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CERTAIN RESULTS FOR THE HERMITE AND CHEBYSHEV
POLYNOMIALS OF 2-VARIABLES

WASEEM A. KHAN

ABSTRACT. In this paper, we introduce Hermite-Chebyshev polynomials of two variables
and to give some properties of Hermite and Chebyshev polynomials of two variables. We
derive series representation, operational identities, generating functions and power series
method by Hermite, Chebyshev and Hermite-Chebyshev polynomials of two variables.
Finally, we consider generalized Hermite-Chebyshev polynomials of two variables and
explicit representation of Hermite-Chebyshev polynomials of two variables.

1. INTRODUCTION AND PRELIMINARIES

Special functions appear in statistics, Lie group theory and number theory. The Hermite
polynomials of the associated generating functions is reformulated within the framework
of an operational formalism [5-8]. In the case of generalized special functions, the use of
operational techniques, combined with the principle of monomiality [3, 4, 9] has provided
new means of analysis for the derivation of the solution of large classes of partial differen-
tial equations often encountered in physical problems [10, 14] offers a power tool to treat
the relevant generating functions and the differential equations they satisfy. The results
are interpreted in terms of single, several variables, single index, index two, three and in
turn p-index in terms of Hermite polynomials defined by Srivastava [18, 19]. The reason
of interest for this family of Hermite polynomials is due to their intrinsic mathematical
importance and to the fact that these polynomials have applications in physics. We recall
some definitions as follows.

The generalization of 2-variable Kampé de Fériet polynomials (or, Gould Hopper poly-
nomials) introduced by Gould and Hopper (see [10,p.58,(6.2)])

H(p)
n (x, y) = n!

[np ]∑
r=0

yrxn−pr

r!(n− pr)!
. (1.1)
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These polynomials are usually defined by the generating function [10,p.58,(6.3)]

ext+yt
p

=

∞∑
n=0

H(p)
n (x, y)

tn

n!
, (1.2)

and reduce to the ordinary Hermite polynomials Hn(x) (see [1]) when p = 2, y = −1 and
x is replaced by 2x.

We draw attention to familiar generating relations given by

(1− 2xt+ t2)−
1
2 =

∞∑
n=0

Pn(x)tn, (1.3)

where Pn(x) is Legendre’s polynomial of first kind.

(1− 2xt+ t2)−1 =

∞∑
n=0

Un(x)tn, (1.4)

where Un(x) is Chebychev polynomial of second kind.

(1− 2xt+ t2)−ν =

∞∑
n=0

Cνn(x)tn, (1.5)

where Cνn(x) is Gegenbauer’s polynomial.

(1−mxt+ tm)−ν =

∞∑
n=0

hνn,m(x)tn, (1.6)

hνn,m(x) =

[ n
m ]∑
k=0

(−1)k(ν)n+(1−m)k(mx)n−mk

k!(n−mk)!
,

where hνn,m(x) is Humbert polynomial and m is a positive integer. The Pochammer sym-
bol (a)n is defined by

(a)n =
Γ(a+ n)

Γ(a)
=

[
1 if n = 0
a(a+ 1)(a+ 2) · · · (a+ n− 1) if n = 1, 2, 3 · · ·

In 1965, Gould [11] gave the following generating relation

(c−mxt+ ytm)p =

∞∑
n=0

Pn(m,x, y, p, c)tn, (1.7)

wherem is a positive integer and other parameters are unrestricted in general. Pn(m,x, y, p, c)
is defined explicitly by [11, p.699]

Pn(m,x, y, p, c) =

[ n
m ]∑
k=0

(
p
k

)(
p− k
n−mk

)
cp−n+(m−1)kyk(−mx)n−mk. (1.8)

In 1989, Sinha [20] gave the following generating relation[
1− 2xt+ t2(2x− 1)

]−ν
=

∞∑
n=0

Sνn(x)tn, (1.9)



86 WASEEM A. KHAN

where

Sνn(x) =

[n2 ]∑
k=0

(−1)k(ν)n−k(2x)n−2k(2x− 1)k

k!(n− 2k)!
, (1.10)

Sνn(x) is the generalization of Shrestha polynomial Sn(x) ( see [15]).

In 1991, Milovanović and Djordjević [16](see also [17]) gave the following generating
relation

(1− 2xt+ tm)−λ =

∞∑
n=0

pλn,m(x)tn, (1.11)

where m ∈ N and λ > − 1
2 and

pλn,m(x) =

[ n
m ]∑
k=0

(−1)k(λ)n−(m−1)k(2x)n−mk

k!(n−mk)!
. (1.12)

It is to be noted that the polynomials represented by pλn,1(x), pλn,2(x) and pλn,3(x) are
known as Horadam polynomials [12], Gegenbauer polynomials and Horadam-Pethe poly-
nomials [13], respectively.

In particular in 1997, Pathan and Khan [15,p.54] generalized these polynomials and
gave the following generating relation

[c− axt+ btm(2x− 1)d]−ν =

∞∑
n=0

pνn,m,a,b,c,d(x)tn

=

∞∑
n=0

Θn(x)tn, (1.13)

where

Θn(x) =

[ n
m ]∑
k=0

(−1)kc−ν−n+(m−1)k(ν)n+(1−m)k(ax)n−mk[b(2x− 1)d]k

k!(n−mk)!
. (1.14)

In this paper, we consider Chebyshev polynomials of 2-variables by means of the following
generating function

(1− 2xt− yt2)−1 =

∞∑
n=0

Un(x, y)tn, (1.15)

which reduces to ordinary Chebyshev polynomials when y = −1 and x is replaced by 2x
and has the series representation

Un(x, y) =

[n2 ]∑
s=0

ys(n− s)!xn−2s

(n− 2s)!s!
. (1.16)

2. On Hermite and Chebyshev polynomials of 2-variables

This section gives some properties of Hermite and Chebyshev polynomials of 2 variables.
We start with the following theorem.
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Theorem 2.1. For k ∈ N, we have
[ n
m ]∑
s=0

(ky)s(kx)n−ms

s!(n−ms)!
=

∑
n1+n2+···+nk=n

Hm
n1

(x, y)Hm
n2

(x, y) · · ·Hm
nk

(x, y)

n1!n2! · · ·nk!
. (2.1)

Proof. Consider the generating function (1.2), we have

ekxt+kyt
m

=

∞∑
n=0

(kxt)n

n!

∞∑
s=0

(kytm)s

s!

=

∞∑
n=0

[ n
m ]∑
s=0

(ky)s(kx)n−ms

s!(n−ms)!
tn. (2.2)

On the other hand from (1.2), we get

[ext+yt
m

]k =

[ ∞∑
n=0

Hm
n (x, y)

tn

n!

]k

=

∞∑
n=0

∑
n1+n2+···+nk=n

Hm
n1

(x, y)Hm
n2

(x, y) · · ·Hm
nk

(x, y)

n1!n2! · · ·nk!
tn. (2.3)

Comparing the coefficients of tn in equations (2.2) and (2.3), we arrive at the desired result
(2.1). �

Remark 2.1. On setting x = 2x, y = −1 and m = 2 in equation (2.1), the result reduces
to known result of Batahan et al. [2,p.50.Eq.(2.1)].

Theorem 2.2. For k ∈ N, we have
[ n
m ]∑
s=0

(ky)s(k(x1 + x2 · · ·xk))n−ms

s!(n−ms)!
=

∑
n1+n2+···+nk=n

Hm
n1

(x1, y)Hm
n2

(x2, y) · · ·Hm
nk

(xk, y)

n1!n2! · · ·nk!
.

(2.4)

Proof. Consider the generating function (1.2), we have

ekk(x1+x2···xk)t+kyt
m

=

∞∑
n=0

(k(x1 + x2 · · ·xk)t)n

n!

∞∑
s=0

(kytm)s

s!

=

∞∑
n=0

[ n
m ]∑
s=0

(ky)s(k(x1 + x2 · · ·xk))n−ms

s!(n−ms)!
tn. (2.5)

On the other hand from (1.2), we get

[e(x1+x2···xk)t+yt
m

]k =

[ ∞∑
n=0

Hm
n (x1 + x2 · · ·xk, y)

tn

n!

]k

=

∞∑
n=0

∑
n1+n2+···+nk=n

Hm
n1

(x1, y)Hm
n2

(x2, y) · · ·Hm
nk

(xk, y)

n1!n2! · · ·nk!
tn. (2.6)

Combining (2.5) and (2.6) gives (2.4). �

Remark 2.2. On Letting x1 + x2 · · ·xk = 2(x1 + x2 · · ·xk), y = −1 and m = 2 in
equation (2.4), the result reduces to known result of Batahan et al. [2,p.51.Eq.(2.4)].
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Theorem 2.3. For k ∈ N, we have
[ n
m ]∑
s=0

(−y)s(k)n−s(2x)n−ms

s!(n−ms)!
=

∑
n1+n2+···+nk=n

Umn1
(x, y)Umn2

(x, y) · · ·Umnk
(x, y)

n1!n2! · · ·nk!
.

(2.7)

Proof. Using the power series of (1 − 2xt + ytm)−k and making the necessary arrange-
ments gives

(1− 2xt+ ytm)−k =

∞∑
n=0

(k)n
n!

(2xt− ytm)n

=

∞∑
n=0

[ n
m ]∑
s=0

(−y)s(k)n−s(2x)n−ms

s!(n−ms)!
tn. (2.8)

In addition to this, we can write

(1− 2xt+ ytm)−k = ((1− 2xt+ ytm)−1)k =

[ ∞∑
n=0

Umn (x, y)tn

]k

=

∞∑
n=0

∑
n1+n2+···+nk=n

Umn1
(x, y)Umn2

(x, y) · · ·Umnk
(x, y)

n1!n2! · · ·nk!
tn. (2.9)

Combining (2.8) and (2.9) gives (2.7). �

Remark 2.3. On setting y = 1 and m = 2 in equation (2.7), the result reduces to known
result of Batahan et al. [2,p.52.Eq.(2.7)].

3. Generalized Hermite-Chebyshev polynomials of 2-variables

Here, we consider the generalized Hermite-Chebyshev polynomials of 2 variablesHUmn (x, y)
by

HU
m
n (x, y) =

[ n
m ]∑
k=0

yk(n−mk + k)!(2)n−mk

k!(n−mk)!
Hm
n−mk(x, y) (3.1)

From (3.1), we can write that

∞∑
n=0

HU
m
n (x, y)tn =

∞∑
n=0

[ n
m ]∑
k=0

yk(n−mk + k)!(2)n−mk

k!(n−mk)!
Hm
n−mk(x, y)tn.

Replacing n by n+mk, we get
∞∑
n=0

HU
m
n (x, y)tn =

∞∑
n=0

∞∑
k=0

yk(n− k)!2n

k!n!
Hm
n (x, y)tn+mk.

Summing k-series, we get the following generating function for the generalized Hermite-
Chebyshev polynomials of 2 variables

∞∑
n=0

HU
m
n (x, y)tn = (1− ytm)−1

∞∑
n=0

(
2t

1− ytm

)n
Hm
n (x, y). (3.2)

In the above equation, we obtain explicit representation for the generating function of
Hermite-Chebyshev polynomials of 2 variables in the form
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∞∑
n=0

HUn(x)tn = (1− 4xt+ ytm)−12F0

[
1

2
, 1;−;

16ytm

(1− 4xt− ytm)2

]
. (3.3)

When m = 2, y = −1 and x is replaced by 2x then (3.2) gives a known result of Batahan
and Shehata [2,p.53(3.2)].

∞∑
n=0

HUn(x)tn = (1 + yt2)−1
∞∑
n=0

(
2t

1 + yt2

)n
Hn(x). (3.4)

Remark 3.1. For y = −1, m = 2 in equation (3.4), the result reduces to known result of
Batahan and Shehata [2,p.53(3.3)].

The following theorem presents a representation for the Hermite-Chebyshev polynomials
of 2 variables and reduces to the operational rule.

Theorem 3.1. The Hermite-Chebyshev polynomials of 2 variables satisfy the following
representation

HU
m
n (x, y) = exp

(
y

4

dm

dxm

)
Un(2x). (3.5)

Proof. From (3.1), we get

HU
m
n (x, y) =

[ n
m ]∑
k=0

yk(n−mk + k)!(2)n−mk

k!(n−mk)!
Hm
n−mk(x, y)

= exp

(
y

4

dm

dxm

)
Un(2x).

�

Remark 3.2. For y = −1 and m = 2, in equation (3.5), the result reduces to known result
of Batahan et al[2,p.54,Eq.(3.5)].
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