quasi-ideals. Quasi-ideals of different classes of semirings have been characterized by many authors in [2, 5]. The notion of bi-ideals in semigroups introduced by Lajos [6]. The concept of a bi-ideal is a very interesting and important thing in semiring. Bi ideal is a generalization of left ideal and right ideal. Many mathematicians proved important results and characterizations of algebraic structures by using various ideals. Rao introduced bi-quasi-ideals of semigroups. The notion of tri-ideal is a generalization of quasi ideal, bi-ideal, ideal and properties of tri ideals of a semiring [11]. Grosek and Satko introduced the notion of \mathscr{A} -ideal of semigroup [4]. In this paper, we give some properties of various \mathscr{A} -ideals in semiring. Our aim in this paper is threefold.

(1) To study the relationship between quasi \mathscr{A} -ideal and bi quasi \mathscr{A} -ideal in a semiring.

(2) To characterize tri \mathscr{A} -ideal in a semiring.

(3) To characterize bi quasi ideal and tri quasi ideal in a semiring.

2. PRELIMINARIES

Definition 2.1. A non-empty subset I of a semiring $(S, +, \cdot)$ is called a subsemiring of S if $i_1 + i_2 \in I$ and $i_1 \cdot i_2 \in I$, for all $i_1, i_2 \in I$.

²⁰¹⁰ Mathematics Subject Classification. 20M12, 20N10.

Key words and phrases. A-ideals; bi A-ideals; quasi A-ideals; tri A-ideals.

Received: December 25, 2020. Accepted: March 7, 2021. Published: March 31, 2021.

^{*}Corresponding author.

Definition 2.2. Suppose that I, B and Q are non-empty subsets of a semiring $(S, +, \cdot)$. Then

(i) I is called a right (left) ideal of S if I is a subsemiring of S and $IS \subseteq I$ (respectively $SI \subseteq I$). If I is a right and left ideal of S, then I is called an ideal of S.

(ii) A subsemiring B of S is called a bi ideal if $BSB \subseteq B$.

(iii) A subsemiring Q of S is called a quasi ideal if $QS \cap SQ \subseteq Q$.

Definition 2.3. [11] Suppose that I and Q are non-empty subsets of a semiring $(S, +, \cdot)$. Then

(i) I is called a right (left) tri ideal of S if $I^2SI \subseteq I(ISI^2 \subseteq I)$.

(ii) I is called a tri ideal of S if I is a right tri ideal and left tri ideal of S.

(iii) Q is called a right (left) bi quasi ideal if Q is a subsemigroup of S and

 $QS \cap QSQ \subseteq Q(SQ \cap QSQ \subseteq Q).$

(iv) Q is called a bi quasi ideal of S if Q is a left bi quasi ideal and right bi quasi ideal of S.

Definition 2.4. [4] Suppose that I is a non-empty subset of a semigroup S. Then

(i) I is called a right (left) \mathscr{A} -ideal of S if $IS \cap I \neq \phi(SI \cap I \neq \phi)$.

(ii) I is called a \mathscr{A} -ideal of S if I is a right \mathscr{A} -ideal and left \mathscr{A} -ideal of S.

(iii) A subsemigroup B of S is called a bi \mathscr{A} -ideal if $BSB \cap B \neq \phi$.

(iv) A non-empty subset Q of S is called a quasi \mathscr{A} -ideal if $[QS \cap SQ] \cap Q \neq \phi$.

3. VARIOUS *A*-IDEALS

Here S stands for semiring unless otherwise mentioned.

Definition 3.1. Suppose that I, B and Q are non-empty subsets of a semiring $(S, +, \cdot)$. Then

(i) *I* is called a right (left) \mathscr{A} -ideal of *S* if *I* is a subsemiring of *S* and $IS \cap I \neq \phi$ $(SI \cap I \neq \phi)$.

(ii) I is called a \mathscr{A} -ideal of S if I is a right \mathscr{A} -ideal and left \mathscr{A} -ideal of S.

(iii) A subsemiring B of S is called a bi \mathscr{A} -ideal if $BSB \cap B \neq \phi$.

(iv) A subsemiring Q of S is called a quasi \mathscr{A} -ideal if $[QS \cap SQ] \cap Q \neq \phi$.

Definition 3.2. Suppose that Q is a non-empty subset of a semiring $(S, +, \cdot)$. Then (i) Q is called a right (left) bi quasi ideal of S if Q is a subsemiring of S and $QS \cap QSQ \subseteq Q(SQ \cap QSQ \subseteq Q)$. (ii) Q is called a bi quasi ideal of S if Q is a left bi quasi ideal and right bi quasi ideal of S.

Definition 3.3. Suppose that Q is a non-empty subset of a semiring $(S, +, \cdot)$. Then (i) Q is called a right (left) bi quasi \mathscr{A} - ideal of S if Q is a subsemiring of S and $[QS \cap QSQ] \cap Q \neq \phi$ ($[SQ \cap QSQ] \cap Q \neq \phi$).

(ii) Q is called a bi quasi \mathscr{A} - ideal of S if Q is a left bi quasi \mathscr{A} - ideal and right bi quasi \mathscr{A} - ideal of S.

Theorem 3.1. *Every ideal (bi ideal, quasi ideal) is a* \mathcal{A} *-ideal (bi* \mathcal{A} *-ideal, quasi* \mathcal{A} *-ideal).*

Proof. Suppose that I is an ideal of S, then I is a subsemiring of S and $IS \subseteq I$ and $SI \subseteq I$. Now, $IS \cap I \subseteq I \cap I \neq \phi$ and $SI \cap I \subseteq I \cap I \neq \phi$. Hence I is a \mathscr{A} -ideal of S. Converse of the Theorem 3.1 may not be true by the following counter Example.

$$\begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in S_2 \text{ such that } brb \notin B.$$

Theorem 3.2. Every quasi ideal (bi ideal) is a bi quasi ideal.

Proof. Suppose that Q is a quasi ideal of S, then $QS \cap SQ \subseteq Q$. Now, $QS \cap QSQ \subseteq QS \cap SQ \subseteq Q$ and $SQ \cap QSQ \subseteq SQ \cap QS \subseteq Q$. Hence Q is a bi quasi ideal of S. Converse of the Theorem 3.2 is not true by the following Example.

Corollary 3.3. *Every bi quasi* \mathcal{A} *-ideal is a quasi* \mathcal{A} *-ideal.*

Proof. Suppose that Q is a bi quasi \mathscr{A} -ideal of S, then $Q^2 \subseteq Q$ and $[QS \cap QSQ] \cap Q \neq \phi$ and $[SQ \cap QSQ] \cap Q \neq \phi$. Now, $\phi \neq [QS \cap QSQ] \cap Q \subseteq QS \cap Q$ and $\phi \neq [QS \cap QSQ] \cap Q \subseteq SQ \cap Q$. Thus, $\phi \neq [QS \cap QSQ] \cap Q \subseteq [QS \cap SQ] \cap Q$. Hence Q is a quasi \mathscr{A} -ideal of S.

Converse of the Corollary 3.3 is not true by the following Example.

 $\begin{aligned} & \text{Example 3.6. Let } S = \left\{ \begin{pmatrix} 0 & r_1 & r_2 & r_3 \\ 0 & 0 & r_4 & r_5 \\ 0 & 0 & 0 & r_6 \\ 0 & 0 & 0 & r_7 \end{pmatrix} \middle| r_i'^s \text{ are real numbers} \right\}. \\ & \text{Let } Q = \left\{ \begin{pmatrix} 0 & 0 & x_1 & 0 \\ 0 & 0 & x_2 & 0 \\ 0 & 0 & 0 & x_3 \end{pmatrix} \middle| x_i'^s \text{ are real numbers} \right\} \text{ is a quasi } \mathscr{A}\text{-ideal of } S \text{ but } Q \text{ is not} \\ & \text{a bi quasi } \mathscr{A}\text{-ideal of } S \text{ by } [r'q \cap qr''q] \cap q = \phi \text{ and } [qr' \cap qr''q] \cap q = \phi, \text{ where} \\ & q = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in Q \text{ and } r' = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in S \text{ and } r'' = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in S. \end{aligned}$

Theorem 3.4. Every bi *A*-ideal is a quasi *A*-ideal.

Proof. Suppose that *B* is a bi \mathscr{A} -ideal of *S*, *B* is a subsemiring of *S* and $BSB \cap B \neq \phi$. Now, $\phi \neq BSB \cap B \subseteq BS \cap B$ and $\phi \neq BSB \cap B \subseteq SB \cap B$. Thus, $\phi \neq BSB \cap B \subseteq [BS \cap SB] \cap B$. Hence *B* is a quasi \mathscr{A} -ideal of *S*.

Converse of the Theorem 3.4 may not be true by the following counter Example.

Example 3.7. The semiring S in Example 3.6, $B = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & x_1 & x_2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_3 \end{pmatrix} \middle| x_i^{'s} \text{ are are real numbers} \right\} \text{ is a subsemiring of } S \text{ and}$ $SB = \left\{ \begin{pmatrix} 0 & 0 & y_1 & y_2 \\ 0 & 0 & 0 & y_3 \\ 0 & 0 & 0 & y_4 \\ 0 & 0 & 0 & y_5 \end{pmatrix} \middle| y_i^{'s} \text{ are are real numbers} \right\} \text{ and}$ $BS = \left\{ \begin{pmatrix} 0 & 0 & 0 & y_1 \\ 0 & 0 & 0 & y_4 \\ 0 & 0 & 0 & y_5 \end{pmatrix} \middle| z_i^{'s} \text{ are are real numbers} \right\}.$

Hence $[BS \cap SB] \cap B \neq \phi$. Thus, B is a quasi \mathscr{A} -ideal of S but B is not a bi \mathscr{A} -ideal of S by $br'b \cap b = \phi$, where $b = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in B$ and $r' = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in S$.

Theorem 3.5. Every quasi A-ideal is a A-ideal.

Proof. Suppose that Q is a quasi \mathscr{A} -ideal of S, then $[QS \cap SQ] \cap Q \neq \phi$. Now, $\phi \neq [QS \cap SQ] \cap Q \subseteq SQ \cap Q$ and $\phi \neq [QS \cap SQ] \cap Q \subseteq QS \cap Q$. Hence Q is a \mathscr{A} -ideal of S.

Converse of the Theorem 3.5 not true by the following Example.

Example 3.8. The semiring $S = \left\{ \begin{pmatrix} 0 & r_1 & r_2 \\ 0 & 0 & r_3 \\ 0 & 0 & 0 \end{pmatrix} \middle| r_i'^s$ are real numbers $\right\}$ and $Q = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q_1 \\ 0 & 0 & 0 \end{pmatrix} \middle| q_1$ is a real numbers $\right\}$ is a \mathscr{A} -ideal but Q is not a quasi \mathscr{A} -ideal of S by $[qr' \cap r''q] \cap q = \phi$, where $q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in Q, r' = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in S$ and $r'' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in S$.

Theorem 3.6. Every bi quasi ideal is a bi quasi A-ideal.

Proof. Suppose that Q is a bi quasi ideal of S, then $QS \cap QSQ \subseteq Q$ and $SQ \cap QSQ \subseteq Q$ Q. Now, $[QS \cap QSQ] \cap Q \subseteq Q \cap Q \neq \phi$ and $[SQ \cap QSQ] \cap Q \subseteq Q \cap Q \neq \phi$. Hence Q is a bi quasi \mathscr{A} -ideal of S.

Converse of the Theorem 3.6 is not true as by the Example.

Example 3.9. The semiring S in Example 3.6,

$$Q = \left\{ \begin{pmatrix} 0 & 0 & 0 & x_1 & 0 \\ 0 & 0 & x_2 & x_3 \\ 0 & 0 & 0 & 0 & x_4 \end{pmatrix} \middle| x_i^{'s} \text{ are real numbers} \right\} \text{ is a subsemiring of } S,$$

$$SQ = \left\{ \begin{pmatrix} 0 & 0 & y_1 & y_2 \\ 0 & 0 & 0 & y_3 \\ 0 & 0 & 0 & y_4 \\ 0 & 0 & 0 & y_5 \end{pmatrix} \middle| y_i^{'s} \text{ are real numbers} \right\},$$

$$QS = \left\{ \begin{pmatrix} 0 & 0 & 0 & z_1 \\ 0 & 0 & 0 & z_1 \\ 0 & 0 & 0 & z_3 \end{pmatrix} \middle| z_i^{'s} \text{ are real numbers} \right\} \text{ and}$$

$$QSQ = \left\{ \begin{pmatrix} 0 & 0 & 0 & l_1 \\ 0 & 0 & 0 & l_2 \\ 0 & 0 & 0 & l_3 \\ 0 & 0 & 0 & l_3 \end{pmatrix} \middle| l_i^{'s} \text{ are real numbers} \right\}. \text{ Thus, } [SQ \cap QSQ] \cap Q = [QS \cap QSQ] \cap$$

$$Q = \left\{ \begin{pmatrix} 0 & 0 & 0 & l_1 \\ 0 & 0 & 0 & l_2 \\ 0 & 0 & 0 & l_3 \\ 0 & 0 & 0 & v \end{pmatrix} \middle| u, v \text{ are real numbers} \right\} \neq \phi.$$
Hence Q is a bi quasi \mathscr{A} -ideal but Q is not a bi quasi ideal of S by $QS \cap QSQ = \left\{ \begin{pmatrix} 0 & 0 & 0 & l_1 \\ 0 & 0 & 0 & l_2 \\ 0 & 0 & 0 & v \end{pmatrix} \middle| u, v \text{ are real numbers} \right\} \neq \phi.$

 $\left\{ \left(\begin{smallmatrix} 0 & 0 & 0 & y \\ 0 & 0 & 0 & z \end{smallmatrix} \right) \middle| x, y, z \text{ are real numbers } \right\} \not\subseteq Q.$

Theorem 3.7. If Q is a \mathcal{A} -ideal (bi \mathcal{A} -ideal, quasi \mathcal{A} -ideal, bi quasi \mathcal{A} -ideal) of S and $Q \subseteq Q' \subseteq S$, then Q' is a \mathscr{A} -ideal (bi \mathscr{A} -ideal, quasi \mathscr{A} -ideal, bi quasi \mathscr{A} -ideal) of S.

Proof. Suppose that Q is a bi quasi \mathscr{A} ideal of S with $Q \subseteq Q' \subseteq S$. Then $\phi \neq \phi$ $[QS \cap QSQ] \cap Q \subseteq [Q'S \cap Q'SQ'] \cap Q' \text{ and } \phi \neq [SQ \cap QSQ] \cap Q \subseteq [SQ' \cap Q'SQ'] \cap Q'.$ Therefore Q' is a bi quasi \mathscr{A} ideal of S.

Corollary 3.8. The union of \mathscr{A} -ideals (bi \mathscr{A} -ideals, quasi \mathscr{A} -ideals, bi quasi \mathscr{A} -ideals) of S is a A-ideal (bi A-ideal, quasi A-ideal, bi quasi A-ideal) of S.

Proof. Let I_1 and I_2 be any two \mathscr{A} -ideals of S. Then $I_1 \subseteq I_1 \cup I_2$, by Theorem 3.7, $I_1 \cup I_2$ is a \mathscr{A} -ideal of S.

4. VARIOUS TRI & -IDEALS

Definition 4.1. Suppose that I and Q are non-empty subsets of a semiring $(S, +, \cdot)$. Then (i) I is called a right (left) tri ideal of S if I is a subsemiring of R and $I^2SI \subseteq I(ISI^2 \subseteq I)$. (ii) Q is called a right (left) tri quasi ideal of S if Q is a subsemiring of R and $QS \cap Q^2 SQ \subseteq Q \ (SQ \cap QSQ^2 \subseteq Q).$

(iii) Q is called a tri quasi ideal of S if Q is a right tri quasi ideal and left tri quasi ideal of S.

Definition 4.2. Suppose that I and Q are non-empty subsets of a semiring $(S, +, \cdot)$. Then (i) I is called a right (left) tri \mathscr{A} -ideal of S if I is a subsemiring of S and $I^2SI \cap I \neq \phi$ $(ISI^2 \cap I \neq \phi).$

(ii) I is called a tri \mathscr{A} -ideal of S if I is a right tri \mathscr{A} -ideal and left tri \mathscr{A} -ideal of S.

(iii) Q is called a right (left) tri quasi \mathscr{A} -ideal of S if Q is a subsemiring of S and $[QS \cap Q^2SQ] \cap Q \neq \phi ([SQ \cap QSQ^2] \cap Q \neq \phi).$

(iv) Q is called a tri quasi \mathscr{A} - ideal of S if Q is a right tri quasi \mathscr{A} - ideal and left tri quasi \mathscr{A} -ideal of S.

Theorem 4.1. Every ideal (bi ideal, quasi ideal, tri ideal) is a tri A-ideal.

Converse of the Theorem 4.1 may not true by the following Example.

Example 4.3. Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}_2 \right\}$ as a semiring. (i) The subsemiring $I_1 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is a tri \mathscr{A} -ideal of S but I_1 is not an ideal of S by $I_1S = S \not\subseteq I_1$ and $SI_1 = S \not\subseteq I_1$. (ii) The subsemiring $B = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ is a tri \mathscr{A} -ideal of S but B is not a bi ideal of S by $BSB = S \not\subseteq B$. (iii) The subsemiring $Q = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ is a tri \mathscr{A} -ideal of S but Q is not a quasi ideal of S by $QS \cap SQ = S \not\subseteq Q$. (iv) $I_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is a tri \mathscr{A} -ideal of S but I_2 is not a tri ideal of S by $I_2^2SI_2 \not\subseteq I_2$ and $I_2SI_2^2 \not\subseteq I_2$ of S.

Theorem 4.2. Every tri A-ideal is a A-ideal (bi A-ideal).

Proof. Suppose that *I* is a tri \mathscr{A} -ideal of *S*, then *I* is a subsemiring of *S* and $I^2SI \cap I \neq \phi$ and $ISI^2 \cap I \neq \phi$. Now, $\phi \neq I^2SI \cap I \subseteq ISI \cap I \subseteq IS \cap I$ and $\phi \neq ISII \cap I \subseteq SI \cap I$. Hence *I* is a \mathscr{A} -ideal of *S*.

Converse of the Theorem 4.2 may not be true as in the given Example.

$$r = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in S_2.$$

Theorem 4.3. Every tri A-ideal is a quasi A-ideal.

Proof. Suppose that Q is a tri \mathscr{A} -ideal of S, then $Q^2SQ \cap Q \neq \phi$ and $QSQ^2 \cap Q \neq \phi$. Since Q is a subsemiring of S, $\phi \neq Q^2SQ \cap Q \subseteq QSQ \cap Q \subseteq QS \cap Q$ and $\phi \neq Q^2SQ \cap Q \subseteq QSQ \cap Q \subseteq SQ \cap Q$. Hence $\phi \neq Q^2SQ \cap Q \subseteq [QS \cap SQ] \cap Q$. Similarly, $\phi \neq QSQ^2 \cap Q \subseteq [QS \cap SQ] \cap Q$. Hence Q is a quasi \mathscr{A} -ideal of S.

Converse of the Theorem 4.3 may not be true in the given Example.

Example 4.5. The semiring S_2 in Example 4.4,

ideal of S_2 by $q^2 r q \cap q = \phi$ and $qrq^2 \cap q = \phi$, where $q = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in S_2.$

Corollary 4.4. *Every tri A-ideal is a bi quasi A-ideal.*

Proof. Suppose that Q is a right tri \mathscr{A} -ideal of S, then $Q^2SQ \cap Q \neq \phi$. Since Q is a subsemiring of S, $\phi \neq Q^2SQ \cap Q \subseteq QS \cap Q$ and $\phi \neq Q^2SQ \cap Q \subseteq QSQ \cap Q$. This implies that $\phi \neq Q^2SQ \cap Q \subseteq [QS \cap QSQ] \cap Q$. Thus, Q is a right bi quasi \mathscr{A} -ideal of S. Suppose that Q is a left tri \mathscr{A} -ideal of S, then Q is a left bi quasi \mathscr{A} -ideal of S. Hence, Q is a bi quasi \mathscr{A} -ideal of S.

Converse of the Corollary 4.4 may not be true in the given Example.

Theorem 4.5. Every bi quasi ideal is a tri quasi ideal.

Proof. Suppose that Q is a bi quasi ideal of S then $SQ \cap QSQ \subseteq Q$ and $QS \cap QSQ \subseteq Q$. Now, $SQ \cap QSQ^2 \subseteq SQ \cap QSQ \subseteq Q$ and $QS \cap Q^2SQ \subseteq QS \cap QSQ \subseteq Q$, since Q is a subsemiring of S. Hence Q is a tri quasi ideal of S.

Converse of Theorem 4.5 not true by the following Example.

Corollary 4.6. Every tri quasi A-ideal is a bi quasi A-ideal.

Proof. Suppose that Q is a tri quasi \mathscr{A} - ideal of S then $[QS \cap Q^2SQ] \cap Q \neq \phi$ and $[SQ \cap QSQ^2] \cap Q \neq \phi$. Since Q is a subsemiring of $S, \phi \neq [QS \cap Q^2SQ] \cap Q \subseteq [QS \cap QSQ] \cap Q$ and $\phi \neq [SQ \cap QSQ^2] \cap Q \subseteq [SQ \cap QSQ] \cap Q$. Hence Q is a bi quasi \mathscr{A} -ideal of S.

Converse of the Corollary 4.6 is not true in the following Example.

Example 4.8. The semiring S in Example 4.6, $Q = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ a_1 & 0 & 0 & 0 & 0 \\ 0 & a_2 & 0 & a_3 \end{pmatrix} \middle| a_i'^s \text{ are real numbers} \right\} \text{ is a bi quasi } \mathscr{A}\text{-ideal of } S \text{ but } Q \text{ is not}$ a tri quasi $\mathscr{A}\text{-ideal of } S$ by $[r'q \cap qr''q^2] \cap q = \phi$ and $[qr' \cap q^2r''q] \cap q = \phi$, where $q = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \in Q \text{ and } r' = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \in S \text{ and } r'' = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \in S.$

Theorem 4.7. If Q is a tri \mathscr{A} -ideal (tri quasi \mathscr{A} -ideal) of S and $Q \subseteq Q' \subseteq S$, then Q' is a tri \mathscr{A} -ideal (tri quasi \mathscr{A} -ideal) of S.

Proof. Suppose that Q is a tri quasi \mathscr{A} -ideal of S with $Q \subseteq Q' \subseteq S$. Then $\phi \neq [QS \cap QSQ^2] \cap Q \subseteq [Q'S \cap Q'SQ'Q'] \cap Q'$ and $\phi \neq [SQ \cap Q^2SQ] \cap Q \subseteq [SQ' \cap Q'Q'SQ'] \cap Q'$. Therefore, Q' is a tri quasi \mathscr{A} -ideal of S.

Corollary 4.8. The union of tri \mathscr{A} -ideals(tri quasi \mathscr{A} -ideals) of S is a tri \mathscr{A} -ideal(tri quasi \mathscr{A} -ideal) of S.

Proof. Let Q_1 and Q_2 be any two tri \mathscr{A} -ideals of S. Then $Q_1 \subseteq Q_1 \cup Q_2$, by Theorem 4.7, $Q_1 \cup Q_2$ is a tri \mathscr{A} -ideal of S.

5. CONCLUSIONS

The main goal of this work is to present a various ideals and \mathscr{A} -ideals in semirings. So in future, we should consider the various generalized ideals and generalized \mathscr{A} -ideals in semirings.

6. ACKNOWLEDGEMENTS

The author is obliged the thankful to the reviewer for the numerous and significant suggestions that raised the consistency of the ideas presented in this paper.

REFERENCES

- K. Arulmozhi. New approach of various ideals in Ternary Semirings, Journal of Xidian University, 14(3) (2020), 22–29.
- [2] C. Donges. On quasi ideals of semirings, International Journal of Mathematics and Mathematical Sciences, 17 (1994), 47–58.
- [3] S.J. Golan. Semirings and their Applications, Kluwer Academic Publishers, London, 1999.
- [4] O. Grosek and L. Satko. A New notion in the theory of semigroup, Semigroup Forum, 20 (1980) 233–240.
 [5] Y. Kemprasit. Quasi-ideals and bi-ideals in semigroups and rings, Proceedings of the International Confer-
- ence on Algebra and its Applications, (2002), 30-46.
- [6] S. Lajos. On the bi-ideals in semigroups, Proc. Japan Acad. 45 (1969), 710-712.
- [7] D. H. Lehmer. A ternary analogue of abelian groups, American Journal of Mathematics, (1932), 329-338.
- [8] W.G. Lister. Ternary Rings, Trans. Amer. Math. Soc., 154 (1971), 37–55.
- [9] Manish kant Dubey and Anuradha. A note on prime quasi-ideals in ternary semirings, Kragujevac Journal of Mathematics, 37(2) (2013), 361–367.
- [10] Mohammad Munir and Anum Shafiq. A generalization of bi-ideals in semirings, Bulletin of the International Mathematical Virtual Institute, 8 (2018), 123–133.
- [11] M. Murali Krishna Rao. Tri-ideals of semirings, Bull. Int. Math. Virtual Inst., 10(1) (2020), 145–155.
- [12] Pakorn Palakawong na Ayutthaya and Bundit Pibaljommee. Characterizations of ordered k-regular semirings by ordered quasi k-ideals, Quasigroups and Related Systems, 25, (2017), 109–120.
- [13] M. Palanikumar and K. Arulmozhi. On Various ideals and its Applications of Bisemirings, Gedrag and Organisatie Review, 33(2) (2020), 522–533.
- [14] M. Palanikumar and K. Arulmozhi. On New Ways of various ideals in ternary semigroups, Matrix Science Mathematic, 4(1) (2020), 06–09.
- [15] M. Palanikumar and K. Arulmozhi. On New Approach of Various ideals in Ordered gamma semigroups, Gedrag and Organisatie Review, 33(2) (2020), 331–342.
- [16] M. Palanikumar and K. Arulmozhi. On Various Tri-ideals in ternary Semirings, Bulletin of the International Mathematical Virtual Institute, 11(1) (2021), 79–90.
- [17] M. Shabir, A. Ali and S. Batool. A Note on Quasi-ideals in Semirings, Southeast Asian Bulletin of Mathematics, 27(5) (2004), 923–928.
- [18] O. Steinfeld. Quasi-ideals in rings and semigroups, Semigroup Forum, 19 (1980), 371–372.
- [19] H.S. Vandiver. Note on a simple type of algebra in which the cancellation law of addition does not hold, Bulletin of the American Mathematical Society, 40(12) (1934), 914–920.
- [20] J. Zelznikov. Regular Semirings, Semigroup Forum, 23 (1981), 119–136.

M. PALANIKUMAR

ANNAMALAI UNIVERSITY, DEPARTMENT OF MATHEMATICS, CHIDAMBARAM, 608002, INDIA *Email address*: palanimaths86@gmail.com

K. Arulmozhi

ANNAMALAI UNIVERSITY, DEPARTMENT OF MATHEMATICS, CHIDAMBARAM, 608002, INDIA *Email address*: arulmozhiems@gmail.com