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p-SEMISIMPLE NEUTROSOPHIC QUADRUPLE BCI-ALGEBRAS AND
NEUTROSOPHIC QUADRUPLE p-IDEALS

G. MUHIUDDIN∗ AND YOUNG BAE JUN

ABSTRACT. Characterizations of neutrosophic quadruple BCI-algebra are considered.
Conditions for the neutrosophic quadruple BCI-set to be a p-semisimple BCI-algebra
are provided. A condition for a subalgebra to be an ideal in neutrosophic quadruple BCI-
algebra is given. Conditions for the set NQ(A,B) to be a neutrosophic quadruple closed
ideal and neutrosophic quadruple p-ideal are discussed. Characterizations of neutrosophic
quadruple p-ideal are considered.

1. INTRODUCTION

As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy
set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is developed
by Smarandache ([16], [17] and [18]). Neutrosophic algebraic structures in BCK/BCI-
algebras are discussed in the papers [3], [7], [8], [9], [10], [12], [14], [15] and [20].
Smarandache [19] considered an entry (i.e., a number, an idea, an object etc.) which is
represented by a known part (a) and an unknown part (bT, cI, dF ) where T, I, F have
their usual neutrosophic logic meanings and a, b, c, d are real or complex numbers, and
then he introduced the concept of neutrosophic quadruple numbers. Neutrosophic quadru-
ple algebraic structures and hyperstructures are discussed in [1] and [2]. Jun et al. [11]
used neutrosophic quadruple numbers based on a set, and constructed neutrosophic quadru-
ple BCK/BCI-algebras. They investigated several properties, and considered ideal and
positive implicative ideal in neutrosophic quadruple BCK-algebra, and closed ideal in
neutrosophic quadruple BCI-algebra. Given subsets A and B of a neutrosophic quadru-
ple BCK/BCI-algebra, they considered sets NQ(A,B) which consists of neutrosophic
quadruple BCK/BCI-numbers with a condition. They provided conditions for the set
NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra,
and the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra.
They gave an example to show that the set {0̃} is not a positive implicative ideal in a neu-
trosophic quadruple BCK-algebra, and then they considered conditions for the set {0̃} to
be a positive implicative ideal in a neutrosophic quadruple BCK-algebra.
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In this paper, we consider characterizations of neutrosophic quadruple BCI-algebra,
and give conditions for the neutrosophic quadruple BCI-set to be a p-semisimple BCI-
algebra. We provide a condition for a subalgebra to be an ideal in neutrosophic quadruple
BCI-algebra, and provide conditions for the set NQ(A,B) to be a neutrosophic quadru-
ple closed ideal and neutrosophic quadruple p-ideal. We disuss characterizations of neu-
trosophic quadruple p-ideal.

2. PRELIMINARIES

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki
(see [5] and [6]) and was extensively investigated by several researchers.

By a BCI-algebra, we mean a set S with a special element 0 and a binary operation ∗
that satisfies the following conditions:

(I) (∀x, y, z ∈ S) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
(II) (∀x, y ∈ S) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ S) (x ∗ x = 0),
(IV) (∀x, y ∈ S) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra S satisfies the following identity:

(V) (∀x ∈ S) (0 ∗ x = 0),

then S is called a BCK-algebra. Any BCK/BCI-algebra S satisfies the following con-
ditions:

(∀x ∈ S) (x ∗ 0 = x) , (2.1)
(∀x, y, z ∈ S) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)
(∀x, y, z ∈ S) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)
(∀x, y, z ∈ S) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

where x ≤ y if and only if x ∗ y = 0.
Any BCI-algebra S satisfies the following conditions (see [4]):

(∀x, y ∈ S)(x ∗ (x ∗ (x ∗ y)) = x ∗ y), (2.5)

(∀x, y ∈ S)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)), (2.6)

(∀x, y ∈ S)(0 ∗ (0 ∗ (x ∗ y)) = (0 ∗ y) ∗ (0 ∗ x)). (2.7)

A BCI-algebra S is said to be p-semisimple (see [4]) if 0 ∗ (0 ∗ x) = x for all x ∈ S.
Every p-semisimple BCI-algebra S satisfies (see [4]):

(∀x, y, z ∈ S)((x ∗ z) ∗ (y ∗ z) = x ∗ y). (2.8)

A BCI-algebra S is p-semisimple if and only if the following assertion is valid.

(∀x, y ∈ S)(x ∗ (x ∗ y) = y). (2.9)

An element a in a BCI-algebra S is said to be minimal (see [4]) if the following asser-
tion is valid.

(∀x ∈ S)(x ∗ a = 0 ⇒ x = a). (2.10)

A nonempty subset S of a BCK/BCI-algebra S is called a subalgebra of S if x∗y ∈ S
for all x, y ∈ S. A subset I of a BCK/BCI-algebra S is called an ideal of S if it satisfies:

0 ∈ I, (2.11)
(∀x ∈ S) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.12)
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A subset I of a BCI-algebra S is called a closed ideal (see [4]) of S if it is an ideal of
S which satisfies:

(∀x ∈ S)(x ∈ I ⇒ 0 ∗ x ∈ I). (2.13)

A subset I of a BCI-algebra S is called a p-ideal (see [21]) of S if it satisfies (2.11)
and

(∀x, y, z ∈ S)(y ∈ I, (x ∗ z) ∗ (y ∗ z) ∈ I ⇒ x ∈ I). (2.14)

We refer the reader to the books [4, 13] for further information regarding BCK/BCI-
algebras, and to the site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information
regarding neutrosophic set theory.

We consider neutrosophic quadruple numbers based on a set instead of real or complex
numbers.

Definition 2.1 ([11]). Let S be a set. A neutrosophic quadruple S-number is an ordered
quadruple (a, xT, yI, zF ) where a, x, y, z ∈ S and T, I, F have their usual neutrosophic
logic meanings.

The set of all neutrosophic quadruple S-numbers is denoted by NQ(S), that is,

NQ(S) := {(a, xT, yI, zF ) | a, x, y, z ∈ S},
and it is called the neutrosophic quadruple set based on S. If S is a BCK/BCI-algebra, a
neutrosophic quadruple S-number is called a neutrosophic quadruple BCK/BCI-number
and we say that NQ(S) is the neutrosophic quadruple BCK/BCI-set.

Let S be a BCK/BCI-algebra. We define a binary operation � on NQ(S) by

(a, xT, yI, zF )� (b, uT, vI, wF ) = (a ∗ b, (x ∗ u)T, (y ∗ v)I, (z ∗ w)F )

for all (a, xT, yI, zF ), (b, uT, vI, wF ) ∈ NQ(S). Given a1, a2, a3, a4 ∈ S, the neutro-
sophic quadruple BCK/BCI-number (a1, a2T, a3I, a4F ) is denoted by ã, that is,

ã = (a1, a2T, a3I, a4F ),

and the zero neutrosophic quadruple BCK/BCI-number (0, 0T, 0I, 0F ) is denoted by 0̃,
that is,

0̃ = (0, 0T, 0I, 0F ).

We define an order relation “�” and the equality “=” on NQ(S) as follows:

x̃� ỹ⇔ xi ≤ yi for i = 1, 2, 3, 4,
x̃ = ỹ⇔ xi = yi for i = 1, 2, 3, 4

for all x̃, ỹ ∈ NQ(S). It is easy to verify that “�” is an equivalence relation on NQ(S).

Theorem 2.1 ([11]). If S is a BCK/BCI-algebra, then (NQ(S);�, 0̃) is a BCK/BCI-
algebra.

We say that (NQ(S);�, 0̃) is a neutrosophic quadruple BCK/BCI-algebra, and it is
simply denoted by NQ(S).

Let S be a BCK/BCI-algebra. Given a, b ∈ S and nonempty subsets A and B of S,
consider the sets

NQ(a,B) := {(a, aT, yI, zF ) ∈ NQ(S) | y, z ∈ B},

NQ(A, b) := {(a, xT, bI, bF ) ∈ NQ(S) | a, x ∈ A},

NQ(A,B) := {(a, xT, yI, zF ) ∈ NQ(S) | a, x ∈ A; y, z ∈ B},
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NQ(A∗, B) :=
⋃
a∈A

NQ(a,B),

NQ(A,B∗) :=
⋃
b∈B

NQ(A, b),

and

NQ(A ∪B) := NQ(A, 0) ∪NQ(0, B).

The set NQ(A,A) is denoted by NQ(A).

3. p-SEMISIMPLE NEUTROSOPHIC QUADRUPLE BCI -ALGEBRAS AND IDEALS

Definition 3.1. Given nonempty subsets A and B of S, if NQ(A,B) is a (closed) ideal
(resp., p-ideal) of a neutrosophic quadruple BCI-algebra NQ(S), we say NQ(A,B) is a
neutrosophic quadruple (closed) ideal (resp., neutrosophic quadruple p-ideal) of NQ(S).

Theorem 3.1. Let NQ(S) be the neutrosophic quadruple set based on a set S. Then
(NQ(S);�, 0̃) is a neutrosophic quadruple BCI-algebra if and only if the following as-
sertions are valid.

(∀x̃, ỹ, z̃ ∈ NQ(S)) (((x̃� ỹ)� (x̃� z̃))� (z̃ � ỹ) = 0̃), (3.1)

(∀x̃, ỹ ∈ NQ(S)) (x̃� ỹ = 0̃, ỹ � x̃ = 0̃ ⇒ x̃ = ỹ), (3.2)

(∀x̃ ∈ NQ(S)) (x̃� 0̃ = x̃). (3.3)

Proof. Assume that (NQ(S);�, 0̃) is a neutrosophic quadruple BCI-algebra. Then two
conditions (3.1) and (3.2) are clearly true. Note that

x̃� x̃ = 0̃, (3.4)

(x̃� (x̃� ỹ))� ỹ = 0̃ (3.5)

for all x̃, ỹ ∈ NQ(S). Hence

(x̃� (x̃� 0̃))� 0̃ = 0̃ (3.6)

for all x̃ ∈ NQ(S), and it follows from (3.1), (3.4) and (3.6) that

0̃ = ((x̃� (x̃� 0̃))� (x̃� x̃))� (x̃� (x̃� 0̃))

= ((x̃� (x̃� 0̃))� 0̃)� (x̃� (x̃� 0̃))

= 0̃� (x̃� (x̃� 0̃)).

Using (3.2), we have x̃ � (x̃ � 0̃) = 0̃ for all x̃ ∈ NQ(S). Also we have (x̃ � 0̃) � x̃ =
(x̃� (x̃� x̃))� x̃ = 0̃ by (3.4) and (3.5). Therefore (3.3) is valid by using (3.2).

Conversely, suppose that the neutrosophic quadruple set NQ(S) based on a set S satis-
fies three conditions (3.1), (3.2) and (3.3). It is sufficient to show that two conditions (3.4)
and (3.5) are true. Let x̃, ỹ ∈ NQ(S). Using (3.3) and (3.1), we have

x̃� x̃ = (x̃� x̃)� 0̃ = ((x̃� 0̃)� (x̃� 0̃))� (0̃� 0̃) = 0̃

and

(x̃� (x̃� ỹ))� ỹ = ((x̃� 0̃)� (x̃� ỹ))� (ỹ � 0̃) = 0̃.

Therefore (NQ(S);�, 0̃) is a neutrosophic quadruple BCI-algebra. �

We consider conditions for the neutrosophic quadruple BCI-set NQ(S) to be a p-
semisimple neutrosophic quadruple BCI-algebra.
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Theorem 3.2. If S is a p-semisimple BCI-algebra, then (NQ(S);�, 0̃) is a p-semisimple
neutrosophic quadruple BCI-algebra.

Proof. Let S be a p-semisimple BCI-algebra. Then (NQ(S);�, 0̃) is a neutrosophic
quadruple BCI-algebra (see Theorem 2.1). For any x̃ = (x1, x2T, x3I, x4F ) ∈ NQ(S),
we have

0̃� (0̃� x̃) = (0 ∗ (0 ∗ x1), (0 ∗ (0 ∗ x2))T, (0 ∗ (0 ∗ x3))I, (0 ∗ (0 ∗ x4))F )

= (x1, x2T, x3I, x4F ) = x̃.

Hence (NQ(S);�, 0̃) is a p-semisimple neutrosophic quadruple BCI-algebra. �

Theorem 3.3. If the neutrosophic quadruple set NQ(S) based on a BCI-algebra S sat-
isfies the following assertion

(∀x̃ ∈ NQ(S))(0̃� x̃ = 0̃ ⇒ x̃ = 0̃), (3.7)

then (NQ(S);�, 0̃) is a p-semisimple neutrosophic quadruple BCI-algebra.

Proof. By Theorem 2.1, (NQ(S);�, 0̃) is a neutrosophic quadruple BCI-algebra. Thus

0̃� (x̃� ỹ) = (0̃� x̃)� (0̃� ỹ) (3.8)

0̃� (0̃� (0̃� x̃)) = 0̃� x̃ (3.9)

for all x̃, ỹ ∈ NQ(S). It follows from (3.4) that

0̃� (x̃� (0̃� (0̃� x̃))) = (0̃� x̃)� (0̃� (0̃� (0̃� x̃)))

= (0̃� x̃)� (0̃� x̃) = 0̃.

Hence x̃� (0̃� (0̃� x̃)) = 0̃ for all x̃ ∈ NQ(S) by (3.7). Since (0̃� (0̃� x̃))� x̃ = 0̃ for
all x̃ ∈ NQ(S), it follows from (3.2) that 0̃� (0̃� x̃) = x̃ for all x̃ ∈ NQ(S). Therefore
(NQ(S);�, 0̃) is a p-semisimple neutrosophic quadruple BCI-algebra. �

Corollary 3.4. If the neutrosophic quadruple set NQ(S) based on a BCI-algebra S
satisfies the following assertion

(∀x̃, ỹ ∈ NQ(S))(x̃� (0̃� ỹ) = ỹ � (0̃� x̃)), (3.10)

then (NQ(S);�, 0̃) is a p-semisimple neutrosophic quadruple BCI-algebra.

Proof. By Theorem 2.1, (NQ(S);�, 0̃) is a neutrosophic quadruple BCI-algebra. Let
x̃ ∈ NQ(S) be such that 0̃� x̃ = 0̃. Then

x̃ = x̃� 0̃ = x̃� (0̃� 0̃) = 0̃� (0̃� x̃) = 0̃� 0̃ = 0̃

by (3.3), (3.4) and (3.10). It follows from Theorem 3.3 that (NQ(S);�, 0̃) is a p-semisimple
neutrosophic quadruple BCI-algebra. �

In a neutrosophic quadruple BCI-algebra, any subalgebra may not be an ideal as seen
in the following example.

Example 3.2. Consider a BCI-algebra S = {0, 1, a} with the binary operation ∗, which
is given in Table 1.
Then the neutrosophic quadruple BCI-algebra NQ(S) has 81 elements. If we take

B := {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, 1̃0, 1̃1, 1̃2, 1̃3, 1̃4, 1̃5}
where

0̃ = (0, 0T, 0I, 0F ), 1̃ = (0, 0T, 0I, aF ), 2̃ = (0, 0T, aI, 0F ),
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TABLE 1. Cayley table for the binary operation “∗”

∗ 0 1 a
0 0 0 a
1 1 0 a
a a a 0

3̃ = (0, 0T, aI, aF ), 4̃ = (0, aT, 0I, 0F ), 5̃ = (0, aT, 0I, aF ),
6̃ = (0, aT, aI, 0F ), 7̃ = (0, aT, aI, aF ), 8̃ = (a, 0T, 0I, 0F ),
9̃ = (a, 0T, 0I, aF ), 1̃0 = (a, 0T, aI, 0F ), 1̃1 = (a, 0T, aI, aF ),
1̃2 = (a, aT, 0I, 0F ), 1̃3 = (a, aT, 0I, aF ),
1̃4 = (a, aT, aI, 0F ), 1̃5 = (a, aT, aI, aF ).

Then B is a subalgebra of NQ(S). But it is not an ideal of NQ(S). In fact, if we take
x̃ = (1, 1T, 0I, aF ) ∈ NQ(S) then

x̃� 1̃5 = (1, 1T, 0I, aF )� (a, aT, aI, aF ) = (a, aT, aI, 0F ) = 1̃4 ∈ B

But x̃ = (1, 1T, 0I, aF ) /∈ B.

We provide a condition for a subalgebra to be an ideal in neutrosophic quadruple BCI-
algebra.

Theorem 3.5. If NQ(S) is a neutrosophic quadruple BCI-algebra based on a p-semisimple
BCI-algebra S, then every subalgebra of NQ(S) is an ideal of NQ(S).

Proof. If S is a p-semisimple BCI-algebra, then (NQ(S);�, 0̃) is a p-semisimple neutro-
sophic quadruple BCI-algebra by Theorem 3.2. Let NQ(S) be a subalgebra of NQ(S). It
is clear that 0̃ ∈ NQ(S). Let x̃, ỹ ∈ NQ(S) be such that x̃�ỹ ∈ NQ(S) and ỹ ∈ NQ(S).
Then 0̃� ỹ ∈ NQ(S) and (x̃� ỹ)� (0̃� ỹ) ∈ NQ(S). Note that

((x̃� ỹ)� (0̃� ỹ))� x̃ = ((x̃� ỹ)� x̃)� (0̃� ỹ)

= ((x̃� ỹ)� (x̃� 0̃))� (0̃� ỹ)

= 0̃.

Since (NQ(S);�, 0̃) is p-semisimple, we have x̃ = (x̃� ỹ)� (0̃� ỹ) ∈ NQ(S) by (3.2).
Therefore NQ(S) is an ideal of NQ(S). �

Lemma 3.6 ([11]). If A and B are (closed) ideals of a BCI-algebra S, then the set
NQ(A,B) is a neutrosophic quadruple (closed) ideal of NQ(S).

Recall that there exist ideals A and B in a BCI-algebra S such that NQ(A,B) is not a
neutrosophic quadruple closed ideal of NQ(S) (see [11, Example 3]).

We provide conditions for the set NQ(A,B) to be a neutrosophic quadruple closed
ideal of NQ(S).

Theorem 3.7. Let A and B be ideals of a BCI-algebra S. Then the set NQ(A,B) is
a neutrosophic quadruple closed ideal of NQ(S) if and only if the following assertion is
valid.

(∀a ∈ A,∀b ∈ B)(0 ∗ a ∈ A, 0 ∗ b ∈ B). (3.11)

Proof. Assume that NQ(A,B) is a neutrosophic quadruple closed ideal of NQ(S) for
any ideals A and B of a BCI-algebra S. Let a1, a2 ∈ A and b1, b2 ∈ B be such that
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(a1, a2T, b1I, b2F ) ∈ NQ(A,B). Then

(0 ∗ a1, (0 ∗ a2)T, (0 ∗ b1)I, (0 ∗ b2)F )

= (0, 0T, 0I, 0F )� (a1, a2T, b1I, b2F ) ∈ NQ(A,B),

and so 0 ∗ a1, 0 ∗ a2 ∈ A and 0 ∗ b1, 0 ∗ b2 ∈ B. Therefore (3.11) is valid.
Conversely, let A and B be ideals of a BCI-algebra S satisfying the condition (3.11).

Then A and B are closed ideals of S. It follows from Lemma 3.6 that NQ(A,B) is a
neutrosophic quadruple closed ideal of NQ(S). �

Corollary 3.8. Given an ideal A of a BCI-algebra S, the set NQ(A) is a neutrosophic
quadruple closed ideal of NQ(S) if and only if 0 ∗ a ∈ A for all a ∈ A.

Theorem 3.9. For any ideals A and B of a BCI-algebra S, let m(A) and m(B) be the
set of all minimal elements of A and B with |m(A)| <∞ and |m(B)| <∞, respectively.
Then the set NQ(A,B) is a neutrosophic quadruple closed ideal of NQ(S).

Proof. For any a ∈ A, b ∈ B and n, k ∈ N, let an = 0∗(0∗a)n and bk = 0∗(0∗b)k. Then
an ∈ m(A) and bk ∈ m(B). Using (2.6) repeatedly, we have an = 0∗(0∗a)n = 0∗(0∗an)
and bk = 0 ∗ (0 ∗ b)k = 0 ∗ (0 ∗ bk). Hence

an ∗ an = (0 ∗ (0 ∗ an)) ∗ an = (0 ∗ an) ∗ (0 ∗ an) = 0 ∈ A

and

bk ∗ bk = (0 ∗ (0 ∗ bk)) ∗ bk = (0 ∗ bk) ∗ (0 ∗ bk) = 0 ∈ B.

Since A and B are ideals, it follows that an ∈ A and bk ∈ B. Since |m(A)| < ∞
and |m(B)| < ∞, there exist p, q ∈ N such that an+p = an and bk+q = bk, that is,
an ∗ (0 ∗ a)p = an and bk ∗ (0 ∗ b)q = bk. It follows that

ap = 0 ∗ (0 ∗ a)p = (an ∗ (0 ∗ a)p) ∗ an = an ∗ an = 0

and

bq = 0 ∗ (0 ∗ b)q = (bk ∗ (0 ∗ b)q) ∗ bk = bk ∗ bk = 0.

Thus ap−1∗(0∗a) = 0 and bq−1∗(0∗b) = 0, and so 0∗a = ap−1 ∈ A and 0∗b = bq−1 ∈ B.
Hence A and B are closed ideals of S. Therefore NQ(A,B) is a neutrosophic quadruple
closed ideal of NQ(S). by Lemma 3.6. �

4. NEUTROSOPHIC QUADRUPLE p-IDEALS

In what follows, let S be a BCI-algebra unless otherwise.

Question 1. If A and B are ideals of S, then is NQ(A,B) a neutrosophic quadruple
p-ideal of NQ(S)?

The following example shows that the answer to Question 1 is negative.

Example 4.1. Consider a BCI-algebra S = {0, 1, a, b}with the binary operation ∗, which
is given in Table 2.
Then the neutrosophic quadruple BCI-algebra NQ(S) has 256 elements. Consider ideals
A = {0, 1} and B = {0, a} of S. Note that B = {0, a} is not a p-ideal of S. Then

NQ(A,B) = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, 1̃0, 1̃1, 1̃2, 1̃3, 1̃4, 1̃5}
is a neutrosophic quadruple ideal of NQ(S) where

0̃ = (0, 0T, 0I, 0F ), 1̃ = (0, 0T, 0I, aF ), 2̃ = (0, 0T, aI, 0F ),
3̃ = (0, 0T, aI, aF ), 4̃ = (0, 1T, 0I, 0F ), 5̃ = (0, 1T, 0I, aF ),
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TABLE 2. Cayley table for the binary operation “∗”

∗ 0 1 a b
0 0 0 a a
1 1 0 b a
a a a 0 0
b b a 1 0

6̃ = (0, 1T, aI, 0F ), 7̃ = (0, 1T, aI, aF ), 8̃ = (1, 0T, 0I, 0F ),
9̃ = (1, 0T, 0I, aF ), 1̃0 = (1, 0T, aI, 0F ), 1̃1 = (1, 0T, aI, aF ),
1̃2 = (1, 1T, 0I, 0F ), 1̃3 = (1, 1T, 0I, aF ),
1̃4 = (1, 1T, aI, 0F ), 1̃5 = (1, 1T, aI, aF ).

If we take x̃ = (1, 1T, bI, bF ) ∈ NQ(S) and z̃ = (b, bT, bI, bF ) ∈ NQ(S), then

(x̃� z̃)� (7̃� z̃) = (a, aT, 0I, 0F )� (a, aT, 0I, 0F )

= (0, 0T, 0I, 0F ) = 0̃ ∈ NQ(A,B).

But x̃ /∈ NQ(A,B), and so NQ(A,B) is not a neutrosophic quadruple p-ideal of NQ(S).

We provide a condition for the set NQ(A,B) to be a neutrosophic quadruple p-ideal.

Theorem 4.1. Let A and B be ideals of S. If S is p-semisimple, then NQ(A,B) is a
neutrosophic quadruple p-ideal of NQ(S).

Proof. If A and B are ideals of S, then NQ(A,B) is an ideal of NQ(S) (see Lemma 3.6),
and so 0̃ ∈ NQ(A,B). Let x̃, ỹ, z̃ ∈ NQ(S) be such that (x̃� z̃)� (ỹ� z̃) ∈ NQ(A,B)
and ỹ ∈ NQ(A,B). Since S is p-semisimple, it follows from (2.8) that

(x1 ∗ y1, (x2 ∗ y2)T, (x3 ∗ y3)I, (x4 ∗ y4)F )

= ((x1 ∗ z1) ∗ (y1 ∗ z1), ((x2 ∗ z2) ∗ (y2 ∗ z2))T,
((x3 ∗ z3) ∗ (y3 ∗ z3))I, ((x4 ∗ z4) ∗ (y4 ∗ z4))F )

= (x1 ∗ z1, (x2 ∗ z2)T, (x3 ∗ z3)I, (x4 ∗ z4)F )�
(y1 ∗ z1, (y2 ∗ z2)T, (y3 ∗ z3)I, (y4 ∗ z4)F )

= ((x1, x2T, x3I, x4F )� (z1, z2T, z3I, z4F ))�
((y1, y2T, y3I, y4F )� (z1, z2T, z3I, z4F ))

= (x̃� z̃)� (ỹ � z̃) ∈ NQ(A,B).

Hence xi ∗ yi ∈ A and xj ∗ yj ∈ B for i = 1, 2 and j = 3, 4. Since y1, y2 ∈ A
and y3, y4 ∈ B, we have xi ∈ A and xj ∈ B for i = 1, 2 and j = 3, 4. Thus x̃ =
(x1, x2T, x3I, x4F ) ∈ NQ(A,B). Therefore NQ(A,B) is a neutrosophic quadruple p-
ideal of NQ(S). �

Corollary 4.2. If A is an ideal of a p-semisimple BCI-algebra S, then NQ(A) is a
neutrosophic quadruple p-ideal of NQ(S).

Corollary 4.3. If a BCI-algebra S satisfies:

(∀x, y, z ∈ S)((x ∗ y) ∗ z = x ∗ (y ∗ z)), (4.1)

then NQ(A,B) is a neutrosophic quadruple p-ideal of NQ(S) for all ideals A and B of
S.
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Proof. Using (2.3) and (4.1), we have

y ∗ (x ∗ (x ∗ y)) = (y ∗ x) ∗ (x ∗ y) = (y ∗ (x ∗ y)) ∗ x
= ((y ∗ x) ∗ y) ∗ x = (y ∗ x) ∗ (y ∗ x) = 0

for all x, y ∈ S. It follows from (II) and (IV) that x ∗ (x ∗ y) = y. Hence S is p-
semisimple, and therefore NQ(A,B) is a neutrosophic quadruple p-ideal of NQ(S) by
Theorem 4.1. �

Theorem 4.4. If A and B are p-ideals of S, then the set NQ(A,B) is a neutrosophic
quadruple p-ideal of NQ(S).

Proof. Assume that A and B are p-ideals of S. Obviously, 0̃ ∈ NQ(A,B). Let x̃ = (x1,
x2T, x3I, x4F ), ỹ = (y1, y2T, y3I, y4F ) and z̃ = (z1, z2T, z3I, z4F ) be elements of
NQ(S) such that (x̃� z̃)� (ỹ � z̃) ∈ NQ(A,B) and ỹ ∈ NQ(A,B). Then

(x̃� z̃)� (ỹ � z̃) = ((x1 ∗ z1) ∗ (y1 ∗ z1), ((x2 ∗ z2) ∗ (y2 ∗ z2))T,
((x3 ∗ z3) ∗ (y3 ∗ z3))I, ((x4 ∗ z4) ∗ (y4 ∗ z4))F ) ∈ NQ(A,B),

which implies that (x1∗z1)∗(y1∗z1) ∈ A, (x2∗z2)∗(y2∗z2) ∈ A, (x3∗z3)∗(y3∗z3) ∈ B
and (x4 ∗ z4) ∗ (y4 ∗ z4) ∈ B. Since ỹ ∈ NQ(A,B), we have y1, y2 ∈ A and y3, y4 ∈ B.
It follows from (2.14) that x1, x2 ∈ A and x3, x4 ∈ B. Hence x̃ = (x1, x2T, x3I, x4F ) ∈
NQ(A,B), and therefore NQ(A,B) is a neutrosophic quadruple p-ideal of NQ(S). �

Corollary 4.5. If A is a p-ideal of S, then NQ(A) is a neutrosophic quadruple p-ideal of
NQ(S).

Proposition 4.6. For any p-ideals A and B of S, the set NQ(A,B) satisfies the following
implication.

(∀x̃ ∈ NQ(S))(0̃� (0̃� x̃) ∈ NQ(A,B) ⇒ x̃ ∈ NQ(A,B)). (4.2)

Proof. If 0̃� (0̃� x̃) ∈ NQ(A,B), then

0̃� (0̃� x̃) = (0, 0T, 0I, 0F )� ((0, 0T, 0I, 0F )� (x1, x2T, x3I, x4F ))

= (0, 0T, 0I, 0F )� ((0 ∗ x1), (0 ∗ x2)T, (0 ∗ x3)I, (0 ∗ x4)F )

= (0 ∗ (0 ∗ x1), (0 ∗ (0 ∗ x2))T, (0 ∗ (0 ∗ x3))I, (0 ∗ (0 ∗ x4))F )

∈ NQ(A,B).

Hence (x1 ∗ x1) ∗ (0 ∗ x1) = 0 ∗ (0 ∗ x1) ∈ A, (x2 ∗ x2) ∗ (0 ∗ x2) = 0 ∗ (0 ∗ x2) ∈ A,
(x3 ∗ x3) ∗ (0 ∗ x3) = 0 ∗ (0 ∗ x3) ∈ B and (x4 ∗ x4) ∗ (0 ∗ x4) = 0 ∗ (0 ∗ x4) ∈ B. Since
A and B are p-ideals of S, it follows from (2.14) that x1, x2 ∈ A and x3, x4 ∈ B. Hence
x̃ = (x1, x2T, x3I, x4F ) ∈ NQ(A,B). �

Corollary 4.7. For any p-ideal A of S, the set NQ(A) satisfies the following implication.

(∀x̃ ∈ NQ(S))(0̃� (0̃� x̃) ∈ NQ(A) ⇒ x̃ ∈ NQ(A)). (4.3)

Theorem 4.8. Let A and B be ideals of S. Then NQ(A,B) is a neutrosophic quadruple
p-ideal of NQ(S) if and only if the following assertion is valid.

(x̃� z̃)� (ỹ � z̃) ∈ NQ(A,B) ⇒ x̃� ỹ ∈ NQ(A,B) (4.4)

for all x̃, ỹ, z̃ ∈ NQ(S).
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Proof. Assume that NQ(A,B) is a neutrosophic quadruple p-ideal of NQ(S). Let x̃, ỹ, z̃ ∈
NQ(S) be such that (x̃� z̃)� (ỹ � z̃) ∈ NQ(A,B). Then

((x̃� ỹ)� (x̃� ỹ))� (((x̃� z̃)� (ỹ � z̃))� (x̃� ỹ))

= 0̃� (((x̃� z̃)� (x̃� ỹ))� (ỹ � z̃))

= 0̃� 0̃ = 0̃ ∈ NQ(A,B),

and so x̃�ỹ ∈ NQ(A,B) since NQ(A,B) is a neutrosophic quadruple p-ideal of NQ(S).
Conversely, let A and B be ideals of S such that the set NQ(A,B) satisfies the condi-

tion (4.4). Then NQ(A,B) is a neutrosophic quadruple ideal of NQ(S) by Lemma 3.6,
and so 0̃ ∈ NQ(A,B). Let x̃, ỹ, z̃ ∈ NQ(S) be such that (x̃� z̃)� (ỹ� z̃) ∈ NQ(A,B)
and ỹ ∈ NQ(A,B). Then x̃ � ỹ ∈ NQ(A,B) by (4.4), and thus x̃ ∈ NQ(A,B).
Therefore NQ(A,B) is a neutrosophic quadruple p-ideal of NQ(S). �

Corollary 4.9. Given an ideal A of S, the set NQ(A) is a neutrosophic quadruple p-ideal
of NQ(S) if and only if the following assertion is valid.

(x̃� z̃)� (ỹ � z̃) ∈ NQ(A) ⇒ x̃� ỹ ∈ NQ(A) (4.5)

for all x̃, ỹ, z̃ ∈ NQ(S).

Theorem 4.10. Let A and B be ideals of S such that

(∀x ∈ S)(0 ∗ (0 ∗ x) ∈ A (resp., B)⇒ x ∈ A (resp., B)). (4.6)

Then NQ(A,B) is a neutrosophic quadruple p-ideal of NQ(S).

Proof. Let x, y, z ∈ S be such that (x ∗ z) ∗ (y ∗ z) ∈ A (resp., B) and y ∈ A (resp., B).
Then

(0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z)))) ∗ ((x ∗ z) ∗ (y ∗ z))
= (0 ∗ ((x ∗ z) ∗ (y ∗ z))) ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z)))
= 0 ∈ A (resp., B).

and so 0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))) ∈ A (resp., B) since A and B are ideals of S. Now we
have

0 ∗ (0 ∗ (x ∗ y)) = (0 ∗ y) ∗ (0 ∗ x) = (((0 ∗ z) ∗ (0 ∗ z)) ∗ y) ∗ (0 ∗ x)
= (((0 ∗ (0 ∗ z)) ∗ z) ∗ y) ∗ (0 ∗ x) = (((0 ∗ y) ∗ (0 ∗ z)) ∗ z) ∗ (0 ∗ x)
= ((0 ∗ (y ∗ z)) ∗ z) ∗ (0 ∗ x) = ((0 ∗ z) ∗ (0 ∗ x)) ∗ (y ∗ z)
= ((0 ∗ (0 ∗ (0 ∗ z))) ∗ (0 ∗ x)) ∗ (y ∗ z)
= ((0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ z))) ∗ (y ∗ z)
= (0 ∗ ((0 ∗ x) ∗ (0 ∗ z))) ∗ (y ∗ z) = (0 ∗ (0 ∗ (x ∗ z))) ∗ (y ∗ z)
= (0 ∗ (y ∗ z)) ∗ (0 ∗ (x ∗ z)) = (0 ∗ (0 ∗ (0 ∗ (y ∗ z)))) ∗ (0 ∗ (x ∗ z))
= (0 ∗ (0 ∗ (x ∗ z))) ∗ (0 ∗ (0 ∗ (y ∗ z))) = 0 ∗ ((0 ∗ (x ∗ z)) ∗ (0 ∗ (y ∗ z)))
= 0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))) ∈ A (resp., B).

It follows from (4.6) that x ∗ y ∈ A (resp., B). Hence x ∈ A (resp., B). This shows that
A and B are p-ideals of S. Therefore NQ(A,B) is a neutrosophic quadruple p-ideal of
NQ(S) by Theorem 4.4. �

Corollary 4.11. Let A be an ideal of S such that

(∀x ∈ S)(0 ∗ (0 ∗ x) ∈ A⇒ x ∈ A). (4.7)
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Then NQ(A) is a neutrosophic quadruple p-ideal of NQ(S).

5. CONCLUSION

In this paper, we consider characterizations of neutrosophic quadruple BCI-algebra,
and give conditions for the neutrosophic quadruple BCI-set to be a p-semisimple BCI-
algebra. Futhermore, we provide a condition for a subalgebra to be an ideal in neutrosophic
quadruple BCI-algebra, and provide conditions for the set NQ(A,B) to be a neutrosophic
quadruple closed ideal and neutrosophic quadruple p-ideal. We hope that this work will
provide a deep impact on the upcoming research in this field and other related areas to
open up new horizons of interest and innovations. Indeed, this work may serve as a foun-
dation for further study of neutrosophic subalgebras in BCK/BCI-algebras. To extend
these results, one can further study the neutrosophic set theory of different algebras such as
MTL-algerbas, BL-algebras, MV-algebras, EQ-algebras, R0-algebras and Q-algebras etc.
One may also apply this concept to study some applications in many fields like decision
making, knowledge base systems, medical diagnosis, data analysis and graph theory etc.
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