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ON VARIOUS ALMOST IDEALS OF SEMIRINGS

M. PALANIKUMAR∗ AND K. ARULMOZHI

ABSTRACT. In this paper, we study various almost ideals (shortly A -ideals), quasi A -
ideals, bi quasi A -ideals, tri A -ideals and tri quasi A -ideals in semiring and give some
characterizations. Some relevant counter examples are also indicated. We develop the
implications ideal =⇒ quasi ideal =⇒ bi quasi ideal =⇒ tri quasi ideal =⇒ tri
quasi A -ideal =⇒ bi quasi A -ideal =⇒ bi A -ideal =⇒ quasi A -ideal =⇒
A -ideal and reverse implications do not holds with examples. We show that the union of
A -ideals (bi A -ideals, quasi A -ideals, bi quasi A -ideals) is a A -ideal (bi A -ideal, quasi
A -ideal, bi quasi A -ideal) in semiring.

1. INTRODUCTION

Vandiver introduced the idea of semirings as a generalization of rings [19]. The notion
of quasi ideal was introduced by Otto Steinfeld both in semigroups and rings [18]. Shabir
et al [17] characterized the semirings by the properties of quasi-ideals. Quasi-ideals of
different classes of semirings have been characterized by many authors in [2, 5]. The
notion of bi-ideals in semigroups introduced by Lajos [6]. The concept of a bi-ideal is a
very interesting and important thing in semiring. Bi ideal is a generalization of left ideal
and right ideal. Many mathematicians proved important results and characterizations of
algebraic structures by using various ideals. Rao introduced bi-quasi-ideals of semigroups.
The notion of tri-ideal is a generalization of quasi ideal, bi-ideal, ideal and properties of tri
ideals of a semiring [11]. Grosek and Satko introduced the notion of A -ideal of semigroup
[4]. In this paper, we give some properties of various A -ideals in semiring. Our aim in
this paper is threefold.
(1) To study the relationship between quasi A -ideal and bi quasi A -ideal in a semiring.
(2) To characterize tri A -ideal in a semiring.
(3) To characterize bi quasi ideal and tri quasi ideal in a semiring.

2. PRELIMINARIES

Definition 2.1. A non-empty subset I of a semiring (S,+, ·) is called a subsemiring of S
if i1 + i2 ∈ I and i1 · i2 ∈ I , for all i1, i2 ∈ I .
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Definition 2.2. Suppose that I,B and Q are non-empty subsets of a semiring (S,+, ·).
Then
(i) I is called a right (left) ideal of S if I is a subsemiring of S and IS ⊆ I (respectively
SI ⊆ I). If I is a right and left ideal of S, then I is called an ideal of S.
(ii) A subsemiring B of S is called a bi ideal if BSB ⊆ B.
(iii) A subsemiring Q of S is called a quasi ideal if QS ∩ SQ ⊆ Q.

Definition 2.3. [11] Suppose that I and Q are non-empty subsets of a semiring (S,+, ·).
Then
(i) I is called a right (left) tri ideal of S if I2SI ⊆ I(ISI2 ⊆ I).
(ii) I is called a tri ideal of S if I is a right tri ideal and left tri ideal of S.
(iii) Q is called a right (left) bi quasi ideal if Q is a subsemigroup of S and
QS ∩QSQ ⊆ Q(SQ ∩QSQ ⊆ Q).
(iv) Q is called a bi quasi ideal of S if Q is a left bi quasi ideal and right bi quasi ideal of
S.

Definition 2.4. [4] Suppose that I is a non-empty subset of a semigroup S. Then
(i) I is called a right (left) A -ideal of S if IS ∩ I 6= φ(SI ∩ I 6= φ).
(ii) I is called a A -ideal of S if I is a right A -ideal and left A -ideal of S.
(iii) A subsemigroup B of S is called a bi A -ideal if BSB ∩B 6= φ.
(iv) A non-empty subset Q of S is called a quasi A -ideal if [QS ∩ SQ] ∩Q 6= φ.

3. VARIOUS A -IDEALS

Here S stands for semiring unless otherwise mentioned.

Definition 3.1. Suppose that I,B and Q are non-empty subsets of a semiring (S,+, ·).
Then
(i) I is called a right (left) A -ideal of S if I is a subsemiring of S and IS ∩ I 6= φ
(SI ∩ I 6= φ).
(ii) I is called a A -ideal of S if I is a right A -ideal and left A -ideal of S.
(iii) A subsemiring B of S is called a bi A -ideal if BSB ∩B 6= φ.
(iv) A subsemiring Q of S is called a quasi A -ideal if [QS ∩ SQ] ∩Q 6= φ.

Definition 3.2. Suppose that Q is a non-empty subset of a semiring (S,+, ·). Then
(i) Q is called a right (left) bi quasi ideal of S if Q is a subsemiring of S and
QS ∩QSQ ⊆ Q(SQ ∩QSQ ⊆ Q).
(ii) Q is called a bi quasi ideal of S if Q is a left bi quasi ideal and right bi quasi ideal of S.

Definition 3.3. Suppose that Q is a non-empty subset of a semiring (S,+, ·). Then
(i) Q is called a right (left) bi quasi A - ideal of S if Q is a subsemiring of S and
[QS ∩QSQ] ∩Q 6= φ ([SQ ∩QSQ] ∩Q 6= φ).
(ii) Q is called a bi quasi A - ideal of S if Q is a left bi quasi A - ideal and right bi quasi
A - ideal of S.

Theorem 3.1. Every ideal (bi ideal, quasi ideal) is a A -ideal (bi A -ideal, quasi A -ideal).

Proof. Suppose that I is an ideal of S, then I is a subsemiring of S and IS ⊆ I and
SI ⊆ I . Now, IS ∩ I ⊆ I ∩ I 6= φ and SI ∩ I ⊆ I ∩ I 6= φ. Hence I is a A -ideal of S.

Converse of the Theorem 3.1 may not be true by the following counter Example.
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Example 3.4. (i) The semiring S1 =

{(
a b
c d

) ∣∣∣∣a, b, c, d ∈ Z2

}
and

I =

{(
0 0
0 0

)
,

(
1 0
0 0

)}
. Clearly I is a subsemiring and A -ideal of S1 but I is not an

ideal of S1 by IS1 =

{(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
1 1
0 0

)}
6⊆ I and

S1I =

{(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 0
1 0

)
,

(
1 0
1 0

)}
6⊆ I .

Let Q =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)}
is a quasi A -ideal but Q is not a

quasi ideal of S1 by QS1 ∩ S1Q = S1 ∩ S1 = S1 6⊆ Q.

(ii) The semiring S2 =

{ 0 r1 r2 r3 r4 r5
0 0 r6 r7 r8 r9
0 0 0 r10 r11 r12
0 0 0 0 r13 r14
0 0 0 0 0 r15
0 0 0 0 0 0

∣∣∣∣∣r′s
i are real numbers

}
.

Clearly B =

{ 0 b1 0 0 0 0
0 0 0 0 0 0
0 0 0 b2 0 0
0 0 0 0 0 0
0 0 0 0 0 b3
0 0 0 0 0 0

∣∣∣∣∣b′si are real numbers

}
is a bi A -ideal of S2, but B

is not a bi ideal of S2. Since the arbitrary element b =

 0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 ∈ B and r = 0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

 ∈ S2 such that brb 6∈ B.

Theorem 3.2. Every quasi ideal (bi ideal) is a bi quasi ideal.

Proof. Suppose that Q is a quasi ideal of S, then QS ∩ SQ ⊆ Q. Now, QS ∩QSQ ⊆
QS ∩ SQ ⊆ Q and SQ ∩QSQ ⊆ SQ ∩QS ⊆ Q. Hence Q is a bi quasi ideal of S.

Converse of the Theorem 3.2 is not true by the following Example.

Example 3.5. In Example 3.4, the semiring S2 is not regular by a =

 0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ∈ S2

there is no x ∈ S2 such that a = axa.

Let Q =

{ 0 0 x1 0 0 0
0 0 x2 0 x3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣x′s
i are real numbers

}
is a subsemiring of S2.

Now, QS2 =

{ 0 0 0 y1 y2 y3

0 0 0 y4 y5 y6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣y′s
i are real numbers

}
and

S2Q =

{ 0 0 z1 0 z2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣z′s
i are real numbers

}
.

Thus, S2Q ∩ QS2Q ⊆ Q and QS2 ∩ QS2Q ⊆ Q. Hence, Q is a bi quasi ideal but Q is

not a quasi ideal of S2 by QS2 ∩ S2Q =

{ 0 0 0 0 u 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣u is a real numbers

}
6⊆ Q
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Corollary 3.3. Every bi quasi A -ideal is a quasi A -ideal.

Proof. Suppose that Q is a bi quasi A -ideal of S, then Q2 ⊆ Q and [QS ∩ QSQ] ∩
Q 6= φ and [SQ ∩ QSQ] ∩ Q 6= φ. Now, φ 6= [QS ∩ QSQ] ∩ Q ⊆ QS ∩ Q and
φ 6= [QS ∩QSQ]∩Q ⊆ SQ∩Q. Thus, φ 6= [QS ∩QSQ]∩Q ⊆ [QS ∩SQ]∩Q. Hence
Q is a quasi A -ideal of S.
Converse of the Corollary 3.3 is not true by the following Example.

Example 3.6. Let S =

{( 0 r1 r2 r3
0 0 r4 r5
0 0 0 r6
0 0 0 r7

) ∣∣∣∣∣r′s
i are real numbers

}
.

Let Q =

{( 0 0 x1 0
0 0 x2 0
0 0 0 0
0 0 0 x3

) ∣∣∣∣∣x′s
i are real numbers

}
is a quasi A -ideal of S but Q is not

a bi quasi A -ideal of S by [r
′
q ∩ qr′′

q] ∩ q = φ and [qr
′ ∩ qr′′

q] ∩ q = φ, where

q =

(
0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 1

)
∈ Q and r

′
=

(
0 1 0 0
0 0 0 1
0 0 0 1
0 0 0 1

)
∈ S and r

′′
=

(
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

)
∈ S.

Theorem 3.4. Every bi A -ideal is a quasi A -ideal.

Proof. Suppose thatB is a bi A -ideal of S,B is a subsemiring of S andBSB∩B 6= φ.
Now, φ 6= BSB ∩B ⊆ BS ∩B and φ 6= BSB ∩B ⊆ SB ∩B. Thus, φ 6= BSB ∩B ⊆
[BS ∩ SB] ∩B. Hence B is a quasi A -ideal of S.

Converse of the Theorem 3.4 may not be true by the following counter Example.

Example 3.7. The semiring S in Example 3.6,

B =

{(
0 0 0 0
0 0 x1 x2
0 0 0 0
0 0 0 x3

) ∣∣∣∣∣x′s
i are are real numbers

}
is a subsemiring of S and

SB =

{(
0 0 y1 y2

0 0 0 y3

0 0 0 y4

0 0 0 y5

)∣∣∣∣∣y′s
i are are real numbers

}
and

BS =

{(
0 0 0 0
0 0 0 z1
0 0 0 0
0 0 0 z2

) ∣∣∣∣∣z′s
i are are real numbers

}
.

Hence [BS ∩ SB] ∩B 6= φ. Thus, B is a quasi A -ideal of S but B is not a bi A -ideal of

S by br
′
b ∩ b = φ, where b =

(
0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 1

)
∈ B and r

′
=

(
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

)
∈ S.

Theorem 3.5. Every quasi A -ideal is a A -ideal.

Proof. Suppose that Q is a quasi A -ideal of S, then [QS ∩ SQ] ∩ Q 6= φ. Now,
φ 6= [QS ∩ SQ] ∩ Q ⊆ SQ ∩ Q and φ 6= [QS ∩ SQ] ∩ Q ⊆ QS ∩ Q. Hence Q is a
A -ideal of S.

Converse of the Theorem 3.5 not true by the following Example.

Example 3.8. The semiring S =

{(
0 r1 r2
0 0 r3
0 0 0

) ∣∣∣∣∣r′s
i are real numbers

}
and

Q =

{(
0 0 0
0 0 q1
0 0 0

) ∣∣∣∣∣q1 is a real numbers

}
is a A -ideal but Q is not a quasi A -ideal of S by

[qr
′ ∩r′′

q]∩q = φ, where q =
(

0 0 0
0 0 1
0 0 0

)
∈ Q, r

′
=
(

0 1 1
0 0 1
0 0 0

)
∈ S and r

′′
=
(

0 1 0
0 0 1
0 0 0

)
∈ S.

Theorem 3.6. Every bi quasi ideal is a bi quasi A -ideal.
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Proof. Suppose thatQ is a bi quasi ideal of S, thenQS∩QSQ ⊆ Q and SQ∩QSQ ⊆
Q. Now, [QS ∩QSQ] ∩Q ⊆ Q ∩Q 6= φ and [SQ ∩QSQ] ∩Q ⊆ Q ∩Q 6= φ. Hence Q
is a bi quasi A -ideal of S.

Converse of the Theorem 3.6 is not true as by the Example.

Example 3.9. The semiring S in Example 3.6,

Q =

{( 0 0 x1 0
0 0 x2 x3
0 0 0 0
0 0 0 x4

) ∣∣∣∣∣x′s
i are real numbers

}
is a subsemiring of S,

SQ =

{(
0 0 y1 y2

0 0 0 y3

0 0 0 y4

0 0 0 y5

)∣∣∣∣∣y′s
i are real numbers

}
,

QS =

{( 0 0 0 z1
0 0 0 z2
0 0 0 0
0 0 0 z3

) ∣∣∣∣∣z′s
i are real numbers

}
and

QSQ =

{( 0 0 0 l1
0 0 0 l2
0 0 0 0
0 0 0 l3

) ∣∣∣∣∣l′si are real numbers

}
. Thus, [SQ∩QSQ]∩Q = [QS∩QSQ]∩

Q =

{(
0 0 0 0
0 0 0 u
0 0 0 0
0 0 0 v

)
|u, v are real numbers

}
6= φ.

Hence Q is a bi quasi A -ideal but Q is not a bi quasi ideal of S by QS ∩ QSQ ={(
0 0 0 x
0 0 0 y
0 0 0 0
0 0 0 z

) ∣∣∣∣∣x, y, z are real numbers

}
6⊆ Q.

Theorem 3.7. If Q is a A -ideal (bi A -ideal, quasi A -ideal, bi quasi A -ideal) of S and
Q ⊆ Q′ ⊆ S, then Q

′
is a A -ideal (bi A -ideal, quasi A -ideal, bi quasi A -ideal) of S.

Proof. Suppose that Q is a bi quasi A ideal of S with Q ⊆ Q
′ ⊆ S. Then φ 6=

[QS∩QSQ]∩Q ⊆ [Q
′
S∩Q′

SQ
′
]∩Q′

and φ 6= [SQ∩QSQ]∩Q ⊆ [SQ
′∩Q′

SQ
′
]∩Q′

.
Therefore Q

′
is a bi quasi A ideal of S.

Corollary 3.8. The union of A -ideals (bi A -ideals, quasi A -ideals, bi quasi A -ideals)
of S is a A -ideal (bi A -ideal, quasi A -ideal, bi quasi A -ideal) of S.

Proof. Let I1 and I2 be any two A -ideals of S. Then I1 ⊆ I1 ∪ I2, by Theorem 3.7,
I1 ∪ I2 is a A -ideal of S.

4. VARIOUS TRI A -IDEALS

Definition 4.1. Suppose that I and Q are non-empty subsets of a semiring (S,+, ·). Then
(i) I is called a right (left) tri ideal of S if I is a subsemiring ofR and I2SI ⊆ I(ISI2 ⊆ I).
(ii) Q is called a right (left) tri quasi ideal of S if Q is a subsemiring of R and
QS ∩Q2SQ ⊆ Q (SQ ∩QSQ2 ⊆ Q).
(iii) Q is called a tri quasi ideal of S if Q is a right tri quasi ideal and left tri quasi ideal of
S.

Definition 4.2. Suppose that I and Q are non-empty subsets of a semiring (S,+, ·). Then
(i) I is called a right (left) tri A -ideal of S if I is a subsemiring of S and I2SI ∩ I 6= φ
(ISI2 ∩ I 6= φ).
(ii) I is called a tri A -ideal of S if I is a right tri A -ideal and left tri A -ideal of S.
(iii) Q is called a right (left) tri quasi A -ideal of S if Q is a subsemiring of S and
[QS ∩Q2SQ] ∩Q 6= φ ([SQ ∩QSQ2] ∩Q 6= φ).
(iv) Q is called a tri quasi A - ideal of S if Q is a right tri quasi A - ideal and left tri quasi
A -ideal of S.
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Theorem 4.1. Every ideal (bi ideal, quasi ideal, tri ideal) is a tri A -ideal.

Converse of the Theorem 4.1 may not true by the following Example.

Example 4.3. Let S =

{(
a b
c d

) ∣∣∣∣a, b, c, d ∈ Z2

}
as a semiring.

(i) The subsemiring I1 =

{(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

)}
is a tri A -ideal of

S but I1 is not an ideal of S by I1S = S 6⊆ I1 and SI1 = S 6⊆ I1.

(ii) The subsemiring B =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)}
is a tri A -ideal of

S but B is not a bi ideal of S by BSB = S 6⊆ B.

(iii) The subsemiring Q =

{(
0 0
0 0

)
,

(
1 1
1 1

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)}
is a tri A -ideal of

S but Q is not a quasi ideal of S by QS ∩ SQ = S 6⊆ Q.

(iv) I2 =

{(
0 0
0 0

)
,

(
1 0
0 1

)}
is a tri A -ideal of S but I2 is not a tri ideal of S by

I22SI2 6⊆ I2 and I2SI22 6⊆ I2 of S.

Theorem 4.2. Every tri A -ideal is a A -ideal (bi A -ideal).

Proof. Suppose that I is a tri A -ideal of S, then I is a subsemiring of S and I2SI∩I 6=
φ and ISI2∩I 6= φ. Now, φ 6= I2SI∩I ⊆ ISI∩I ⊆ IS∩I and φ 6= ISII∩I ⊆ SI∩I .
Hence I is a A -ideal of S.

Converse of the Theorem 4.2 may not be true as in the given Example.

Example 4.4. (i) Let S1 =

{( 0 r1 r2 r3
0 0 r4 r5
0 0 0 r6
0 0 0 0

) ∣∣∣∣∣r′s
i are real numbers

}
is a semiring.

Let I =

{( 0 0 i1 i2
0 0 i3 i4
0 0 0 i5
0 0 0 0

) ∣∣∣∣∣i′si are are real numbers

}
. Clearly I is a A -ideal of S1 but I is

not a tri A -ideal of S1 by i2ri ∩ i = φ and iri2 ∩ i = φ, where i =
(

0 0 1 1
0 0 1 1
0 0 0 1
0 0 0 0

)
∈ I and

r =

(
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

)
∈ S1.

(ii) Let S2 =

{ 0 r1 r2 r3 r4 r5
0 0 r6 r7 r8 r9
0 0 0 r10 r11 r12
0 0 0 0 r13 r14
0 0 0 0 0 r15
0 0 0 0 0 0

∣∣∣∣∣r′s
i are real numbers

}
is a semiring.

Clearly B =

{ 0 b1 0 0 0 0
0 0 0 0 0 0
0 0 0 b2 b3 b4
0 0 0 0 b5 b6
0 0 0 0 0 b7
0 0 0 0 0 0

∣∣∣∣∣b′si are real numbers

}
is a bi A -ideal but B is not a

tri A -ideal of S2 by brb2 ∩ b = φ and b2rb ∩ b = φ, where b =

 0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 ∈ B and

r =

 0 1 1 1 1 1
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 ∈ S2.
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Theorem 4.3. Every tri A -ideal is a quasi A -ideal.

Proof. Suppose that Q is a tri A -ideal of S, then Q2SQ∩Q 6= φ and QSQ2 ∩Q 6= φ.
Since Q is a subsemiring of S, φ 6= Q2SQ ∩ Q ⊆ QSQ ∩ Q ⊆ QS ∩ Q and φ 6=
Q2SQ∩Q ⊆ QSQ∩Q ⊆ SQ∩Q. Hence φ 6= Q2SQ∩Q ⊆ [QS ∩SQ]∩Q. Similarly,
φ 6= QSQ2 ∩Q ⊆ [QS ∩ SQ] ∩Q. Hence Q is a quasi A -ideal of S.

Converse of the Theorem 4.3 may not be true in the given Example.

Example 4.5. The semiring S2 in Example 4.4,

Q =

{ 0 0 0 q1 q2 0
0 0 0 0 q3 q4
0 0 0 0 0 q5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣q′s
i are real numbers

}
is a quasi A -ideal but Q is not a tri A -

ideal of S2 by q2rq ∩ q = φ and qrq2 ∩ q = φ, where q =

 0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ∈ Q and

r =

 0 0 1 1 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 ∈ S2.

Corollary 4.4. Every tri A -ideal is a bi quasi A -ideal.

Proof. Suppose that Q is a right tri A -ideal of S, then Q2SQ ∩ Q 6= φ. Since Q is a
subsemiring of S, φ 6= Q2SQ ∩ Q ⊆ QS ∩ Q and φ 6= Q2SQ ∩ Q ⊆ QSQ ∩ Q. This
implies that φ 6= Q2SQ ∩Q ⊆ [QS ∩QSQ] ∩Q. Thus, Q is a right bi quasi A -ideal of
S. Suppose that Q is a left tri A -ideal of S, then Q is a left bi quasi A -ideal of S. Hence,
Q is a bi quasi A -ideal of S.

Converse of the Corollary 4.4 may not be true in the given Example.

Example 4.6. Let S =

{(
0 0 0 0
r1 0 0 0
r2 r3 0 0
r4 r5 r6 r7

) ∣∣∣∣∣r′s
i are real numbers

}
and

Q =

{( 0 0 0 0
0 0 0 0
q1 q2 0 0
0 q3 0 q4

) ∣∣∣∣∣q′s
i are real numbers

}
be subsemirings.

Now, SQ =

{(
0 0 0 0
0 0 0 0
0 0 0 0
c1 c2 0 c3

) ∣∣∣∣∣c′si are real numbers

}
and

QS =

{( 0 0 0 0
0 0 0 0
d1 0 0 0
d2 d3 d4 d5

) ∣∣∣∣∣d′s
i are real numbers

}
,

QSQ =

{(
0 0 0 0
0 0 0 0
0 0 0 0
e1 e2 0 e3

) ∣∣∣∣∣e′si are real numbers

}
.

Thus, [QS ∩ QSQ] ∩ Q 6= φ and [SQ ∩ QSQ] ∩ Q 6= φ. Hence Q is a bi quasi A -
ideal of S. But Q is not a tri A -ideal of S by q2r

′
q ∩ q = φ and qr

′
q2 ∩ q = φ, where

q =

(
0 0 0 0
0 0 0 0
1 1 0 0
0 1 0 1

)
∈ Q and r

′
=

(
0 0 0 0
1 0 0 0
1 1 0 0
0 1 1 0

)
∈ S.

Theorem 4.5. Every bi quasi ideal is a tri quasi ideal.

Proof. Suppose that Q is a bi quasi ideal of S then SQ∩QSQ ⊆ Q and QS ∩QSQ ⊆
Q. Now, SQ∩QSQ2 ⊆ SQ∩QSQ ⊆ Q and QS ∩Q2SQ ⊆ QS ∩QSQ ⊆ Q, since Q
is a subsemiring of S. Hence Q is a tri quasi ideal of S.

Converse of Theorem 4.5 not true by the following Example.
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Example 4.7. The semiring S in Example 4.6,

Q =

{(
0 0 0 0
0 0 0 0
a1 0 0 0
0 a2 0 a3

) ∣∣∣∣∣a′s
i are real numbers

}
is a subsemiring of S.

Now, SQ =

{(
0 0 0 0
0 0 0 0
0 0 0 0
c1 c2 0 c3

) ∣∣∣∣∣c′si are real numbers

}
,

QS =

{(
0 0 0 0
0 0 0 0
0 0 0 0
d1 d2 d3 d4

) ∣∣∣∣∣d′s
i are real numbers

}
,

QSQ =

{(
0 0 0 0
0 0 0 0
0 0 0 0
e1 e2 0 e3

) ∣∣∣∣∣e′si are real numbers

}
and

QSQ2 =

{(
0 0 0 0
0 0 0 0
0 0 0 0
0 f1 0 f2

) ∣∣∣∣∣f ′s
i are real numbers

}
. Thus, SQ ∩ QSQ2 ⊆ Q. Hence

Q is a tri quasi ideal of S but Q is not a left bi quasi ideal of S by SQ ∩ QSQ ={(
0 0 0 0
0 0 0 0
0 0 0 0
h1 h2 0 h3

) ∣∣∣∣∣h′s
i are real numbers

}
6⊆ Q.

Corollary 4.6. Every tri quasi A -ideal is a bi quasi A -ideal.

Proof. Suppose that Q is a tri quasi A - ideal of S then [QS ∩ Q2SQ] ∩ Q 6= φ and
[SQ ∩ QSQ2] ∩ Q 6= φ. Since Q is a subsemiring of S, φ 6= [QS ∩ Q2SQ] ∩ Q ⊆
[QS ∩QSQ]∩Q and φ 6= [SQ∩QSQ2]∩Q ⊆ [SQ∩QSQ]∩Q. Hence Q is a bi quasi
A -ideal of S.

Converse of the Corollary 4.6 is not true in the following Example.

Example 4.8. The semiring S in Example 4.6,

Q =

{(
0 0 0 0
0 0 0 0
a1 0 0 0
0 a2 0 a3

) ∣∣∣∣∣a′s
i are real numbers

}
is a bi quasi A -ideal of S but Q is not

a tri quasi A -ideal of S by [r
′
q ∩ qr′′

q2] ∩ q = φ and [qr
′ ∩ q2r′′

q] ∩ q = φ, where

q =

(
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 1

)
∈ Q and r

′
=

(
0 0 0 0
0 0 0 0
1 1 0 0
1 1 1 1

)
∈ S and r

′′
=

(
0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 1

)
∈ S.

Theorem 4.7. If Q is a tri A -ideal (tri quasi A -ideal) of S and Q ⊆ Q
′ ⊆ S, then Q

′
is

a tri A -ideal (tri quasi A -ideal) of S.

Proof. Suppose that Q is a tri quasi A -ideal of S with Q ⊆ Q′ ⊆ S. Then φ 6= [QS ∩
QSQ2]∩Q ⊆ [Q

′
S∩Q′

SQ
′
Q

′
]∩Q′

and φ 6= [SQ∩Q2SQ]∩Q ⊆ [SQ
′∩Q′

Q
′
SQ

′
]∩Q′

.
Therefore, Q

′
is a tri quasi A -ideal of S.

Corollary 4.8. The union of tri A -ideals(tri quasi A -ideals) of S is a tri A -ideal(tri
quasi A -ideal) of S.

Proof. Let Q1 and Q2 be any two tri A -ideals of S. Then Q1 ⊆ Q1 ∪Q2, by Theorem
4.7, Q1 ∪Q2 is a tri A -ideal of S.

5. CONCLUSIONS

The main goal of this work is to present a various ideals and A -ideals in semirings. So
in future, we should consider the various generalized ideals and generalized A -ideals in
semirings.
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