STUDY OF THE GLOBAL ASYMPTOTIC STABILITY IN NONLINEAR NEUTRAL INTEGRO-DYNAMIC EQUATIONS

ABDELOUAHEB ARDJOUNI

Abstract

The main purpose of this paper is to establish the global asymptotic stability of the zero solution of a class of nonlinear neutral integro-dynamic equations in $C_{r d}^{1}$. Global asymptotic stability results are based on the Banach fixed point theorem. The results obtained here extend the work of Huang, Zhao and Liu [19].

1. Introduction

The study of dynamic equations brings together the traditional research areas of differential and difference equations. It allows one to handle these two research areas at the same time, hence shedding light on the reasons for their seeming discrepancies. In fact, many new results for the continuous and discrete cases have been obtained by studying the more general time scales case, see $[1,3,5,6,8,11,12,13,14,20]$ and the references therein.

There is no doubt that the Lyapunov method have been used successfully to investigate stability properties of wide variety of ordinary, functional and partial equations. Nevertheless, the application of this method to problem of stability in differential equations with delay has encountered serious difficulties if the delay is unbounded or if the equation has unbounded term. It has been noticed that some of theses difficulties vanish by using the fixed point technic. Other advantages of fixed point theory over Lyapunov's method is that the conditions of the former are average while those of the latter are pointwise, see [2, 4, 7, 15, 16, 17, 18, 19, 21] and references therein.

In paper, we study the global asymptotic stability of the zero solution of the following nonlinear neutral integro-dynamic equation

$$
\begin{align*}
x^{\triangle}(t) & =-a(t) x^{\sigma}(t)+q\left(t, x\left(t-\tau_{1}(t)\right), x^{\widetilde{\triangle}}\left(t-\tau_{1}(t)\right)\right) \\
& +\int_{t-\tau_{2}(t)}^{t} g(t, s) f\left(s, x(s), x^{\triangle}(s)\right) \triangle s, \tag{1.1}
\end{align*}
$$

with the initial condition

$$
x(t)=\varphi(t), t \in\left[d_{t_{0}}, t_{0}\right] \cap \mathbb{T},
$$

2010 Mathematics Subject Classification. 34K20, 34K30, 34k40.
Key words and phrases. Fixed point theorem; Neutral integro-dynamic equations; Global asymptotic stability; Time scales.

Received: June 27, 2020. Accepted: July 28, 2020.
where

$$
d_{t_{0}}=\min \left\{\inf \left\{t-\tau_{1}(t), t \in\left[t_{0}, \infty\right) \cap \mathbb{T}\right\}, \inf \left\{t-\tau_{2}(t), t \in\left[t_{0}, \infty\right) \cap \mathbb{T}\right\}\right\}
$$

for each $t_{0} \in[0, \infty) \cap \mathbb{T}$ and \mathbb{T} is an unbounded above and below time scale and such that $t_{0} \in \mathbb{T}$. To show the global asymptotic stability of the zero solution in $C_{r d}^{1}$, we transform (1.1) into an integral equation and then use the Banach fixed point theorem ([22], p. 2). Our results are obtained with no need of further assumptions on the twice delta-differentiable of τ_{i} with $\tau_{i}^{\triangle}(t) \neq 1$ for $t \in[0, \infty) \cap \mathbb{T}, i=1,2$. In the special case $\mathbb{T}=\mathbb{R}$, Huang, Zhao and Liu in [19] show that the zero solution of 1.1 is globally asymptotically stable in C^{1} by using the Banach fixed point theorem. Then, the results obtained here extend the work of Huang, Zhao and Liu [19].

2. Preliminaries

In this section, we consider some advanced topics in the theory of dynamic equations on a time scales. Again, we remind that for a review of this topic we direct the reader to the monographs of Bohner and Peterson [9] and [10].

A time scale \mathbb{T} is a closed nonempty subset of \mathbb{R}. For $t \in \mathbb{T}$ the forward jump operator σ, and the backward jump operator ρ, respectively, are defined as $\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}$ and $\rho(t)=\sup \{t \in \mathbb{T}: s<t\}$. These operators allow elements in the time scale to be classified as follows. We say t is right scattered if $\sigma(t)>t$ and right dense if $\sigma(t)=t$. We say t is left scattered if $\rho(t)<t$ and left dense if $\rho(t)=t$. The graininess function $\mu: \mathbb{T} \rightarrow[0, \infty)$, is defined by $\mu(t)=\sigma(t)-t$ and gives the distance between an element and its successor. We set $\inf \emptyset=\sup \mathbb{T}$ and $\sup \emptyset=\inf \mathbb{T}$. If \mathbb{T} has a left scattered maximum M, we define $\mathbb{T}^{k}=\mathbb{T} \backslash\{M\}$. Otherwise, we define $\mathbb{T}^{k}=\mathbb{T}$. If \mathbb{T} has a right scattered minimum m, we define $\mathbb{T}_{k}=\mathbb{T} \backslash\{m\}$. Otherwise, we define $\mathbb{T}_{k}=\mathbb{T}$.

Let $t \in \mathbb{T}^{k}$ and let $f: \mathbb{T} \rightarrow \mathbb{R}$. The delta derivative of $f(t)$, denoted $f^{\triangle}(t)$, is defined to be the number (when it exists), with the property that, for each $\epsilon>0$, there is a neighborhood U of t such that

$$
\left|f(\sigma(t))-f(s)-f^{\triangle}(t)[\sigma(t)-s]\right| \leq \epsilon|\sigma(t)-s|
$$

for all $s \in U$. If $\mathbb{T}=\mathbb{R}$ then $f^{\triangle}(t)=f^{\prime}(t)$ is the usual derivative. If $\mathbb{T}=\mathbb{Z}$ then $f^{\triangle}(t)=\triangle f(t)=f(t+1)-f(t)$ is the forward difference of f at t.

A function f is right dense continuous (rd-continuous), $f \in C_{r d}=C_{r d}(\mathbb{T}, \mathbb{R})$, if it is continuous at every right dense point $t \in \mathbb{T}$ and its left-hand limits exist at each left dense point $t \in \mathbb{T}$. The function $f: \mathbb{T} \rightarrow \mathbb{R}$ is differentiable on \mathbb{T}^{k} provided $f^{\triangle}(t)$ exists for all $t \in \mathbb{T}^{k} . f \in C_{r d}^{1}=C_{r d}^{1}(\mathbb{T}, \mathbb{R})$ if $f^{\triangle} \in C_{r d}(\mathbb{T}, \mathbb{R})$.

We are now ready to state some properties of the delta-derivative of f. Note $f^{\sigma}(t)=$ $f(\sigma(t))$.

Theorem 2.1 ([9, Theorem 1.20]). Assume $f, g: \mathbb{T} \rightarrow \mathbb{R}$ are differentiable at $t \in \mathbb{T}^{k}$ and let α be a scalar.
(i) $(f+g)^{\triangle}(t)=g^{\triangle}(t)+f^{\triangle}(t)$.
(ii) $(\alpha f)^{\triangle}(t)=\alpha f^{\triangle}(t)$.
(iii) The product rules

$$
\begin{aligned}
(f g)^{\triangle}(t) & =f^{\triangle}(t) g(t)+f^{\sigma}(t) g^{\triangle}(t) \\
(f g)^{\triangle}(t) & =f(t) g^{\triangle}(t)+f^{\triangle}(t) g^{\sigma}(t)
\end{aligned}
$$

(iv) If $g(t) g^{\sigma}(t) \neq 0$ then

$$
\left(\frac{f}{g}\right)^{\triangle}(t)=\frac{f^{\triangle}(t) g(t)-f(t) g^{\triangle}(t)}{g(t) g^{\sigma}(t)}
$$

The next theorem is the chain rule on time scales ([9, Theorem 1.93]).
Theorem 2.2 (Chain Rule). Assume $\nu: \mathbb{T} \rightarrow \mathbb{R}$ is strictly increasing and $\widetilde{\mathbb{T}}:=\nu(\mathbb{T})$ is a time scale. Let $\omega: \widetilde{\mathbb{T}} \rightarrow \mathbb{R}$. If $\nu^{\triangle}(t)$ and $\omega^{\widetilde{\Delta}}(\nu(t))$ exist for $t \in \mathbb{T}^{k}$, then $(\omega \circ \nu)^{\triangle}=$ $\left(\omega^{\widetilde{\triangle}} \circ \nu\right) \nu^{\triangle}$.

In the sequel we will need to differentiate and integrate functions of the form $f(t-$ $\tau(t))=f(\nu(t))$ where, $\nu(t):=t-\tau(t)$. Our next theorem is the substitution rule ([9], Theorem 1.98]).
Theorem 2.3 (Substitution). Assume $\nu: \mathbb{T} \rightarrow \mathbb{R}$ is strictly increasing and $\widetilde{\mathbb{T}}:=\nu(\mathbb{T})$ is a time scale. If $f: \mathbb{T} \rightarrow \mathbb{R}$ is rd-continuous function and ν is differentiable with $r d$ continuous derivative, then for $a, b \in \mathbb{T}$,

$$
\int_{a}^{b} f(t) \nu^{\triangle}(t) \Delta t=\int_{\nu(a)}^{\nu(b)}\left(f \circ \nu^{-1}\right)(s) \widetilde{\triangle} s
$$

A function $p: \mathbb{T} \rightarrow \mathbb{R}$ is said to be regressive provided $1+\mu(t) p(t) \neq 0$ for all $t \in \mathbb{T}^{k}$. The set of all regressive rd-continuous function $f: \mathbb{T} \rightarrow \mathbb{R}$ is denoted by \mathcal{R}. The set of all positively regressive functions \mathcal{R}^{+}, is given by

$$
\mathcal{R}^{+}=\{f \in \mathcal{R}: 1+\mu(t) f(t)>0 \text { for all } t \in \mathbb{T}\}
$$

Let $p \in \mathcal{R}$ and $\mu(t) \neq 0$ for all $t \in \mathbb{T}$. The exponential function on \mathbb{T} is defined by

$$
e_{p}(t, s)=\exp \left(\int_{s}^{t} \frac{1}{\mu(z)} \log (1+\mu(z) p(z)) \Delta z\right)
$$

It is well known that if $p \in \mathcal{R}^{+}$, then $e_{p}(t, s)>0$ for all $t \in \mathbb{T}$. Also, the exponential function $y(t)=e_{p}(t, s)$ is the solution to the initial value problem $y^{\triangle}=p(t) y, y(s)=$ 1. Other properties of the exponential function are given by the following lemma.

Lemma 2.4 ([9, Theorem 2.36]). Let $p, q \in \mathcal{R}$. Then
(i) $e_{0}(t, s)=1$ and $e_{p}(t, t)=1$,
(ii) $e_{p}(\sigma(t), s)=(1+\mu(t) p(t)) e_{p}(t, s)$,
(iii) $\frac{1}{e_{p}(t, s)}=e_{\ominus p}(t, s)$, where $\ominus p(t)=-\frac{p(t)}{1+\mu(t) p(t)}$,
(iv) $e_{p}(t, s)=\frac{1}{e_{p}(s, t)}=e_{\ominus p}(s, t)$,
$(v) e_{p}(t, s) e_{p}(s, r)=e_{p}(t, r)$,
(vi) $e_{p}^{\triangle}(., s)=p e_{p}(., s)$ and $\left(\frac{1}{e_{p}(., s)}\right)^{\triangle}=-\frac{p(t)}{e_{p}^{\sigma}(., s)}$.

Lemma 2.5 ([1]). If $p \in \mathcal{R}^{+}$, then

$$
0<e_{p}(t, s) \leq \exp \left(\int_{s}^{t} p(u) \triangle u\right), \forall t \in \mathbb{T}
$$

3. Global asymptotic stability

In this section, we shall study the global asymptotic stability in $C_{r d}^{1}$ of the zero solution to (1.1). We introduce the following hypothesis.
$\left(H_{1}\right) a \in C_{r d}([0, \infty) \cap \mathbb{T}, \mathbb{R}), g \in C_{r d}(([0, \infty) \cap \mathbb{T}) \times \mathbb{T}, \mathbb{R}), q, f \in C_{r d}(([0, \infty) \cap$ $\left.\mathbb{T}) \times \mathbb{R}^{2}, \mathbb{R}\right), \tau_{i} \in C_{r d}([0, \infty) \cap \mathbb{T},(0, \infty) \cap \mathbb{T})$ and $\left(i d-\tau_{i}\right)([0, \infty) \cap \mathbb{T})$ is closed with $t-\tau_{i}(t) \rightarrow \infty$ as $t \rightarrow \infty, i=1,2$.
$\left(H_{2}\right)$ For $t \in[0, \infty) \cap \mathbb{T}, q(t, 0,0)=f(t, 0,0)=0$, and there exist $L_{i}, K_{i} \in$ $C_{r d}([0, \infty) \cap \mathbb{T},(0, \infty))$ such that

$$
\left|q\left(t, x_{1}, x_{2}\right)-q\left(t, y_{1}, y_{2}\right)\right| \leq L_{1}(t)\left|x_{1}-y_{1}\right|+L_{2}(t)\left|x_{2}-y_{2}\right|
$$

and

$$
\left|f\left(t, x_{1}, x_{2}\right)-f\left(t, y_{1}, y_{2}\right)\right| \leq K_{1}(t)\left|x_{1}-y_{1}\right|+K_{2}(t)\left|x_{2}-y_{2}\right|
$$

for any $x_{i}, y_{i} \in \mathbb{R}, i=1,2$.
$\left(H_{3}\right) a \in \mathcal{R}^{+}$is bounded on $[0, \infty) \cap \mathbb{T}$ and

$$
\lim _{t \rightarrow \infty} \inf \int_{0}^{t} \frac{1}{\mu(s)} \log (1+\mu(s) a(s)) \Delta s>-\infty
$$

$\left(H_{4}\right)$ There exists $\alpha \in(0,1)$ such that for $t \in[0, \infty) \cap \mathbb{T}$,

$$
\int_{0}^{t} e_{\ominus a}(t, u)\left[L_{1}(u)+L_{2}(u)+\int_{u-\tau_{2}(u)}^{u}|g(t, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \leq \alpha
$$

and

$$
\begin{aligned}
& |a(t)| \int_{0}^{\sigma(t)} e_{\ominus a}(\sigma(t), u)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(t, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& +L_{1}(t)+L_{2}(t)+\int_{t-\tau_{2}(t)}^{t}|g(t, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s \leq \alpha
\end{aligned}
$$

For each $t_{0} \in[0, \infty) \cap \mathbb{T}$ denote $C_{r d}^{1}\left(t_{0}\right)=C_{r d}^{1}\left(\left[d_{t_{0}}, t_{0}\right] \cap \mathbb{T}, \mathbb{R}\right)$ with the norm defined by

$$
|x|_{t_{0}}=\max _{t \in\left[d_{t_{0}}, t_{0}\right] \cap \mathbb{T}}\left\{|x(t)|,\left|x^{\triangle}(t)\right|\right\}
$$

for $x \in C_{r d}^{1}\left(t_{0}\right)$. In addition, denote

$$
\begin{aligned}
\Phi_{t_{0}}= & \left\{\varphi \in C_{r d}^{1}\left(t_{0}\right): \varphi^{\triangle}\left(t_{0}\right)=-a\left(t_{0}\right) \varphi^{\sigma}\left(t_{0}\right)\right. \\
& +q\left(t_{0}, \varphi\left(t_{0}-\tau_{1}\left(t_{0}\right)\right), \varphi^{\widetilde{\Delta}}\left(t_{0}-\tau_{1}\left(t_{0}\right)\right)\right) \\
& \left.+\int_{t_{0}-\tau_{2}\left(t_{0}\right)}^{t_{0}} g\left(t_{0}, s\right) f\left(s, \varphi(s), \varphi^{\triangle}(s)\right) \triangle s\right\} .
\end{aligned}
$$

For each $t_{0} \in[0, \infty) \cap \mathbb{T}$, we always assume that the initial function for 1.1$]$ is of the type $\varphi \in \Phi_{t_{0}}$. For convenience of stating our main result, we shall give the following definitions.

Definition 3.1. For each $\left(t_{0}, \varphi\right) \in[0, \infty) \cap \mathbb{T} \times \Phi_{t_{0}}, x$ is said to be a solution of 1.1p through $\left(t_{0}, \varphi\right)$ if $x \in C_{r d}^{1}(\mathbb{T})$ satisfies 1.1$\}$ on $\left[t_{0}, \infty\right) \cap \mathbb{T}$ and $x(t)=\varphi(t)$ for $t \in$ $\left[d_{t_{0}}, t_{0}\right] \cap \mathbb{T}$. We denote such a solution by $x(t)=x\left(t, t_{0}, \varphi\right)$.

Definition 3.2. (i) The zero solution of $\sqrt{1.1}$ is said to be stable in $C_{r d}^{1}$ if, for any $t_{0} \in$ $[0, \infty) \cap \mathbb{T}, \varepsilon>0$ there is a $\delta=\delta\left(\varepsilon, t_{0}\right)$ such that $\varphi \in \Phi_{t_{0}}$ and $|\varphi|_{t_{0}}<\delta$ implies

$$
\max _{s \in\left[d_{t_{0}}, t\right] \cap \mathbb{T}}\left\{|x(s)|,\left|x^{\triangle}(s)\right|\right\}<\varepsilon
$$

for $t \in\left[t_{0}, \infty\right) \cap \mathbb{T}$.
(ii) The zero solution of 1.1 is said to be globally asymptotically stable in $C_{r d}^{1}$ if it is stable in $C_{r d}^{1}$, and for any $t_{0} \in[0, \infty) \cap \mathbb{T}, \varphi \in \Phi_{t_{0}}$ implies

$$
\lim _{t \rightarrow \infty} x\left(t, t_{0}, \varphi\right)=\lim _{t \rightarrow \infty} x^{\triangle}\left(t, t_{0}, \varphi\right)=0
$$

In view of the definition of solution of (1.1), it is clear that the conditions imposed on the initial functions are very natural. From the above assumptions, it is easy to see that for each $\left(t_{0}, \varphi\right) \in[0, \infty) \cap \mathbb{T} \times \Phi_{t_{0}}$, there exists a unique solution $x(t)=x\left(t, t_{0}, \varphi\right)$ of 1.1 , defined on \mathbb{T}. By $\left(H_{2}\right)$, 1.1) has the zero solution.

Theorem 3.1. Assume that $\left(H_{1}\right)-\left(H_{4}\right)$ hold. Then the zero solution of 1.1 is globally asymptotically stable in $C_{r d}^{1}$ if and only if

$$
\begin{equation*}
\int_{0}^{t} \frac{1}{\mu(s)} \log (1+\mu(s) a(s)) \Delta s \rightarrow \infty \text { as } t \rightarrow \infty \tag{3.1}
\end{equation*}
$$

Proof. (i) Suppose that 3.1 holds. For any $t_{0} \in[0, \infty) \cap \mathbb{T}$, let

$$
X=\left\{x \in C_{r d}^{1}(\mathbb{T}): \lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} x^{\triangle}(t)=0\right\}
$$

with the norm defined by

$$
\|x\|_{t_{0}}=\sup _{t \in \mathbb{T}}\left\{|x(t)|,\left|x^{\triangle}(t)\right|\right\}
$$

for $x \in X$. Since X is a closed vectorial subspace of $C_{r d}^{1}(\mathbb{T})$ and $C_{r d}^{1}\left(\mathbb{T},\|\cdot\|_{t_{0}}\right)$ is a Banach space, then $\left(X,\|\cdot\|_{t_{0}}\right)$ is also a Banach space. For any $\varphi \in \Phi_{t_{0}}$, let

$$
D=\left\{x \in X: x(t)=\varphi(t) \text { for } t \in\left[d_{t_{0}}, t_{0}\right] \cap \mathbb{T}\right\}
$$

It is easy to see that D is a nonempty, closed subset of X. Define the operator $P: D \rightarrow$ $C_{r d}(\mathbb{T})$ by $(P x)(t)=\varphi(t)$ for $t \in\left[d_{t_{0}}, t_{0}\right] \cap \mathbb{T}$ and

$$
\begin{align*}
(P x)(t) & =\varphi\left(t_{0}\right) e_{\ominus a}\left(t, t_{0}\right) \\
& +\int_{t_{0}}^{t} e_{\ominus a}(t, u)\left[q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \triangle s\right] \Delta u, \tag{3.2}
\end{align*}
$$

for $t \in\left[t_{0}, \infty\right) \cap \mathbb{T}$.

Firstly, we prove $P x \in D$ for any $x \in D$. From (3.2), for $t>t_{0}$,

$$
\begin{align*}
(P x)^{\triangle}(t) & =-\varphi\left(t_{0}\right) a(t) e_{\ominus a}\left(\sigma(t), t_{0}\right) \\
& +e_{\ominus a}(\sigma(t), t)\left[q\left(t, x\left(t-\tau_{1}(t)\right), x^{\widetilde{\triangle}}\left(t-\tau_{1}(t)\right)\right)\right. \\
& \left.+\int_{t-\tau_{2}(t)}^{t} g(t, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s\right] \\
& -a(t) \int_{t_{0}}^{t} e_{\ominus a}(\sigma(t), u)\left[q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \triangle s\right] \Delta u \\
& =-a(t)(P x)^{\sigma}(t)+q\left(t, x\left(t-\tau_{1}(t)\right), x^{\triangle}\left(t-\tau_{1}(t)\right)\right) \\
& +\int_{t-\tau_{2}(t)}^{t} g(t, s) f\left(s, x(s), x^{\triangle}(s)\right) \triangle s . \tag{3.3}
\end{align*}
$$

By the definition of $\Phi_{t_{0}}, 3.3$ yields

$$
\begin{aligned}
(P x)_{+}^{\triangle}\left(t_{0}\right) & =-a\left(t_{0}\right) \varphi^{\sigma}\left(t_{0}\right)+q\left(t_{0}, \varphi\left(t_{0}-\tau_{1}\left(t_{0}\right)\right), \varphi^{\widetilde{\Delta}}\left(t_{0}-\tau_{1}\left(t_{0}\right)\right)\right) \\
& +\int_{t_{0}-\tau_{2}\left(t_{0}\right)}^{t_{0}} g\left(t_{0}, s\right) f\left(s, \varphi(s), \varphi^{\triangle}(s)\right) \triangle s \\
& =\varphi_{-}^{\triangle}\left(t_{0}\right)
\end{aligned}
$$

Hence, $P x \in C_{r d}^{1}(\mathbb{T})$ for $x \in D$.
For $x \in D, \lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} x^{\triangle}(t)=0$. Note that $\lim _{t \rightarrow \infty} t-\tau_{i}(t)=\infty$, $i=1,2$. Therefore, for any $\varepsilon>0$, there exists $T>0$ such that for $t \geq T$,

$$
\begin{equation*}
\max \left\{|x(t)|,\left|x^{\triangle}(t)\right|,\left|x\left(t-\tau_{i}(t)\right)\right|,\left|x^{\widetilde{\triangle}}\left(t-\tau_{i}(t)\right)\right|\right\}<\varepsilon, i=1,2 \tag{3.4}
\end{equation*}
$$

It follows from 3.2, 3.4, $\left(H_{2}\right)$ and $\left(H_{4}\right)$ that for $t>T$ and $x \in D$,

$$
\begin{aligned}
|(P x)(t)| & \leq\left|\varphi\left(t_{0}\right)\right| e_{\ominus a}\left(t, t_{0}\right) \\
& +\int_{t_{0}}^{T} e_{\ominus a}(t, u) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right) \\
& +\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \triangle s \mid \Delta u \\
& +\int_{T}^{t} e_{\ominus a}(t, u) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right)-q(u, 0,0) \\
& +\int_{u-\tau_{2}(u)}^{u} g(u, s)\left(f\left(s, x(s), x^{\triangle}(s)\right)-f(s, 0,0)\right) \triangle s \mid \Delta u
\end{aligned}
$$

Thus

$$
\begin{aligned}
|(P x)(t)| & \leq e_{\ominus a}\left(t, t_{0}\right)\left[\left|\varphi\left(t_{0}\right)\right|+\int_{t_{0}}^{T} e_{a}\left(u, t_{0}\right) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u\right] \\
& +\int_{T}^{t} e_{\ominus a}(t, u)\left[L_{1}(u)\left|x\left(u-\tau_{1}(u)\right)\right|+L_{2}(u)\left|x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right|\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)|x(s)|+K_{2}(s)\left|x^{\triangle}(s)\right|\right) \triangle s\right] \Delta u \\
& \leq e_{\ominus a}\left(t, t_{0}\right)\left[\left|\varphi\left(t_{0}\right)\right|+\int_{t_{0}}^{T} e_{a}\left(u, t_{0}\right) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\left.\widetilde{\triangle}\left(u-\tau_{1}(u)\right)\right)}\right.\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u\right] \\
& +\varepsilon \int_{T}^{t} e_{\ominus a}(t, u)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \triangle s\right] \Delta u \\
& \leq e_{\ominus a}\left(t, t_{0}\right)\left[\left|\varphi\left(t_{0}\right)\right|+\int_{t_{0}}^{T} e_{a}\left(u, t_{0}\right) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u\right]+\alpha \varepsilon .
\end{aligned}
$$

From (3.1), there exists $T_{1}>T$ such that for $t>T_{1}$,

$$
\begin{aligned}
& e_{\ominus a}\left(t, t_{0}\right)\left[\left|\varphi\left(t_{0}\right)\right|+\int_{t_{0}}^{T} e_{a}\left(u, t_{0}\right) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\Delta}}\left(u-\tau_{1}(u)\right)\right)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u\right]<\varepsilon
\end{aligned}
$$

Hence, $\lim _{t \rightarrow \infty}(P x)(t)=0$ for $x \in D$. In addition, it follows from 3.3) and $\left(H_{2}\right)$ that

$$
\begin{aligned}
& \left|(P x)^{\triangle}(t)\right| \\
& \leq\left|a(t)(P x)^{\sigma}(t)\right|+\left|q\left(t, x\left(t-\tau_{1}(t)\right), x^{\widetilde{\Delta}}\left(t-\tau_{1}(t)\right)\right)-q(t, 0,0)\right| \\
& +\left|\int_{t-\tau_{2}(t)}^{t} g(t, s)\left(f\left(s, x(s), x^{\triangle}(s)\right)-f(s, 0,0)\right) \Delta s\right| \\
& \leq|a(t)|\left|(P x)^{\sigma}(t)\right|+L_{1}(t)\left|x\left(t-\tau_{1}(t)\right)\right|+L_{2}(t)\left|x^{\widetilde{\Delta}}\left(t-\tau_{1}(t)\right)\right| \\
& +\int_{t-\tau_{2}(t)}^{t}|g(t, s)|\left(K_{1}(s)|x(s)|+K_{1}(s)\left|x^{\triangle}(s)\right|\right) \triangle s .
\end{aligned}
$$

This, together with $\left(H_{3}\right)$ and $\left(H_{4}\right)$, yields $\lim _{t \rightarrow \infty}(P x)^{\triangle}(t)=0$ for $x \in D$. Therefore, $P x \in D$ for $x \in D$, i.e. $P: D \rightarrow D$.

Secondly, we show that $P: D \rightarrow D$ is a Banach contraction mapping. For any $x, y \in$ D, it follows from 3.2), $\left(H_{2}\right)$ and $\left(H_{4}\right)$ that for $t \in\left[t_{0}, \infty\right) \cap \mathbb{T}$,

$$
\begin{align*}
& |(P x)(t)-(P y)(t)| \\
& \leq \int_{t_{0}}^{t} e_{\ominus a}(t, u)\left[\mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right)\right. \\
& -q\left(u, y\left(u-\tau_{1}(u)\right), y^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right) \mid \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left|f\left(s, x(s), x^{\triangle}(s)\right)-f\left(s, y(s), y^{\triangle}(s)\right)\right| \triangle s\right] \Delta u \\
& \leq\|x-y\|_{t_{0}} \int_{t_{0}}^{t} e_{\ominus a}(t, u)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& \leq \alpha\|x-y\|_{t_{0}} . \tag{3.5}
\end{align*}
$$

In addition, it follows from 3.3), 3.5), $\left(H_{2}\right)$ and $\left(H_{4}\right)$ that for $t \in\left[t_{0}, \infty\right) \cap \mathbb{T}$,

$$
\begin{align*}
& \left|(P x)^{\triangle}(t)-(P y)^{\triangle}(t)\right| \\
& \leq|a(t)|\left|(P x)^{\sigma}(t)-(P y)^{\sigma}(t)\right| \\
& +\left|q\left(t, x\left(t-\tau_{1}(t)\right), x^{\widetilde{\triangle}}\left(t-\tau_{1}(t)\right)\right)-q\left(t, y\left(t-\tau_{1}(t)\right), y^{\widetilde{\triangle}}\left(t-\tau_{1}(t)\right)\right)\right| \\
& +\int_{t-\tau_{2}(t)}^{t}|g(t, s)|\left|f\left(s, x(s), x^{\triangle}(s)\right)-f\left(s, y(s), y^{\triangle}(s)\right)\right| \Delta s \\
& \leq\|x-y\|_{t_{0}}\left[| a (t) | \int _ { t _ { 0 } } ^ { \sigma (t) } e _ { \ominus a } (\sigma (t) , u) \left[L_{1}(u)+L_{2}(u)\right.\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& \left.+L_{1}(t)+L_{2}(t)+\int_{t-\tau_{2}(t)}^{t}|g(t, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \\
& \leq \alpha\|x-y\|_{t_{0}} . \tag{3.6}
\end{align*}
$$

From (3.5) and 3.6, $P: D \rightarrow D$ is a contraction mapping. By the Banach fixed point theorem, P has a unique fixed point x in D, which is a unique solution of (1.1) through $\left(t_{0}, \varphi\right)$ and satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} x^{\triangle}(t)=0 \tag{3.7}
\end{equation*}
$$

Finally, we show that the zero solution of 1.1 is stable in $C_{r d}^{1}$. Let

$$
K=\sup _{t \in\left[t_{0}, \infty\right) \cap \mathbb{T}}\left\{e_{\ominus a}(t, u)\right\} \text { and } A=\sup _{t \in\left[t_{0}, \infty\right) \cap \mathbb{T}}\{|a(t)|\} .
$$

From (3.1) and $\left(H_{3}\right), K, A \in(0, \infty) \cap \mathbb{T}$. For any $\varepsilon>0$, let $\delta>0$ such that

$$
\delta<\varepsilon \min \left\{1, \frac{1-\alpha}{K}, \frac{1-\alpha}{K A}\right\}
$$

If $x(t)=x\left(t, t_{0, \varphi}\right)$ is a solution of 1.1 with $|\varphi|_{t_{0}}<\delta$, then $x(t)=(P x)(t)$ on $\left[t_{0}, \infty\right) \cap \mathbb{T}$. We claim that $\|x\|_{t_{0}}<\varepsilon$. Otherwise, there exists $t_{1}>t_{0}$ such that

$$
\max \left\{\left|x\left(t_{1}\right)\right|,\left|x^{\triangle}\left(t_{1}\right)\right|\right\}=\varepsilon
$$

and

$$
\max \left\{|x(t)|,\left|x^{\triangle}(t)\right|\right\}<\varepsilon
$$

for $t \in\left[d_{t_{0}}, t_{1}\right) \cap \mathbb{T}$. If $\left|x\left(t_{1}\right)\right|=\varepsilon$, then it follows from 3.2, $\left(H_{2}\right)$ and $\left(H_{4}\right)$ that

$$
\begin{aligned}
\left|x\left(t_{1}\right)\right| & \leq\left|\varphi\left(t_{0}\right)\right| e_{\ominus a}\left(t_{1}, t_{0}\right) \\
& +\int_{t_{0}}^{t_{1}} e_{\ominus a}\left(t_{1}, u\right) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\Delta}}\left(u-\tau_{1}(u)\right)\right) \\
& +\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u \\
& \leq K \delta+\varepsilon \int_{t_{0}}^{t_{1}} e_{\ominus a}\left(t_{1}, u\right)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& \leq K \delta+\alpha \varepsilon<\varepsilon .
\end{aligned}
$$

This is a contradiction. If $\left|x^{\triangle}\left(t_{1}\right)\right|=\varepsilon$, then it follows from 3.3 and $\left(H_{2}\right)$ and $\left(H_{4}\right)$ that

$$
\begin{aligned}
\left|x^{\triangle}\left(t_{1}\right)\right| & \leq\left|\varphi\left(t_{0}\right) a\left(t_{1}\right)\right| e_{\ominus a}\left(\sigma\left(t_{1}\right), t_{0}\right) \\
& +\left|q\left(t_{1}, x\left(t_{1}-\tau_{1}\left(t_{1}\right)\right), x^{\widetilde{\Delta}}\left(t_{1}-\tau_{1}\left(t_{1}\right)\right)\right)\right| \\
& +\left|\int_{t_{1}-\tau_{2}\left(t_{1}\right)}^{t_{1}} g\left(t_{1}, s\right) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s\right| \\
& +\left|a\left(t_{1}\right)\right| \int_{t_{0}}^{\sigma\left(t_{1}\right)} e_{\ominus a}\left(\sigma\left(t_{1}\right), u\right) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\Delta}}\left(u-\tau_{1}(u)\right)\right) \\
& +\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u \\
& \leq K A \delta+\varepsilon\left\{| a (t _ { 1 }) | \int _ { t _ { 0 } } ^ { \sigma (t _ { 1 }) } e _ { \ominus a } (\sigma (t _ { 1 }) , u) \left[L_{1}(u)+L_{2}(u)\right.\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& \left.+L_{1}\left(t_{1}\right)+L_{2}\left(t_{1}\right)+\int_{t_{1}-\tau_{2}\left(t_{1}\right)}^{t_{1}}\left|g\left(t_{1}, s\right)\right|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right\} \\
& \leq K A \delta+\alpha \varepsilon<\varepsilon .
\end{aligned}
$$

This is also a contradiction. Hence, the zero solution of 1.1 is stable in $C_{r d}^{1}$. This, together with 3.7, implies that the zero solution of (1.1) is globally asymptotically stable in $C_{r d}^{1}$.
(ii) Assume that the zero solution of 1.1 is globally asymptotically stable in $C_{r d}^{1}$. Now we prove that 3.1 holds. Otherwise, set

$$
\begin{aligned}
l & =\lim _{t \mapsto \infty} \inf \int_{0}^{t} \frac{1}{\mu(s)} \log (1+\mu(s) a(s)) \Delta s \\
K_{0} & =\sup _{t \in[0, \infty) \cap \mathbb{T}}\left\{e_{\ominus a}(t, 0)\right\} \text { and } A_{0}=\sup _{t \in[0, \infty) \cap \mathbb{T}}\{|a(t)|\},
\end{aligned}
$$

thus it follows from $\left(H_{3}\right)$ that $l \in(-\infty, \infty), K_{0} \in(0, \infty), A_{0} \in[0, \infty)$. Hence, there exists an increasing sequence $\left\{t_{n}\right\} \subset[0, \infty) \cap \mathbb{T}$ such that $\lim _{t \rightarrow \infty} t_{n}=\infty$ and

$$
\begin{equation*}
\lim _{n \mapsto \infty} \int_{0}^{t_{n}} \frac{1}{\mu(s)} \log (1+\mu(s) a(s)) \Delta s=l \tag{3.8}
\end{equation*}
$$

Denote

$$
\begin{aligned}
I_{n} & =\int_{0}^{t_{n}} e_{a}(u, 0)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u, n=1,2, \ldots
\end{aligned}
$$

From $\left(H_{4}\right)$, it follows that

$$
\begin{aligned}
I_{n} & =e_{a}\left(t_{n}, 0\right) \int_{0}^{t_{n}} e_{\ominus a}\left(t_{n}, u\right)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& \leq \alpha e_{a}\left(t_{n}, 0\right)
\end{aligned}
$$

This, together with 3.8, implies that the sequence $\left\{I_{n}\right\}$ is bounded. So, $\left\{I_{n}\right\}$ has a convergent subsequence. For brevity of notation, we may assume that $\left\{I_{n}\right\}$ is convergent. Therefore, there exists a positive integer m such that for any integer $n>m$,

$$
\begin{align*}
& \int_{t_{m}}^{t_{n}} e_{a}(u, 0)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& <\frac{1-\alpha}{8 B\left(e^{-l}+1\right)} \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
e_{\ominus a}\left(t_{n}, t_{m}\right)>\frac{1}{2}, \quad e_{\ominus a}\left(t_{n}, 0\right)<e^{-l}+1, \quad e_{a}\left(t_{m}, 0\right)<e^{l}+1 \tag{3.10}
\end{equation*}
$$

where $B=\max \left\{K_{0}\left(e^{l}+1\right), K_{0} A_{0}\left(e^{l}+1\right), 1\right\}$.

For any $\delta>0$, consider the solution $x(t)=x\left(t, t_{m}, \varphi\right)$ of $1.1 p$ with $|\varphi|_{t_{m}}<\delta$ and $\left|\varphi\left(t_{m}\right)\right|>\delta / 2$. It follows from 3.2, , 3.3, 3.10, $\left(H_{2}\right)$ and $\left(H_{4}\right)$ that for $t \in\left[t_{m}, \infty\right) \cap \mathbb{T}$,

$$
\begin{aligned}
|x(t)| & \leq\left|\varphi\left(t_{m}\right)\right| e_{\ominus a}\left(t, t_{m}\right)+\int_{t_{m}}^{t} e_{\ominus a}(t, u) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\Delta}}\left(u-\tau_{1}(u)\right)\right) \\
& +\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u \\
& \leq\left|\varphi\left(t_{m}\right)\right| e_{\ominus a}(t, 0) e_{a}\left(t_{m}, 0\right)+\|x\|_{t_{m}} \int_{t_{m}}^{t} e_{\ominus a}(t, u)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& \leq K_{0}\left(e^{l}+1\right) \delta+\|x\|_{t_{m}} \int_{0}^{t} e_{\ominus a}(t, u)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& \leq B \delta+\alpha\|x\|_{t_{m}},
\end{aligned}
$$

and

$$
\begin{aligned}
\left|x^{\triangle}(t)\right| & \leq\left|\varphi\left(t_{m}\right)\right| a(t) e_{\ominus a}\left(\sigma(t), t_{m}\right)+\left|q\left(t, x\left(t-\tau_{1}(t)\right), x^{\widetilde{\Delta}}\left(t-\tau_{1}(t)\right)\right)\right| \\
& +\left|\int_{t-\tau_{2}(t)}^{t} g(t, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s\right| \\
& +|a(t)| \int_{t_{m}}^{\sigma(t)} e_{\ominus a}(\sigma(t), u) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\triangle}}\left(u-\tau_{1}(u)\right)\right) \\
& +\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u \\
& \leq K_{0} A_{0}\left(e^{l}+1\right) \delta \\
& +\|x\|_{t_{m}}\left\{| a (t) | \int _ { t _ { m } } ^ { \sigma (t) } e _ { \ominus a } (\sigma (t) , u) \left[L_{1}(u)+L_{2}(u)\right.\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& \left.+L_{1}(t)+L_{2}(t)+\int_{t-\tau_{2}(t)}^{t}|g(t, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right\} \\
& \leq B \delta+\alpha\|x\|_{t_{m}} .
\end{aligned}
$$

Hence, $\|x\|_{t_{m}} \leq B \delta+\alpha\|x\|_{t_{m}}$, i.e.

$$
\begin{equation*}
\|x\|_{t_{m}} \leq \frac{B}{1-\alpha} \delta \tag{3.11}
\end{equation*}
$$

It follows from 3.2), 3.9)-3.11 and $\left(H_{2}\right)$ that for any $n>m$,

$$
\begin{aligned}
\left|x\left(t_{n}\right)\right| & \geq\left|\varphi\left(t_{m}\right)\right| e_{\ominus a}\left(t_{n}, t_{m}\right) \\
& -e_{\ominus a}\left(t_{n}, 0\right) \int_{t_{m}}^{t_{n}} e_{a}(u, 0) \mid q\left(u, x\left(u-\tau_{1}(u)\right), x^{\widetilde{\Delta}}\left(u-\tau_{1}(u)\right)\right) \\
& +\int_{u-\tau_{2}(u)}^{u} g(u, s) f\left(s, x(s), x^{\triangle}(s)\right) \Delta s \mid \Delta u \\
& \geq\left|\varphi\left(t_{m}\right)\right| e_{\ominus a}\left(t_{n}, t_{m}\right)-\|x\|_{t_{m}} e_{\ominus a}\left(t_{n}, 0\right) \int_{t_{m}}^{t_{n}} e_{a}(u, 0)\left[L_{1}(u)+L_{2}(u)\right. \\
& \left.+\int_{u-\tau_{2}(u)}^{u}|g(u, s)|\left(K_{1}(s)+K_{2}(s)\right) \Delta s\right] \Delta u \\
& >\frac{1}{4} \delta-\frac{B}{1-\alpha} \delta\left(e^{-l}+1\right) \frac{1-\alpha}{8 B\left(e^{-l}+1\right)}=\frac{1}{8} \delta .
\end{aligned}
$$

This contradicts the fact that $\lim _{n \rightarrow \infty} t_{n}=\infty$ and the zero solution of 1.1 is globally asymptotically stable in $C_{r d}^{1}$. The proof is complete.

4. Conclusion

In this manuscript, we provided the global asymptotic stability with a necessary and sufficient condition of the zero solution of a class of nonlinear neutral integro-dynamic equations in $C_{r d}^{1}$. The main tool of this paper is the fixed point method. However, by introducing a new fixed mapping, we get new stability conditions. The obtained results have a contribution to the related literature, and they improve and extend the results in [19].

5. Acknowledgements

The author would like to thank the anonymous referee for his/her valuable comments and good advice.

REFERENCES

[1] M. Adivar and Y. N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal of Qualitative Theory of Differential Equations, 2009(1) (2009), 1-20.
[2] A. Ardjouni, I. Derrardjia and A. Djoudi, Stability in totally nonlinear neutral differential equations with variable delay, Acta Math. Univ. Comenianae, LXXXIII(1) (2014), 119-134.
[3] A. Ardjouni and A. Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations with variable delays, Novi Sad J. Math., 49(2) (2019), 35-48.
[4] A. Ardjouni and A. Djoudi, Global asymptotic stability of nonlinear neutral differential equations with infinite delay, TJMM, 9(2) (2017), 125-133.
[5] A. Ardjouni and A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with functional delay on a time scale, Acta Univ. Palacki. Olomnc., Fac. rer. nat., Mathematica, 52(1) (2013), 5-19.
[6] A. Ardjouni and A. Djoudi, Stability in neutral nonlinear dynamic equations on time scale with unbounded delay, Stud. Univ. Babeç-Bolyai Math., 57(4) (2012), 481-496.
[7] A. Ardjouni and A. Djoudi, Fixed points and stability in linear neutral differential equations with variable delays, Nonlinear Analysis, 74 (2011), 2062-2070.
[8] M. Belaid, A. Ardjouni and A. Djoudi, Stability in totally nonlinear neutral dynamic equations on time scales, International Journal of Analysis and Applications, 11(2) (2016), 110-123.
[9] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Boston, 2001.
[10] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
[11] F. Bouchelaghem, A. Ardjouni and A. Djoudi, Existence and exponential stability of positive periodic solutions for second-order dynamic equations, Ural Mathematical Journal, 6(1) (2020), 42-53.
[12] F. Bouchelaghem, A. Ardjouni and A. Djoudi, Existence, uniqueness and stability of periodic solutions for nonlinear neutral dynamic equations, Kragujevac Journal of Mathematics, 44(2) (2020), 189-203.
[13] F. Bouchelaghem, A. Ardjouni and A. Djoudi, Existence of positive solutions of delay dynamic equations, Positivity, 21(4) (2017), 1483-1493.
[14] F. Bouchelaghem, A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for delay dynamic equations, Proyecciones (Antofagasta), 36(3) (2017), 449-46.
[15] T. A. Burton, Liapunov functionals, fixed points and stability by Krasnoselskii's theorem, Nonlinear Stud., 9 (2001), 181-190.
[16] T. A. Burton, Stability by fixed point theory or Liapunov theory: A Comparison, Fixed Point Theory, 4 (2003), 15-32.
[17] T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.
[18] I. Derrardjia, A. Ardjouni and A. Djoudi, Stability by Krasnoselskii's theorem in totally nonlinear neutral differential equations, Opuscula Math., 33(2) (2013), 255-272.
[19] M. Huang, G. Zhao and J. Liu, Global asymptotic stability of zero solutions for nonlinear Volterra equation, J. Jianghan Univ. (Nat. Sci. Ed.), 47(5) (2019), 395-399.
[20] E. R. Kaufmann and Y. N. Raffoul, Stability in neutral nonlinear dynamic equations on a time scale with functional delay, Dynamic Systems and Applications, 16 (2007), 561-570.
[21] G. Liu and J. Yan, Global asymptotic stability of nonlinear neutral differential equation, Commun Nonlinear Sci Numer Simulat, 19 (2014), 1035-1041.
[22] D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, no. 66, Cambridge University Press, London-New York, 1974.

Abdelouaheb Ardjouni
Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria
Applied Mathematics Lab, Faculty of Sciences, Department of Mathematics, University of Annaba, P.O. Box 12, Annaba 23000, Algeria

Email address: abd_ardjouni@yahoo.fr

