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STUDY OF THE GLOBAL ASYMPTOTIC STABILITY IN NONLINEAR
NEUTRAL INTEGRO-DYNAMIC EQUATIONS

ABDELOUAHEB ARDJOUNI

ABSTRACT. The main purpose of this paper is to establish the global asymptotic stability
of the zero solution of a class of nonlinear neutral integro-dynamic equations in C1

rd.
Global asymptotic stability results are based on the Banach fixed point theorem. The results
obtained here extend the work of Huang, Zhao and Liu [19].

1. INTRODUCTION

The study of dynamic equations brings together the traditional research areas of differ-
ential and difference equations. It allows one to handle these two research areas at the same
time, hence shedding light on the reasons for their seeming discrepancies. In fact, many
new results for the continuous and discrete cases have been obtained by studying the more
general time scales case, see [1, 3, 5, 6, 8, 11, 12, 13, 14, 20] and the references therein.

There is no doubt that the Lyapunov method have been used successfully to investigate
stability properties of wide variety of ordinary, functional and partial equations. Neverthe-
less, the application of this method to problem of stability in differential equations with
delay has encountered serious difficulties if the delay is unbounded or if the equation has
unbounded term. It has been noticed that some of theses difficulties vanish by using the
fixed point technic. Other advantages of fixed point theory over Lyapunov’s method is
that the conditions of the former are average while those of the latter are pointwise, see
[2, 4, 7, 15, 16, 17, 18, 19, 21] and references therein.

In paper, we study the global asymptotic stability of the zero solution of the following
nonlinear neutral integro-dynamic equation

x4 (t) = −a (t)xσ (t) + q
(
t, x (t− τ1 (t)) , x4̃ (t− τ1 (t))

)
+

∫ t

t−τ2(t)
g (t, s) f

(
s, x (s) , x4 (s)

)
4s, (1.1)

with the initial condition

x (t) = ϕ (t) , t ∈ [dt0 , t0] ∩ T,
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where

dt0 = min {inf {t− τ1 (t) , t ∈ [t0,∞) ∩ T} , inf {t− τ2 (t) , t ∈ [t0,∞) ∩ T}} ,
for each t0 ∈ [0,∞) ∩ T and T is an unbounded above and below time scale and such that
t0 ∈ T. To show the global asymptotic stability of the zero solution in C1

rd, we transform
(1.1) into an integral equation and then use the Banach fixed point theorem ([22], p. 2). Our
results are obtained with no need of further assumptions on the twice delta-differentiable
of τi with τ4i (t) 6= 1 for t ∈ [0,∞)∩T, i = 1, 2. In the special case T = R, Huang, Zhao
and Liu in [19] show that the zero solution of (1.1) is globally asymptotically stable in C1

by using the Banach fixed point theorem. Then, the results obtained here extend the work
of Huang, Zhao and Liu [19].

2. PRELIMINARIES

In this section, we consider some advanced topics in the theory of dynamic equations
on a time scales. Again, we remind that for a review of this topic we direct the reader to
the monographs of Bohner and Peterson [9] and [10].

A time scaleT is a closed nonempty subset ofR. For t ∈ T the forward jump operator σ,
and the backward jump operator ρ, respectively, are defined as σ (t) = inf {s ∈ T : s > t}
and ρ (t) = sup {t ∈ T : s < t}. These operators allow elements in the time scale to be
classified as follows. We say t is right scattered if σ (t) > t and right dense if σ (t) = t.
We say t is left scattered if ρ (t) < t and left dense if ρ (t) = t. The graininess function
µ : T→ [0,∞), is defined by µ (t) = σ (t)− t and gives the distance between an element
and its successor. We set inf ∅ = supT and sup ∅ = inf T. If T has a left scattered
maximum M , we define Tk = T� {M}. Otherwise, we define Tk = T. If T has a right
scattered minimum m, we define Tk = T� {m}. Otherwise, we define Tk = T.

Let t ∈ Tk and let f : T → R. The delta derivative of f (t), denoted f4 (t), is
defined to be the number (when it exists), with the property that, for each ε > 0, there is a
neighborhood U of t such that∣∣f (σ (t))− f (s)− f4 (t) [σ (t)− s]

∣∣ ≤ ε |σ (t)− s| ,

for all s ∈ U . If T = R then f4 (t) = f ′ (t) is the usual derivative. If T = Z then
f4 (t) = 4f (t) = f (t+ 1)− f (t) is the forward difference of f at t.

A function f is right dense continuous (rd-continuous), f ∈ Crd = Crd (T,R), if it is
continuous at every right dense point t ∈ T and its left-hand limits exist at each left dense
point t ∈ T. The function f : T→ R is differentiable on Tk provided f4 (t) exists for all
t ∈ Tk. f ∈ C1

rd = C1
rd (T,R) if f4 ∈ Crd (T,R).

We are now ready to state some properties of the delta-derivative of f . Note fσ (t) =
f (σ (t)).

Theorem 2.1 ([9, Theorem 1.20]). Assume f, g : T→ R are differentiable at t ∈ Tk and
let α be a scalar.

(i) (f + g)
4

(t) = g4 (t) + f4 (t).
(ii) (αf)

4
(t) = αf4 (t).

(iii) The product rules

(fg)
4

(t) = f4 (t) g (t) + fσ (t) g4 (t) ,

(fg)
4

(t) = f (t) g4 (t) + f4 (t) gσ (t) .
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(iv) If g (t) gσ (t) 6= 0 then(
f

g

)4
(t) =

f4 (t) g (t)− f (t) g4 (t)

g (t) gσ (t)
.

The next theorem is the chain rule on time scales ([9, Theorem 1.93]).

Theorem 2.2 (Chain Rule). Assume ν : T → R is strictly increasing and T̃ := ν (T) is
a time scale. Let ω : T̃ → R. If ν4 (t) and ω4̃ (ν (t)) exist for t ∈ Tk, then (ω ◦ ν)

4
=(

ω4̃ ◦ ν
)
ν4.

In the sequel we will need to differentiate and integrate functions of the form f(t −
τ (t)) = f (ν (t)) where, ν (t) := t − τ (t). Our next theorem is the substitution rule ([9,
Theorem 1.98]).

Theorem 2.3 (Substitution). Assume ν : T → R is strictly increasing and T̃ := ν (T)
is a time scale. If f : T → R is rd-continuous function and ν is differentiable with rd-
continuous derivative, then for a, b ∈ T,∫ b

a

f (t) ν4 (t)4t =

∫ ν(b)

ν(a)

(
f ◦ ν−1

)
(s) 4̃s.

A function p : T→ R is said to be regressive provided 1+µ (t) p (t) 6= 0 for all t ∈ Tk.
The set of all regressive rd-continuous function f : T→ R is denoted byR. The set of all
positively regressive functionsR+, is given by

R+ = {f ∈ R : 1 + µ (t) f (t) > 0 for all t ∈ T} .
Let p ∈ R and µ (t) 6= 0 for all t ∈ T. The exponential function on T is defined by

ep (t, s) = exp

(∫ t

s

1

µ (z)
log (1 + µ (z) p (z)) ∆z

)
.

It is well known that if p ∈ R+, then ep (t, s) > 0 for all t ∈ T. Also, the exponential
function y (t) = ep (t, s) is the solution to the initial value problem y4 = p (t) y, y (s) =
1. Other properties of the exponential function are given by the following lemma.

Lemma 2.4 ([9, Theorem 2.36]). Let p, q ∈ R. Then
(i) e0 (t, s) = 1 and ep (t, t) = 1,
(ii) ep (σ (t) , s) = (1 + µ (t) p (t)) ep (t, s),
(iii) 1

ep(t,s)
= e	p (t, s), where 	p (t) = − p(t)

1+µ(t)p(t) ,
(iv) ep (t, s) = 1

ep(s,t)
= e	p (s, t),

(v) ep (t, s) ep (s, r) = ep (t, r),

(vi) e4p (., s) = pep (., s) and
(

1
ep(.,s)

)4
= − p(t)

eσp (.,s)
.

Lemma 2.5 ([1]). If p ∈ R+, then

0 < ep (t, s) ≤ exp

(∫ t

s

p (u)4u
)
, ∀t ∈ T.

3. GLOBAL ASYMPTOTIC STABILITY

In this section, we shall study the global asymptotic stability in C1
rd of the zero solution

to (1.1). We introduce the following hypothesis.
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(H1) a ∈ Crd ([0,∞) ∩ T,R), g ∈ Crd (([0,∞) ∩ T)× T,R), q, f ∈ Crd(([0,∞) ∩
T)× R2,R), τi ∈ Crd([0,∞) ∩ T, (0,∞) ∩ T) and (id− τi) ([0,∞) ∩ T) is closed with
t− τi (t)→∞ as t→∞, i = 1, 2.

(H2) For t ∈ [0,∞) ∩ T, q (t, 0, 0) = f (t, 0, 0) = 0, and there exist Li,Ki ∈
Crd ([0,∞) ∩ T, (0,∞)) such that

|q (t, x1, x2)− q (t, y1, y2)| ≤ L1 (t) |x1 − y1|+ L2 (t) |x2 − y2| ,
and

|f (t, x1, x2)− f (t, y1, y2)| ≤ K1 (t) |x1 − y1|+K2 (t) |x2 − y2| ,
for any xi, yi ∈ R, i = 1, 2.

(H3) a ∈ R+ is bounded on [0,∞) ∩ T and

lim
t→∞

inf

∫ t

0

1

µ (s)
log (1 + µ (s) a (s)) ∆s > −∞.

(H4) There exists α ∈ (0, 1) such that for t ∈ [0,∞) ∩ T,∫ t

0

e	a (t, u)

[
L1 (u) + L2 (u) +

∫ u

u−τ2(u)
|g (t, s)| (K1 (s) +K2 (s)) ∆s

]
∆u ≤ α,

and

|a (t)|
∫ σ(t)

0

e	a (σ (t) , u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (t, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

+L1 (t) + L2 (t) +

∫ t

t−τ2(t)
|g (t, s)| (K1 (s) +K2 (s)) ∆s ≤ α.

For each t0 ∈ [0,∞)∩T denoteC1
rd (t0) = C1

rd ([dt0 , t0] ∩ T,R) with the norm defined
by

|x|t0 = max
t∈[dt0 ,t0]∩T

{
|x (t)| ,

∣∣x4 (t)
∣∣}

for x ∈ C1
rd (t0). In addition, denote

Φt0 =
{
ϕ ∈ C1

rd (t0) : ϕ4 (t0) = −a (t0)ϕσ (t0)

+q
(
t0, ϕ (t0 − τ1 (t0)) , ϕ4̃ (t0 − τ1 (t0))

)
+

∫ t0

t0−τ2(t0)
g (t0, s) f

(
s, ϕ (s) , ϕ4 (s)

)
4s

}
.

For each t0 ∈ [0,∞) ∩ T, we always assume that the initial function for (1.1) is of the
type ϕ ∈ Φt0 . For convenience of stating our main result, we shall give the following
definitions.

Definition 3.1. For each (t0, ϕ) ∈ [0,∞) ∩ T×Φt0 , x is said to be a solution of (1.1)
through (t0, ϕ) if x ∈ C1

rd (T) satisfies (1.1) on [t0,∞) ∩ T and x (t) = ϕ (t) for t ∈
[dt0 , t0] ∩ T. We denote such a solution by x (t) = x (t, t0, ϕ).
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Definition 3.2. (i) The zero solution of (1.1) is said to be stable in C1
rd if, for any t0 ∈

[0,∞) ∩ T, ε > 0 there is a δ = δ (ε, t0) such that ϕ ∈ Φt0 and |ϕ|t0 < δ implies

max
s∈[dt0 ,t]∩T

{
|x (s)| ,

∣∣x4 (s)
∣∣} < ε,

for t ∈ [t0,∞) ∩ T.
(ii) The zero solution of (1.1) is said to be globally asymptotically stable in C1

rd if it is
stable in C1

rd, and for any t0 ∈ [0,∞) ∩ T, ϕ ∈ Φt0 implies

lim
t→∞

x (t, t0, ϕ) = lim
t→∞

x4 (t, t0, ϕ) = 0.

In view of the definition of solution of (1.1), it is clear that the conditions imposed on
the initial functions are very natural. From the above assumptions, it is easy to see that for
each (t0, ϕ) ∈ [0,∞) ∩ T×Φt0 , there exists a unique solution x (t) = x (t, t0, ϕ) of (1.1)
defined on T. By (H2), (1.1) has the zero solution.

Theorem 3.1. Assume that (H1) − (H4) hold. Then the zero solution of (1.1) is globally
asymptotically stable in C1

rd if and only if∫ t

0

1

µ (s)
log (1 + µ (s) a (s)) ∆s→∞ as t→∞. (3.1)

Proof. (i) Suppose that (3.1) holds. For any t0 ∈ [0,∞) ∩ T, let

X =
{
x ∈ C1

rd (T) : lim
t→∞

x (t) = lim
t→∞

x4 (t) = 0
}
,

with the norm defined by

‖x‖t0 = sup
t∈T

{
|x (t)| ,

∣∣x4 (t)
∣∣} ,

for x ∈ X . Since X is a closed vectorial subspace of C1
rd (T) and C1

rd

(
T, ‖.‖t0

)
is a

Banach space, then
(
X, ‖.‖t0

)
is also a Banach space. For any ϕ ∈ Φt0 , let

D = {x ∈ X : x (t) = ϕ (t) for t ∈ [dt0 , t0] ∩ T} .
It is easy to see that D is a nonempty, closed subset of X . Define the operator P : D →
Crd (T) by (Px) (t) = ϕ (t) for t ∈ [dt0 , t0] ∩ T and

(Px) (t) = ϕ (t0) e	a (t, t0)

+

∫ t

t0

e	a (t, u)
[
q
(
u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

]
∆u, (3.2)

for t ∈ [t0,∞) ∩ T.
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Firstly, we prove Px ∈ D for any x ∈ D. From (3.2), for t > t0,

(Px)
4

(t) = −ϕ (t0) a (t) e	a (σ (t) , t0)

+ e	a (σ (t) , t)
[
q
(
t, x (t− τ1 (t)) , x4̃ (t− τ1 (t))

)
+

∫ t

t−τ2(t)
g (t, s) f

(
s, x (s) , x4 (s)

)
4s

]

− a (t)

∫ t

t0

e	a (σ (t) , u)
[
q
(
u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

]
∆u

= −a (t) (Px)
σ

(t) + q
(
t, x (t− τ1 (t)) , x4̃ (t− τ1 (t))

)
+

∫ t

t−τ2(t)
g (t, s) f

(
s, x (s) , x4 (s)

)
4s. (3.3)

By the definition of Φt0 , (3.3) yields

(Px)
4
+ (t0) = −a (t0)ϕσ (t0) + q

(
t0, ϕ (t0 − τ1 (t0)) , ϕ4̃ (t0 − τ1 (t0))

)
+

∫ t0

t0−τ2(t0)
g (t0, s) f

(
s, ϕ (s) , ϕ4 (s)

)
4s

= ϕ4− (t0) .

Hence, Px ∈ C1
rd (T) for x ∈ D.

For x ∈ D, limt→∞ x (t) = limt→∞ x4 (t) = 0. Note that limt→∞ t − τi (t) = ∞,
i = 1, 2. Therefore, for any ε > 0, there exists T > 0 such that for t ≥ T ,

max
{
|x (t)| ,

∣∣x4 (t)
∣∣ , |x (t− τi (t))| ,

∣∣∣x4̃ (t− τi (t))
∣∣∣} < ε, i = 1, 2. (3.4)

It follows from (3.2), (3.4), (H2) and (H4) that for t > T and x ∈ D,

|(Px) (t)| ≤ |ϕ (t0)| e	a (t, t0)

+

∫ T

t0

e	a (t, u)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
+

∫ t

T

e	a (t, u)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
− q (u, 0, 0)

+

∫ u

u−τ2(u)
g (u, s)

(
f
(
s, x (s) , x4 (s)

)
− f (s, 0, 0)

)
4s

∣∣∣∣∣∆u.
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Thus

|(Px) (t)| ≤ e	a (t, t0)

[
|ϕ (t0)|+

∫ T

t0

ea (u, t0)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
]

+

∫ t

T

e	a (t, u)
[
L1 (u) |x (u− τ1 (u))|+ L2 (u)

∣∣∣x4̃ (u− τ1 (u))
∣∣∣

+

∫ u

u−τ2(u)
|g (u, s)|

(
K1 (s) |x (s)|+K2 (s)

∣∣x4 (s)
∣∣)4s]∆u

≤ e	a (t, t0)

[
|ϕ (t0)|+

∫ T

t0

ea (u, t0)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
]

+ ε

∫ t

T

e	a (t, u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s))4s

]
∆u

≤ e	a (t, t0)

[
|ϕ (t0)|+

∫ T

t0

ea (u, t0)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
]

+ αε.

From (3.1), there exists T1 > T such that for t > T1,

e	a (t, t0)

[
|ϕ (t0)|+

∫ T

t0

ea (u, t0)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
]
< ε.

Hence, limt→∞ (Px) (t) = 0 for x ∈ D. In addition, it follows from (3.3) and (H2) that∣∣∣(Px)
4

(t)
∣∣∣

≤ |a (t) (Px)
σ

(t)|+
∣∣∣q (t, x (t− τ1 (t)) , x4̃ (t− τ1 (t))

)
− q (t, 0, 0)

∣∣∣
+

∣∣∣∣∣
∫ t

t−τ2(t)
g (t, s)

(
f
(
s, x (s) , x4 (s)

)
− f (s, 0, 0)

)
4s

∣∣∣∣∣
≤ |a (t)| |(Px)

σ
(t)|+ L1 (t) |x (t− τ1 (t))|+ L2 (t)

∣∣∣x4̃ (t− τ1 (t))
∣∣∣

+

∫ t

t−τ2(t)
|g (t, s)|

(
K1 (s) |x (s)|+K1 (s)

∣∣x4 (s)
∣∣)4s.
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This, together with (H3) and (H4), yields limt→∞ (Px)
4

(t) = 0 for x ∈ D. Therefore,
Px ∈ D for x ∈ D, i.e. P : D → D.

Secondly, we show that P : D → D is a Banach contraction mapping. For any x, y ∈
D, it follows from (3.2), (H2) and (H4) that for t ∈ [t0,∞) ∩ T,

|(Px) (t)− (Py) (t)|

≤
∫ t

t0

e	a (t, u)
[∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
−q
(
u, y (u− τ1 (u)) , y4̃ (u− τ1 (u))

)∣∣∣
+

∫ u

u−τ2(u)
|g (u, s)|

∣∣f (s, x (s) , x4 (s)
)
− f

(
s, y (s) , y4 (s)

)∣∣4s]∆u

≤ ‖x− y‖t0

∫ t

t0

e	a (t, u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

≤ α ‖x− y‖t0 . (3.5)

In addition, it follows from (3.3), (3.5), (H2) and (H4) that for t ∈ [t0,∞) ∩ T,∣∣∣(Px)
4

(t)− (Py)
4

(t)
∣∣∣

≤ |a (t)| |(Px)
σ

(t)− (Py)
σ

(t)|

+
∣∣∣q (t, x (t− τ1 (t)) , x4̃ (t− τ1 (t))

)
− q

(
t, y (t− τ1 (t)) , y4̃ (t− τ1 (t))

)∣∣∣
+

∫ t

t−τ2(t)
|g (t, s)|

∣∣f (s, x (s) , x4 (s)
)
− f

(
s, y (s) , y4 (s)

)∣∣4s
≤ ‖x− y‖t0

[
|a (t)|

∫ σ(t)

t0

e	a (σ (t) , u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

+L1 (t) + L2 (t) +

∫ t

t−τ2(t)
|g (t, s)| (K1 (s) +K2 (s)) ∆s

]
≤ α ‖x− y‖t0 . (3.6)

From (3.5) and (3.6), P : D → D is a contraction mapping. By the Banach fixed point
theorem, P has a unique fixed point x in D, which is a unique solution of (1.1) through
(t0, ϕ) and satisfies

lim
t→∞

x (t) = lim
t→∞

x4 (t) = 0. (3.7)

Finally, we show that the zero solution of (1.1) is stable in C1
rd. Let

K = sup
t∈[t0,∞)∩T

{e	a (t, u)} and A = sup
t∈[t0,∞)∩T

{|a (t)|} .
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From (3.1) and (H3), K,A ∈ (0,∞) ∩ T. For any ε > 0, let δ > 0 such that

δ < εmin

{
1,

1− α
K

,
1− α
KA

}
.

If x (t) = x (t, t0,ϕ) is a solution of (1.1) with |ϕ|t0 < δ, then x (t) = (Px) (t) on
[t0,∞) ∩ T. We claim that ‖x‖t0 < ε. Otherwise, there exists t1 > t0 such that

max
{
|x (t1)| ,

∣∣x4 (t1)
∣∣} = ε,

and
max

{
|x (t)| ,

∣∣x4 (t)
∣∣} < ε,

for t ∈ [dt0 , t1) ∩ T. If |x (t1)| = ε, then it follows from (3.2), (H2) and (H4) that

|x (t1)| ≤ |ϕ (t0)| e	a (t1, t0)

+

∫ t1

t0

e	a (t1, u)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
≤ Kδ + ε

∫ t1

t0

e	a (t1, u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

≤ Kδ + αε < ε.

This is a contradiction. If
∣∣x4 (t1)

∣∣ = ε, then it follows from (3.3) and (H2) and (H4) that∣∣x4 (t1)
∣∣ ≤ |ϕ (t0) a (t1)| e	a (σ (t1) , t0)

+
∣∣∣q (t1, x (t1 − τ1 (t1)) , x4̃ (t1 − τ1 (t1))

)∣∣∣
+

∣∣∣∣∣
∫ t1

t1−τ2(t1)
g (t1, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣
+ |a (t1)|

∫ σ(t1)

t0

e	a (σ (t1) , u)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
≤ KAδ + ε

{
|a (t1)|

∫ σ(t1)

t0

e	a (σ (t1) , u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

+L1 (t1) + L2 (t1) +

∫ t1

t1−τ2(t1)
|g (t1, s)| (K1 (s) +K2 (s)) ∆s

}
≤ KAδ + αε < ε.
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This is also a contradiction. Hence, the zero solution of (1.1) is stable inC1
rd. This, together

with (3.7), implies that the zero solution of (1.1) is globally asymptotically stable in C1
rd.

(ii) Assume that the zero solution of (1.1) is globally asymptotically stable in C1
rd. Now

we prove that (3.1) holds. Otherwise, set

l = lim
t7→∞

inf

∫ t

0

1

µ (s)
log (1 + µ (s) a (s)) ∆s,

K0 = sup
t∈[0,∞)∩T

{e	a (t, 0)} and A0 = sup
t∈[0,∞)∩T

{|a (t)|} ,

thus it follows from (H3) that l ∈ (−∞,∞), K0 ∈ (0,∞), A0 ∈ [0,∞). Hence, there
exists an increasing sequence {tn} ⊂ [0,∞) ∩ T such that limt→∞ tn =∞ and

lim
n 7→∞

∫ tn

0

1

µ (s)
log (1 + µ (s) a (s)) ∆s = l. (3.8)

Denote

In =

∫ tn

0

ea (u, 0) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u, n = 1, 2, ....

From (H4), it follows that

In = ea (tn, 0)

∫ tn

0

e	a (tn, u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

≤ αea (tn, 0) .

This, together with (3.8), implies that the sequence {In} is bounded. So, {In} has a
convergent subsequence. For brevity of notation, we may assume that {In} is convergent.
Therefore, there exists a positive integer m such that for any integer n > m,∫ tn

tm

ea (u, 0) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

<
1− α

8B (e−l + 1)
, (3.9)

and
e	a (tn, tm) >

1

2
, e	a (tn, 0) < e−l + 1, ea (tm, 0) < el + 1, (3.10)

where B = max
{
K0

(
el + 1

)
,K0A0

(
el + 1

)
, 1
}

.
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For any δ > 0, consider the solution x (t) = x (t, tm, ϕ) of (1.1) with |ϕ|tm < δ and
|ϕ (tm)| > δ/2. It follows from (3.2), (3.3), (3.10), (H2) and (H4) that for t ∈ [tm,∞)∩T,

|x (t)| ≤ |ϕ (tm)| e	a (t, tm) +

∫ t

tm

e	a (t, u)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
≤ |ϕ (tm)| e	a (t, 0) ea (tm, 0) + ‖x‖tm

∫ t

tm

e	a (t, u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

≤ K0

(
el + 1

)
δ + ‖x‖tm

∫ t

0

e	a (t, u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

≤ Bδ + α ‖x‖tm ,
and ∣∣x4 (t)

∣∣ ≤ |ϕ (tm)| a (t) e	a (σ (t) , tm) +
∣∣∣q (t, x (t− τ1 (t)) , x4̃ (t− τ1 (t))

)∣∣∣
+

∣∣∣∣∣
∫ t

t−τ2(t)
g (t, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣
+ |a (t)|

∫ σ(t)

tm

e	a (σ (t) , u)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
≤ K0A0

(
el + 1

)
δ

+ ‖x‖tm

{
|a (t)|

∫ σ(t)

tm

e	a (σ (t) , u) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

+L1 (t) + L2 (t) +

∫ t

t−τ2(t)
|g (t, s)| (K1 (s) +K2 (s)) ∆s

}
≤ Bδ + α ‖x‖tm .

Hence, ‖x‖tm ≤ Bδ + α ‖x‖tm , i.e.

‖x‖tm ≤
B

1− α
δ. (3.11)
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It follows from (3.2), (3.9)-(3.11) and (H2) that for any n > m,

|x (tn)| ≥ |ϕ (tm)| e	a (tn, tm)

− e	a (tn, 0)

∫ tn

tm

ea (u, 0)
∣∣∣q (u, x (u− τ1 (u)) , x4̃ (u− τ1 (u))

)
+

∫ u

u−τ2(u)
g (u, s) f

(
s, x (s) , x4 (s)

)
4s

∣∣∣∣∣∆u
≥ |ϕ (tm)| e	a (tn, tm)− ‖x‖tm e	a (tn, 0)

∫ tn

tm

ea (u, 0) [L1 (u) + L2 (u)

+

∫ u

u−τ2(u)
|g (u, s)| (K1 (s) +K2 (s)) ∆s

]
∆u

>
1

4
δ − B

1− α
δ
(
e−l + 1

) 1− α
8B (e−l + 1)

=
1

8
δ.

This contradicts the fact that limn→∞ tn = ∞ and the zero solution of (1.1) is globally
asymptotically stable in C1

rd. The proof is complete. �

4. CONCLUSION

In this manuscript, we provided the global asymptotic stability with a necessary and
sufficient condition of the zero solution of a class of nonlinear neutral integro-dynamic
equations in C1

rd. The main tool of this paper is the fixed point method. However, by
introducing a new fixed mapping, we get new stability conditions. The obtained results
have a contribution to the related literature, and they improve and extend the results in
[19].
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