

# $p$-SEMISIMPLE NEUTROSOPHIC QUADRUPLE $B C I$-ALGEBRAS AND NEUTROSOPHIC QUADRUPLE $p$-IDEALS 

G. MUHIUDDIN* AND YOUNG BAE JUN


#### Abstract

Characterizations of neutrosophic quadruple $B C I$-algebra are considered. Conditions for the neutrosophic quadruple $B C I$-set to be a $p$-semisimple $B C I$-algebra are provided. A condition for a subalgebra to be an ideal in neutrosophic quadruple $B C I$ algebra is given. Conditions for the set $N Q(A, B)$ to be a neutrosophic quadruple closed ideal and neutrosophic quadruple $p$-ideal are discussed. Characterizations of neutrosophic quadruple $p$-ideal are considered.


## 1. Introduction

As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is developed by Smarandache ([16], [17] and [18]). Neutrosophic algebraic structures in $B C K / B C I$ algebras are discussed in the papers [3], [7], [8], [9], [10], [12], [14], [15] and [20]. Smarandache [19] considered an entry (i.e., a number, an idea, an object etc.) which is represented by a known part $(a)$ and an unknown part $(b T, c I, d F)$ where $T, I, F$ have their usual neutrosophic logic meanings and $a, b, c, d$ are real or complex numbers, and then he introduced the concept of neutrosophic quadruple numbers. Neutrosophic quadruple algebraic structures and hyperstructures are discussed in [1] and [2]. Jun et al. [11] used neutrosophic quadruple numbers based on a set, and constructed neutrosophic quadruple $B C K / B C I$-algebras. They investigated several properties, and considered ideal and positive implicative ideal in neutrosophic quadruple $B C K$-algebra, and closed ideal in neutrosophic quadruple $B C I$-algebra. Given subsets $A$ and $B$ of a neutrosophic quadruple $B C K / B C I$-algebra, they considered sets $N Q(A, B)$ which consists of neutrosophic quadruple $B C K / B C I$-numbers with a condition. They provided conditions for the set $N Q(A, B)$ to be a (positive implicative) ideal of a neutrosophic quadruple $B C K$-algebra, and the set $N Q(A, B)$ to be a (closed) ideal of a neutrosophic quadruple $B C I$-algebra. They gave an example to show that the set $\{\tilde{0}\}$ is not a positive implicative ideal in a neutrosophic quadruple $B C K$-algebra, and then they considered conditions for the set $\{\tilde{0}\}$ to be a positive implicative ideal in a neutrosophic quadruple $B C K$-algebra.

[^0]In this paper, we consider characterizations of neutrosophic quadruple $B C I$-algebra, and give conditions for the neutrosophic quadruple $B C I$-set to be a $p$-semisimple $B C I$ algebra. We provide a condition for a subalgebra to be an ideal in neutrosophic quadruple $B C I$-algebra, and provide conditions for the set $N Q(A, B)$ to be a neutrosophic quadruple closed ideal and neutrosophic quadruple $p$-ideal. We disuss characterizations of neutrosophic quadruple $p$-ideal.

## 2. Preliminaries

A $B C K / B C I$-algebra is an important class of logical algebras introduced by K. Iséki (see [5] and [6]) and was extensively investigated by several researchers.

By a $B C I$-algebra, we mean a set $S$ with a special element 0 and a binary operation $*$ that satisfies the following conditions:
(I) $(\forall x, y, z \in S)(((x * y) *(x * z)) *(z * y)=0)$,
(II) $(\forall x, y \in S)((x *(x * y)) * y=0)$,
(III) $(\forall x \in S)(x * x=0)$,
(IV) $(\forall x, y \in S)(x * y=0, y * x=0 \Rightarrow x=y)$.

If a $B C I$-algebra $S$ satisfies the following identity:
(V) $(\forall x \in S)(0 * x=0)$,
then $S$ is called a $B C K$-algebra. Any $B C K / B C I$-algebra $S$ satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in S)(x * 0=x)  \tag{2.1}\\
& (\forall x, y, z \in S)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x)  \tag{2.2}\\
& (\forall x, y, z \in S)((x * y) * z=(x * z) * y)  \tag{2.3}\\
& (\forall x, y, z \in S)((x * z) *(y * z) \leq x * y) \tag{2.4}
\end{align*}
$$

where $x \leq y$ if and only if $x * y=0$.
Any $B C I$-algebra $S$ satisfies the following conditions (see [4]):

$$
\begin{align*}
& (\forall x, y \in S)(x *(x *(x * y))=x * y)  \tag{2.5}\\
& (\forall x, y \in S)(0 *(x * y)=(0 * x) *(0 * y))  \tag{2.6}\\
& (\forall x, y \in S)(0 *(0 *(x * y))=(0 * y) *(0 * x)) \tag{2.7}
\end{align*}
$$

A $B C I$-algebra $S$ is said to be $p$-semisimple (see [4]) if $0 *(0 * x)=x$ for all $x \in S$. Every $p$-semisimple $B C I$-algebra $S$ satisfies (see [4]):

$$
\begin{equation*}
(\forall x, y, z \in S)((x * z) *(y * z)=x * y) \tag{2.8}
\end{equation*}
$$

A $B C I$-algebra $S$ is $p$-semisimple if and only if the following assertion is valid.

$$
\begin{equation*}
(\forall x, y \in S)(x *(x * y)=y) \tag{2.9}
\end{equation*}
$$

An element $a$ in a $B C I$-algebra $S$ is said to be minimal (see [4]) if the following assertion is valid.

$$
\begin{equation*}
(\forall x \in S)(x * a=0 \Rightarrow x=a) \tag{2.10}
\end{equation*}
$$

A nonempty subset $S$ of a $B C K / B C I$-algebra $S$ is called a subalgebra of $S$ if $x * y \in S$ for all $x, y \in S$. A subset $I$ of a $B C K / B C I$-algebra $S$ is called an ideal of $S$ if it satisfies:

$$
\begin{align*}
& 0 \in I,  \tag{2.11}\\
& (\forall x \in S)(\forall y \in I)(x * y \in I \Rightarrow x \in I) . \tag{2.12}
\end{align*}
$$

A subset $I$ of a $B C I$-algebra $S$ is called a closed ideal (see [4]) of $S$ if it is an ideal of $S$ which satisfies:

$$
\begin{equation*}
(\forall x \in S)(x \in I \Rightarrow 0 * x \in I) \tag{2.13}
\end{equation*}
$$

A subset $I$ of a $B C I$-algebra $S$ is called a $p$-ideal (see [21]) of $S$ if it satisfies 2.11) and

$$
\begin{equation*}
(\forall x, y, z \in S)(y \in I,(x * z) *(y * z) \in I \Rightarrow x \in I) \tag{2.14}
\end{equation*}
$$

We refer the reader to the books [4, 13] for further information regarding $B C K / B C I$ algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

We consider neutrosophic quadruple numbers based on a set instead of real or complex numbers.
Definition 2.1 ([11]). Let $S$ be a set. A neutrosophic quadruple $S$-number is an ordered quadruple $(a, x T, y I, z F)$ where $a, x, y, z \in S$ and $T, I, F$ have their usual neutrosophic logic meanings.

The set of all neutrosophic quadruple $S$-numbers is denoted by $N Q(S)$, that is,

$$
N Q(S):=\{(a, x T, y I, z F) \mid a, x, y, z \in S\}
$$

and it is called the neutrosophic quadruple set based on $S$. If $S$ is a $B C K / B C I$-algebra, a neutrosophic quadruple $S$-number is called a neutrosophic quadruple $B C K / B C I$-number and we say that $N Q(S)$ is the neutrosophic quadruple $B C K / B C I$-set.

Let $S$ be a $B C K / B C I$-algebra. We define a binary operation $\odot$ on $N Q(S)$ by

$$
(a, x T, y I, z F) \odot(b, u T, v I, w F)=(a * b,(x * u) T,(y * v) I,(z * w) F)
$$

for all $(a, x T, y I, z F),(b, u T, v I, w F) \in N Q(S)$. Given $a_{1}, a_{2}, a_{3}, a_{4} \in S$, the neutrosophic quadruple $B C K / B C I$-number $\left(a_{1}, a_{2} T, a_{3} I, a_{4} F\right)$ is denoted by $\tilde{a}$, that is,

$$
\tilde{a}=\left(a_{1}, a_{2} T, a_{3} I, a_{4} F\right)
$$

and the zero neutrosophic quadruple $B C K / B C I$-number $(0,0 T, 0 I, 0 F)$ is denoted by $\tilde{0}$, that is,

$$
\tilde{0}=(0,0 T, 0 I, 0 F)
$$

We define an order relation " $<$ " and the equality " $=$ " on $N Q(S)$ as follows:

$$
\begin{aligned}
& \tilde{x}<\tilde{y} \Leftrightarrow x_{i} \leq y_{i} \text { for } i=1,2,3,4 \\
& \tilde{x}=\tilde{y} \Leftrightarrow x_{i}=y_{i} \text { for } i=1,2,3,4
\end{aligned}
$$

for all $\tilde{x}, \tilde{y} \in N Q(S)$. It is easy to verify that " $<$ " is an equivalence relation on $N Q(S)$.
Theorem $2.1([\boxed{11]})$. If $S$ is a $B C K / B C I$-algebra, then $(N Q(S) ; \odot, \tilde{0})$ is a $B C K / B C I$ algebra.

We say that $(N Q(S) ; \odot, \tilde{0})$ is a neutrosophic quadruple $B C K / B C I$-algebra, and it is simply denoted by $N Q(S)$.

Let $S$ be a $B C K / B C I$-algebra. Given $a, b \in S$ and nonempty subsets $A$ and $B$ of $S$, consider the sets

$$
\begin{gathered}
N Q(a, B):=\{(a, a T, y I, z F) \in N Q(S) \mid y, z \in B\}, \\
N Q(A, b):=\{(a, x T, b I, b F) \in N Q(S) \mid a, x \in A\}, \\
N Q(A, B):=\{(a, x T, y I, z F) \in N Q(S) \mid a, x \in A ; y, z \in B\},
\end{gathered}
$$

$$
\begin{aligned}
& N Q\left(A^{*}, B\right):=\bigcup_{a \in A} N Q(a, B) \\
& N Q\left(A, B^{*}\right):=\bigcup_{b \in B} N Q(A, b)
\end{aligned}
$$

and

$$
N Q(A \cup B):=N Q(A, 0) \cup N Q(0, B)
$$

The set $N Q(A, A)$ is denoted by $N Q(A)$.

## 3. $p$-SEMISIMPLE NEUTROSOPHIC QUADRUPLE $B C I$-ALGEBRAS AND IDEALS

Definition 3.1. Given nonempty subsets $A$ and $B$ of $S$, if $N Q(A, B)$ is a (closed) ideal (resp., $p$-ideal) of a neutrosophic quadruple $B C I$-algebra $N Q(S)$, we say $N Q(A, B)$ is a neutrosophic quadruple (closed) ideal (resp., neutrosophic quadruple p-ideal) of $N Q(S)$.
Theorem 3.1. Let $N Q(S)$ be the neutrosophic quadruple set based on a set $S$. Then $(N Q(S) ; \odot, \tilde{0})$ is a neutrosophic quadruple BCI-algebra if and only if the following assertions are valid.

$$
\begin{align*}
& (\forall \tilde{x}, \tilde{y}, \tilde{z} \in N Q(S))(((\tilde{x} \odot \tilde{y}) \odot(\tilde{x} \odot \tilde{z})) \odot(\tilde{z} \odot \tilde{y})=\tilde{0}),  \tag{3.1}\\
& (\forall \tilde{x}, \tilde{y} \in N Q(S))(\tilde{x} \odot \tilde{y}=\tilde{0}, \tilde{y} \odot \tilde{x}=\tilde{0} \Rightarrow \tilde{x}=\tilde{y}),  \tag{3.2}\\
& (\forall \tilde{x} \in N Q(S))(\tilde{x} \odot \tilde{0}=\tilde{x}) . \tag{3.3}
\end{align*}
$$

Proof. Assume that $(N Q(S) ; \odot, \tilde{0})$ is a neutrosophic quadruple $B C I$-algebra. Then two conditions (3.1) and 3.2) are clearly true. Note that

$$
\begin{align*}
& \tilde{x} \odot \tilde{x}=\tilde{0},  \tag{3.4}\\
& (\tilde{x} \odot(\tilde{x} \odot \tilde{y})) \odot \tilde{y}=\tilde{0} \tag{3.5}
\end{align*}
$$

for all $\tilde{x}, \tilde{y} \in N Q(S)$. Hence

$$
\begin{equation*}
(\tilde{x} \odot(\tilde{x} \odot \tilde{0})) \odot \tilde{0}=\tilde{0} \tag{3.6}
\end{equation*}
$$

for all $\tilde{x} \in N Q(S)$, and it follows from (3.1), (3.4) and (3.6) that

$$
\begin{aligned}
\tilde{0} & =((\tilde{x} \odot(\tilde{x} \odot \tilde{0})) \odot(\tilde{x} \odot \tilde{x})) \odot(\tilde{x} \odot(\tilde{x} \odot \tilde{0})) \\
& =((\tilde{x} \odot(\tilde{x} \odot \tilde{0})) \odot \tilde{0}) \odot(\tilde{x} \odot(\tilde{x} \odot \tilde{0})) \\
& =\tilde{0} \odot(\tilde{x} \odot(\tilde{x} \odot \tilde{0})) .
\end{aligned}
$$

Using (3.2), we have $\tilde{x} \odot(\tilde{x} \odot \tilde{0})=\tilde{0}$ for all $\tilde{x} \in N Q(S)$. Also we have $(\tilde{x} \odot \tilde{0}) \odot \tilde{x}=$ $(\tilde{x} \odot(\tilde{x} \odot \tilde{x})) \odot \tilde{x}=\tilde{0}$ by (3.4) and (3.5). Therefore (3.3) is valid by using (3.2).

Conversely, suppose that the neutrosophic quadruple set $N Q(S)$ based on a set $S$ satisfies three conditions (3.1), (3.2) and (3.3). It is sufficient to show that two conditions (3.4) and (3.5) are true. Let $\tilde{x}, \tilde{y} \in N Q(S)$. Using (3.3) and (3.1), we have

$$
\tilde{x} \odot \tilde{x}=(\tilde{x} \odot \tilde{x}) \odot \tilde{0}=((\tilde{x} \odot \tilde{0}) \odot(\tilde{x} \odot \tilde{0})) \odot(\tilde{0} \odot \tilde{0})=\tilde{0}
$$

and

$$
(\tilde{x} \odot(\tilde{x} \odot \tilde{y})) \odot \tilde{y}=((\tilde{x} \odot \tilde{0}) \odot(\tilde{x} \odot \tilde{y})) \odot(\tilde{y} \odot \tilde{0})=\tilde{0}
$$

Therefore $(N Q(S) ; \odot, \tilde{0})$ is a neutrosophic quadruple $B C I$-algebra.
We consider conditions for the neutrosophic quadruple $B C I$-set $N Q(S)$ to be a $p$ semisimple neutrosophic quadruple $B C I$-algebra.

Theorem 3.2. If $S$ is a p-semisimple BCI-algebra, then $(N Q(S) ; \odot, \tilde{0})$ is a p-semisimple neutrosophic quadruple BCI-algebra.
Proof. Let $S$ be a $p$-semisimple $B C I$-algebra. Then $(N Q(S) ; \odot, \tilde{0})$ is a neutrosophic quadruple $B C I$-algebra (see Theorem 2.1). For any $\tilde{x}=\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right) \in N Q(S)$, we have

$$
\begin{aligned}
\tilde{0} \odot(\tilde{0} \odot \tilde{x}) & =\left(0 *\left(0 * x_{1}\right),\left(0 *\left(0 * x_{2}\right)\right) T,\left(0 *\left(0 * x_{3}\right)\right) I,\left(0 *\left(0 * x_{4}\right)\right) F\right) \\
& =\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right)=\tilde{x}
\end{aligned}
$$

Hence $(N Q(S) ; \odot, \tilde{0})$ is a $p$-semisimple neutrosophic quadruple $B C I$-algebra.
Theorem 3.3. If the neutrosophic quadruple set $N Q(S)$ based on a BCI-algebra $S$ satisfies the following assertion

$$
\begin{equation*}
(\forall \tilde{x} \in N Q(S))(\tilde{0} \odot \tilde{x}=\tilde{0} \Rightarrow \tilde{x}=\tilde{0}) \tag{3.7}
\end{equation*}
$$

then $(N Q(S) ; \odot, \tilde{0})$ is a p-semisimple neutrosophic quadruple BCI-algebra.
Proof. By Theorem 2.1, $(N Q(S) ; \odot, \tilde{0})$ is a neutrosophic quadruple $B C I$-algebra. Thus

$$
\begin{align*}
& \tilde{0} \odot(\tilde{x} \odot \tilde{y})=(\tilde{0} \odot \tilde{x}) \odot(\tilde{0} \odot \tilde{y})  \tag{3.8}\\
& \tilde{0} \odot(\tilde{0} \odot(\tilde{0} \odot \tilde{x}))=\tilde{0} \odot \tilde{x} \tag{3.9}
\end{align*}
$$

for all $\tilde{x}, \tilde{y} \in N Q(S)$. It follows from (3.4) that

$$
\begin{aligned}
\tilde{0} \odot(\tilde{x} \odot(\tilde{0} \odot(\tilde{0} \odot \tilde{x}))) & =(\tilde{0} \odot \tilde{x}) \odot(\tilde{0} \odot(\tilde{0} \odot(\tilde{0} \odot \tilde{x}))) \\
& =(\tilde{0} \odot \tilde{x}) \odot(\tilde{0} \odot \tilde{x})=\tilde{0} .
\end{aligned}
$$

Hence $\tilde{x} \odot(\tilde{0} \odot(\tilde{0} \odot \tilde{x}))=\tilde{0}$ for all $\tilde{x} \in N Q(S)$ by 3.7. Since $(\tilde{0} \odot(\tilde{0} \odot \tilde{x})) \odot \tilde{x}=\tilde{0}$ for all $\tilde{x} \in N Q(S)$, it follows from (3.2) that $\tilde{0} \odot(\tilde{0} \odot \tilde{x})=\tilde{x}$ for all $\tilde{x} \in N Q(S)$. Therefore $(N Q(S) ; \odot, \tilde{0})$ is a $p$-semisimple neutrosophic quadruple $B C I$-algebra.

Corollary 3.4. If the neutrosophic quadruple set $N Q(S)$ based on a BCI-algebra $S$ satisfies the following assertion

$$
\begin{equation*}
(\forall \tilde{x}, \tilde{y} \in N Q(S))(\tilde{x} \odot(\tilde{0} \odot \tilde{y})=\tilde{y} \odot(\tilde{0} \odot \tilde{x})) \tag{3.10}
\end{equation*}
$$

then $(N Q(S) ; \odot, \tilde{0})$ is a p-semisimple neutrosophic quadruple BCI-algebra.
Proof. By Theorem 2.1, $(N Q(S) ; \odot, \tilde{0})$ is a neutrosophic quadruple $B C I$-algebra. Let $\tilde{x} \in N Q(S)$ be such that $\tilde{0} \odot \tilde{x}=\tilde{0}$. Then

$$
\tilde{x}=\tilde{x} \odot \tilde{0}=\tilde{x} \odot(\tilde{0} \odot \tilde{0})=\tilde{0} \odot(\tilde{0} \odot \tilde{x})=\tilde{0} \odot \tilde{0}=\tilde{0}
$$

by (3.3), (3.4) and 3.10. It follows from Theorem 3.3 that $(N Q(S) ; \odot, \tilde{0})$ is a $p$-semisimple neutrosophic quadruple $B C I$-algebra.

In a neutrosophic quadruple $B C I$-algebra, any subalgebra may not be an ideal as seen in the following example.

Example 3.2. Consider a $B C I$-algebra $S=\{0,1, a\}$ with the binary operation $*$, which is given in Table 1 .
Then the neutrosophic quadruple $B C I$-algebra $N Q(S)$ has 81 elements. If we take

$$
B:=\{\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}, \tilde{5}, \tilde{6}, \tilde{7}, \tilde{8}, \tilde{9}, \tilde{10}, \tilde{11}, \tilde{12}, \tilde{13}, \tilde{14}, \tilde{15}\}
$$

where
$\tilde{0}=(0,0 T, 0 I, 0 F), \tilde{1}=(0,0 T, 0 I, a F), \tilde{2}=(0,0 T, a I, 0 F)$,

TABLE 1. Cayley table for the binary operation "*"

| $*$ | 0 | 1 | $a$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $a$ |
| 1 | 1 | 0 | $a$ |
| $a$ | $a$ | $a$ | 0 |

$$
\begin{aligned}
& \tilde{3}=(0,0 T, a I, a F), \tilde{4}=(0, a T, 0 I, 0 F), \tilde{5}=(0, a T, 0 I, a F), \\
& \tilde{6}=(0, a T, a I, 0 F), \tilde{7}=(0, a T, a I, a F), \tilde{8}=(a, 0 T, 0 I, 0 F), \\
& \tilde{9}=(a, 0 T, 0 I, a F), \tilde{10}=(a, 0 T, a I, 0 F), \tilde{11}=(a, 0 T, a I, a F), \\
& \tilde{12}=(a, a T, 0 I, 0 F), \tilde{13}=(a, a T, 0 I, a F), \\
& \tilde{14}=(a, a T, a I, 0 F), \tilde{15}=(a, a T, a I, a F) .
\end{aligned}
$$

Then $B$ is a subalgebra of $N Q(S)$. But it is not an ideal of $N Q(S)$. In fact, if we take $\tilde{x}=(1,1 T, 0 I, a F) \in N Q(S)$ then

$$
\tilde{x} \odot \tilde{15}=(1,1 T, 0 I, a F) \odot(a, a T, a I, a F)=(a, a T, a I, 0 F)=\tilde{14} \in B
$$

But $\tilde{x}=(1,1 T, 0 I, a F) \notin B$.
We provide a condition for a subalgebra to be an ideal in neutrosophic quadruple $B C I$ algebra.
Theorem 3.5. If $N Q(S)$ is a neutrosophic quadruple BCI-algebra based on a p-semisimple $B C I$-algebra $S$, then every subalgebra of $N Q(S)$ is an ideal of $N Q(S)$.

Proof. If $S$ is a $p$-semisimple $B C I$-algebra, then $(N Q(S) ; \odot, \tilde{0})$ is a $p$-semisimple neutrosophic quadruple $B C I$-algebra by Theorem 3.2 . Let $N Q(S)$ be a subalgebra of $N Q(S)$. It is clear that $\tilde{0} \in N Q(S)$. Let $\tilde{x}, \tilde{y} \in N Q(S)$ be such that $\tilde{x} \odot \tilde{y} \in N Q(S)$ and $\tilde{y} \in N Q(S)$. Then $\tilde{0} \odot \tilde{y} \in N Q(S)$ and $(\tilde{x} \odot \tilde{y}) \odot(\tilde{0} \odot \tilde{y}) \in N Q(S)$. Note that

$$
\begin{aligned}
((\tilde{x} \odot \tilde{y}) \odot(\tilde{0} \odot \tilde{y})) \odot \tilde{x} & =((\tilde{x} \odot \tilde{y}) \odot \tilde{x}) \odot(\tilde{0} \odot \tilde{y}) \\
& =((\tilde{x} \odot \tilde{y}) \odot(\tilde{x} \odot \tilde{0})) \odot(\tilde{0} \odot \tilde{y}) \\
& =\tilde{0} .
\end{aligned}
$$

Since $(N Q(S) ; \odot, \tilde{0})$ is $p$-semisimple, we have $\tilde{x}=(\tilde{x} \odot \tilde{y}) \odot(\tilde{0} \odot \tilde{y}) \in N Q(S)$ by 3.2). Therefore $N Q(S)$ is an ideal of $N Q(S)$.

Lemma 3.6 ([11]). If $A$ and $B$ are (closed) ideals of a $B C I$-algebra $S$, then the set $N Q(A, B)$ is a neutrosophic quadruple (closed) ideal of $N Q(S)$.

Recall that there exist ideals $A$ and $B$ in a $B C I$-algebra $S$ such that $N Q(A, B)$ is not a neutrosophic quadruple closed ideal of $N Q(S)$ (see [11, Example 3]).

We provide conditions for the set $N Q(A, B)$ to be a neutrosophic quadruple closed ideal of $N Q(S)$.

Theorem 3.7. Let $A$ and $B$ be ideals of a BCI-algebra $S$. Then the set $N Q(A, B)$ is a neutrosophic quadruple closed ideal of $N Q(S)$ if and only if the following assertion is valid.

$$
\begin{equation*}
(\forall a \in A, \forall b \in B)(0 * a \in A, 0 * b \in B) \tag{3.11}
\end{equation*}
$$

Proof. Assume that $N Q(A, B)$ is a neutrosophic quadruple closed ideal of $N Q(S)$ for any ideals $A$ and $B$ of a $B C I$-algebra $S$. Let $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$ be such that
$\left(a_{1}, a_{2} T, b_{1} I, b_{2} F\right) \in N Q(A, B)$. Then

$$
\begin{aligned}
& \left(0 * a_{1},\left(0 * a_{2}\right) T,\left(0 * b_{1}\right) I,\left(0 * b_{2}\right) F\right) \\
& =(0,0 T, 0 I, 0 F) \odot\left(a_{1}, a_{2} T, b_{1} I, b_{2} F\right) \in N Q(A, B)
\end{aligned}
$$

and so $0 * a_{1}, 0 * a_{2} \in A$ and $0 * b_{1}, 0 * b_{2} \in B$. Therefore (3.11) is valid.
Conversely, let $A$ and $B$ be ideals of a $B C I$-algebra $S$ satisfying the condition (3.11). Then $A$ and $B$ are closed ideals of $S$. It follows from Lemma 3.6 that $N Q(A, B)$ is a neutrosophic quadruple closed ideal of $N Q(S)$.

Corollary 3.8. Given an ideal $A$ of a BCI-algebra $S$, the set $N Q(A)$ is a neutrosophic quadruple closed ideal of $N Q(S)$ if and only if $0 * a \in A$ for all $a \in A$.

Theorem 3.9. For any ideals $A$ and $B$ of a BCI-algebra $S$, let $m(A)$ and $m(B)$ be the set of all minimal elements of $A$ and $B$ with $|m(A)|<\infty$ and $|m(B)|<\infty$, respectively. Then the set $N Q(A, B)$ is a neutrosophic quadruple closed ideal of $N Q(S)$.
Proof. For any $a \in A, b \in B$ and $n, k \in \mathbb{N}$, let $a_{n}=0 *(0 * a)^{n}$ and $b_{k}=0 *(0 * b)^{k}$. Then $a_{n} \in m(A)$ and $b_{k} \in m(B)$. Using 2.6 repeatedly, we have $a_{n}=0 *(0 * a)^{n}=0 *\left(0 * a^{n}\right)$ and $b_{k}=0 *(0 * b)^{k}=0 *\left(0 * b^{k}\right)$. Hence

$$
a_{n} * a^{n}=\left(0 *\left(0 * a^{n}\right)\right) * a^{n}=\left(0 * a^{n}\right) *\left(0 * a^{n}\right)=0 \in A
$$

and

$$
b_{k} * b^{k}=\left(0 *\left(0 * b^{k}\right)\right) * b^{k}=\left(0 * b^{k}\right) *\left(0 * b^{k}\right)=0 \in B
$$

Since $A$ and $B$ are ideals, it follows that $a_{n} \in A$ and $b_{k} \in B$. Since $|m(A)|<\infty$ and $|m(B)|<\infty$, there exist $p, q \in \mathbb{N}$ such that $a_{n+p}=a_{n}$ and $b_{k+q}=b_{k}$, that is, $a_{n} *(0 * a)^{p}=a_{n}$ and $b_{k} *(0 * b)^{q}=b_{k}$. It follows that

$$
a_{p}=0 *(0 * a)^{p}=\left(a_{n} *(0 * a)^{p}\right) * a_{n}=a_{n} * a_{n}=0
$$

and

$$
b_{q}=0 *(0 * b)^{q}=\left(b_{k} *(0 * b)^{q}\right) * b_{k}=b_{k} * b_{k}=0
$$

Thus $a_{p-1} *(0 * a)=0$ and $b_{q-1} *(0 * b)=0$, and so $0 * a=a_{p-1} \in A$ and $0 * b=b_{q-1} \in B$. Hence $A$ and $B$ are closed ideals of $S$. Therefore $N Q(A, B)$ is a neutrosophic quadruple closed ideal of $N Q(S)$. by Lemma 3.6

## 4. NEUTROSOPHIC QUADRUPLE $p$-IDEALS

In what follows, let $S$ be a $B C I$-algebra unless otherwise.
Question 1. If $A$ and $B$ are ideals of $S$, then is $N Q(A, B)$ a neutrosophic quadruple p-ideal of $N Q(S)$ ?

The following example shows that the answer to Question 1 is negative.
Example 4.1. Consider a $B C I$-algebra $S=\{0,1, a, b\}$ with the binary operation $*$, which is given in Table 2 .
Then the neutrosophic quadruple $B C I$-algebra $N Q(S)$ has 256 elements. Consider ideals $A=\{0,1\}$ and $B=\{0, a\}$ of $S$. Note that $B=\{0, a\}$ is not a $p$-ideal of $S$. Then

$$
N Q(A, B)=\{\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}, \tilde{5}, \tilde{6}, \tilde{7}, \tilde{8}, \tilde{9}, \tilde{10}, \tilde{1}, \tilde{12}, \tilde{13}, \tilde{14}, \tilde{15}\}
$$

is a neutrosophic quadruple ideal of $N Q(S)$ where
$\tilde{0}=(0,0 T, 0 I, 0 F), \underset{\sim}{\tilde{1}}=(0,0 T, 0 I, a F), \underset{\tilde{2}}{\tilde{5}}=(0,0 T, a I, 0 F)$,
$\tilde{3}=(0,0 T, a I, a F), \tilde{4}=(0,1 T, 0 I, 0 F), \tilde{5}=(0,1 T, 0 I, a F)$,

TABLE 2. Cayley table for the binary operation "*"

| $*$ | 0 | 1 | $a$ | $b$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $a$ | $a$ |
| 1 | 1 | 0 | $b$ | $a$ |
| $a$ | $a$ | $a$ | 0 | 0 |
| $b$ | $b$ | $a$ | 1 | 0 |

$$
\begin{aligned}
& \tilde{6}=(0,1 T, a I, 0 F), \tilde{7}=(0,1 T, a I, a F), \tilde{8}=(1,0 T, 0 I, 0 F) \\
& \qquad \begin{array}{r}
\tilde{9}=(1,0 T, 0 I, a F), \tilde{10}=(1,0 T, a I, 0 F), \tilde{11}=(1,0 T, a I, a F) \\
\tilde{12}=(1,1 T, 0 I, 0 F), \tilde{13}=(1,1 T, 0 I, a F), \\
\tilde{14}=(1,1 T, a I, 0 F), \tilde{15}=(1,1 T, a I, a F)
\end{array} \\
& \text { If we take } \tilde{x}=(1,1 T, b I, b F) \in N Q(S) \text { and } \tilde{z}=(b, b T, b I, b F) \in N Q(S), \text { then } \\
& \qquad \begin{aligned}
(\tilde{x} \odot \tilde{z}) \odot(\tilde{7} \odot \tilde{z}) & =(a, a T, 0 I, 0 F) \odot(a, a T, 0 I, 0 F) \\
& =(0,0 T, 0 I, 0 F)=\tilde{0} \in N Q(A, B)
\end{aligned}
\end{aligned}
$$

But $\tilde{x} \notin N Q(A, B)$, and so $N Q(A, B)$ is not a neutrosophic quadruple $p$-ideal of $N Q(S)$.
We provide a condition for the set $N Q(A, B)$ to be a neutrosophic quadruple $p$-ideal.
Theorem 4.1. Let $A$ and $B$ be ideals of $S$. If $S$ is $p$-semisimple, then $N Q(A, B)$ is a neutrosophic quadruple p-ideal of $N Q(S)$.

Proof. If $A$ and $B$ are ideals of $S$, then $N Q(A, B)$ is an ideal of $N Q(S)$ (see Lemma3.6), and so $\tilde{0} \in N Q(A, B)$. Let $\tilde{x}, \tilde{y}, \tilde{z} \in N Q(S)$ be such that $(\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z}) \in N Q(A, B)$ and $\tilde{y} \in N Q(A, B)$. Since $S$ is $p$-semisimple, it follows from (2.8) that

$$
\begin{aligned}
& \left(x_{1} * y_{1},\left(x_{2} * y_{2}\right) T,\left(x_{3} * y_{3}\right) I,\left(x_{4} * y_{4}\right) F\right) \\
& =\left(\left(x_{1} * z_{1}\right) *\left(y_{1} * z_{1}\right),\left(\left(x_{2} * z_{2}\right) *\left(y_{2} * z_{2}\right)\right) T,\right. \\
& \left.\left(\left(x_{3} * z_{3}\right) *\left(y_{3} * z_{3}\right)\right) I,\left(\left(x_{4} * z_{4}\right) *\left(y_{4} * z_{4}\right)\right) F\right) \\
& =\left(x_{1} * z_{1},\left(x_{2} * z_{2}\right) T,\left(x_{3} * z_{3}\right) I,\left(x_{4} * z_{4}\right) F\right) \odot \\
& \left(y_{1} * z_{1},\left(y_{2} * z_{2}\right) T,\left(y_{3} * z_{3}\right) I,\left(y_{4} * z_{4}\right) F\right) \\
& =\left(\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right) \odot\left(z_{1}, z_{2} T, z_{3} I, z_{4} F\right)\right) \odot \\
& \left(\left(y_{1}, y_{2} T, y_{3} I, y_{4} F\right) \odot\left(z_{1}, z_{2} T, z_{3} I, z_{4} F\right)\right) \\
& =(\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z}) \in N Q(A, B) .
\end{aligned}
$$

Hence $x_{i} * y_{i} \in A$ and $x_{j} * y_{j} \in B$ for $i=1,2$ and $j=3,4$. Since $y_{1}, y_{2} \in A$ and $y_{3}, y_{4} \in B$, we have $x_{i} \in A$ and $x_{j} \in B$ for $i=1,2$ and $j=3,4$. Thus $\tilde{x}=$ $\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right) \in N Q(A, B)$. Therefore $N Q(A, B)$ is a neutrosophic quadruple $p$ ideal of $N Q(S)$.
Corollary 4.2. If $A$ is an ideal of a p-semisimple $B C I$-algebra $S$, then $N Q(A)$ is a neutrosophic quadruple p-ideal of $N Q(S)$.

Corollary 4.3. If a BCI-algebra $S$ satisfies:

$$
\begin{equation*}
(\forall x, y, z \in S)((x * y) * z=x *(y * z)) \tag{4.1}
\end{equation*}
$$

then $N Q(A, B)$ is a neutrosophic quadruple p-ideal of $N Q(S)$ for all ideals $A$ and $B$ of $S$.

Proof. Using (2.3) and (4.1), we have

$$
\begin{aligned}
y *(x *(x * y)) & =(y * x) *(x * y)=(y *(x * y)) * x \\
& =((y * x) * y) * x=(y * x) *(y * x)=0
\end{aligned}
$$

for all $x, y \in S$. It follows from (II) and (IV) that $x *(x * y)=y$. Hence $S$ is $p$ semisimple, and therefore $N Q(A, B)$ is a neutrosophic quadruple $p$-ideal of $N Q(S)$ by Theorem 4.1

Theorem 4.4. If $A$ and $B$ are p-ideals of $S$, then the set $N Q(A, B)$ is a neutrosophic quadruple p-ideal of $N Q(S)$.

Proof. Assume that $A$ and $B$ are $p$-ideals of $S$. Obviously, $\tilde{0} \in N Q(A, B)$. Let $\tilde{x}=\left(x_{1}\right.$, $\left.x_{2} T, x_{3} I, x_{4} F\right), \tilde{y}=\left(y_{1}, y_{2} T, y_{3} I, y_{4} F\right)$ and $\tilde{z}=\left(z_{1}, z_{2} T, z_{3} I, z_{4} F\right)$ be elements of $N Q(S)$ such that $(\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z}) \in N Q(A, B)$ and $\tilde{y} \in N Q(A, B)$. Then

$$
\begin{aligned}
(\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z})= & \left(\left(x_{1} * z_{1}\right) *\left(y_{1} * z_{1}\right),\left(\left(x_{2} * z_{2}\right) *\left(y_{2} * z_{2}\right)\right) T\right. \\
& \left.\left(\left(x_{3} * z_{3}\right) *\left(y_{3} * z_{3}\right)\right) I,\left(\left(x_{4} * z_{4}\right) *\left(y_{4} * z_{4}\right)\right) F\right) \in N Q(A, B)
\end{aligned}
$$

which implies that $\left(x_{1} * z_{1}\right) *\left(y_{1} * z_{1}\right) \in A,\left(x_{2} * z_{2}\right) *\left(y_{2} * z_{2}\right) \in A,\left(x_{3} * z_{3}\right) *\left(y_{3} * z_{3}\right) \in B$ and $\left(x_{4} * z_{4}\right) *\left(y_{4} * z_{4}\right) \in B$. Since $\tilde{y} \in N Q(A, B)$, we have $y_{1}, y_{2} \in A$ and $y_{3}, y_{4} \in B$. It follows from (2.14) that $x_{1}, x_{2} \in A$ and $x_{3}, x_{4} \in B$. Hence $\tilde{x}=\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right) \in$ $N Q(A, B)$, and therefore $N Q(A, B)$ is a neutrosophic quadruple $p$-ideal of $N Q(S)$.

Corollary 4.5. If $A$ is a p-ideal of $S$, then $N Q(A)$ is a neutrosophic quadruple p-ideal of $N Q(S)$.

Proposition 4.6. For any p-ideals $A$ and $B$ of $S$, the set $N Q(A, B)$ satisfies the following implication.

$$
\begin{equation*}
(\forall \tilde{x} \in N Q(S))(\tilde{0} \odot(\tilde{0} \odot \tilde{x}) \in N Q(A, B) \Rightarrow \tilde{x} \in N Q(A, B)) \tag{4.2}
\end{equation*}
$$

Proof. If $\tilde{0} \odot(\tilde{0} \odot \tilde{x}) \in N Q(A, B)$, then

$$
\begin{aligned}
\tilde{0} \odot(\tilde{0} \odot \tilde{x}) & =(0,0 T, 0 I, 0 F) \odot\left((0,0 T, 0 I, 0 F) \odot\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right)\right) \\
& =(0,0 T, 0 I, 0 F) \odot\left(\left(0 * x_{1}\right),\left(0 * x_{2}\right) T,\left(0 * x_{3}\right) I,\left(0 * x_{4}\right) F\right) \\
& =\left(0 *\left(0 * x_{1}\right),\left(0 *\left(0 * x_{2}\right)\right) T,\left(0 *\left(0 * x_{3}\right)\right) I,\left(0 *\left(0 * x_{4}\right)\right) F\right) \\
& \in N Q(A, B) .
\end{aligned}
$$

Hence $\left(x_{1} * x_{1}\right) *\left(0 * x_{1}\right)=0 *\left(0 * x_{1}\right) \in A,\left(x_{2} * x_{2}\right) *\left(0 * x_{2}\right)=0 *\left(0 * x_{2}\right) \in A$, $\left(x_{3} * x_{3}\right) *\left(0 * x_{3}\right)=0 *\left(0 * x_{3}\right) \in B$ and $\left(x_{4} * x_{4}\right) *\left(0 * x_{4}\right)=0 *\left(0 * x_{4}\right) \in B$. Since $A$ and $B$ are $p$-ideals of $S$, it follows from (2.14) that $x_{1}, x_{2} \in A$ and $x_{3}, x_{4} \in B$. Hence $\tilde{x}=\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right) \in N Q(A, B)$.

Corollary 4.7. For any p-ideal $A$ of $S$, the set $N Q(A)$ satisfies the following implication.

$$
\begin{equation*}
(\forall \tilde{x} \in N Q(S))(\tilde{0} \odot(\tilde{0} \odot \tilde{x}) \in N Q(A) \Rightarrow \tilde{x} \in N Q(A)) \tag{4.3}
\end{equation*}
$$

Theorem 4.8. Let $A$ and $B$ be ideals of $S$. Then $N Q(A, B)$ is a neutrosophic quadruple p-ideal of $N Q(S)$ if and only if the following assertion is valid.

$$
\begin{equation*}
(\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z}) \in N Q(A, B) \Rightarrow \tilde{x} \odot \tilde{y} \in N Q(A, B) \tag{4.4}
\end{equation*}
$$

for all $\tilde{x}, \tilde{y}, \tilde{z} \in N Q(S)$.

Proof. Assume that $N Q(A, B)$ is a neutrosophic quadruple $p$-ideal of $N Q(S)$. Let $\tilde{x}, \tilde{y}, \tilde{z} \in$ $N Q(S)$ be such that $(\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z}) \in N Q(A, B)$. Then

$$
\begin{aligned}
& ((\tilde{x} \odot \tilde{y}) \odot(\tilde{x} \odot \tilde{y})) \odot(((\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z})) \odot(\tilde{x} \odot \tilde{y})) \\
& =\tilde{0} \odot(((\tilde{x} \odot \tilde{z}) \odot(\tilde{x} \odot \tilde{y})) \odot(\tilde{y} \odot \tilde{z})) \\
& =\tilde{0} \odot \tilde{0}=\tilde{0} \in N Q(A, B),
\end{aligned}
$$

and so $\tilde{x} \odot \tilde{y} \in N Q(A, B)$ since $N Q(A, B)$ is a neutrosophic quadruple $p$-ideal of $N Q(S)$.
Conversely, let $A$ and $B$ be ideals of $S$ such that the set $N Q(A, B)$ satisfies the condition (4.4). Then $N Q(A, B)$ is a neutrosophic quadruple ideal of $N Q(S)$ by Lemma 3.6 and so $\tilde{0} \in N Q(A, B)$. Let $\tilde{x}, \tilde{y}, \tilde{z} \in N Q(S)$ be such that $(\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z}) \in N Q(A, B)$ and $\tilde{y} \in N Q(A, B)$. Then $\tilde{x} \odot \tilde{y} \in N Q(A, B)$ by 4.4, and thus $\tilde{x} \in N Q(A, B)$. Therefore $N Q(A, B)$ is a neutrosophic quadruple $p$-ideal of $N Q(S)$.

Corollary 4.9. Given an ideal $A$ of $S$, the set $N Q(A)$ is a neutrosophic quadruple p-ideal of $N Q(S)$ if and only if the following assertion is valid.

$$
\begin{equation*}
(\tilde{x} \odot \tilde{z}) \odot(\tilde{y} \odot \tilde{z}) \in N Q(A) \Rightarrow \tilde{x} \odot \tilde{y} \in N Q(A) \tag{4.5}
\end{equation*}
$$

for all $\tilde{x}, \tilde{y}, \tilde{z} \in N Q(S)$.
Theorem 4.10. Let $A$ and $B$ be ideals of $S$ such that

$$
\begin{equation*}
(\forall x \in S)(0 *(0 * x) \in A(\text { resp., } B) \Rightarrow x \in A \text { (resp., } B)) \tag{4.6}
\end{equation*}
$$

Then $N Q(A, B)$ is a neutrosophic quadruple p-ideal of $N Q(S)$.
Proof. Let $x, y, z \in S$ be such that $(x * z) *(y * z) \in A$ (resp., $B$ ) and $y \in A$ (resp., $B$ ). Then

$$
\begin{aligned}
& (0 *(0 *((x * z) *(y * z)))) *((x * z) *(y * z)) \\
& =(0 *((x * z) *(y * z))) *(0 *((x * z) *(y * z))) \\
& =0 \in A \text { (resp., } B) .
\end{aligned}
$$

and so $0 *(0 *((x * z) *(y * z))) \in A$ (resp., $B$ ) since $A$ and $B$ are ideals of $S$. Now we have

$$
\begin{array}{rl}
0 & *(0 *(x * y))=(0 * y) *(0 * x)=(((0 * z) *(0 * z)) * y) *(0 * x) \\
& =(((0 *(0 * z)) * z) * y) *(0 * x)=(((0 * y) *(0 * z)) * z) *(0 * x) \\
=((0 *(y * z)) * z) *(0 * x)=((0 * z) *(0 * x)) *(y * z) \\
=((0 *(0 *(0 * z))) *(0 * x)) *(y * z) \\
=((0 *(0 * x)) *(0 *(0 * z))) *(y * z) \\
=(0 *((0 * x) *(0 * z))) *(y * z)=(0 *(0 *(x * z))) *(y * z) \\
=(0 *(y * z)) *(0 *(x * z))=(0 *(0 *(0 *(y * z)))) *(0 *(x * z)) \\
=(0 *(0 *(x * z))) *(0 *(0 *(y * z)))=0 *((0 *(x * z)) *(0 *(y * z))) \\
=0 *(0 *((x * z) *(y * z))) \in A(\text { resp., } B) .
\end{array}
$$

It follows from (4.6) that $x * y \in A$ (resp., $B$ ). Hence $x \in A$ (resp., $B$ ). This shows that $A$ and $B$ are $p$-ideals of $S$. Therefore $N Q(A, B)$ is a neutrosophic quadruple $p$-ideal of $N Q(S)$ by Theorem 4.4

Corollary 4.11. Let $A$ be an ideal of $S$ such that

$$
\begin{equation*}
(\forall x \in S)(0 *(0 * x) \in A \Rightarrow x \in A) . \tag{4.7}
\end{equation*}
$$

Then $N Q(A)$ is a neutrosophic quadruple p-ideal of $N Q(S)$.

## 5. Conclusion

In this paper, we consider characterizations of neutrosophic quadruple $B C I$-algebra, and give conditions for the neutrosophic quadruple $B C I$-set to be a $p$-semisimple $B C I$ algebra. Futhermore, we provide a condition for a subalgebra to be an ideal in neutrosophic quadruple $B C I$-algebra, and provide conditions for the set $N Q(A, B)$ to be a neutrosophic quadruple closed ideal and neutrosophic quadruple $p$-ideal. We hope that this work will provide a deep impact on the upcoming research in this field and other related areas to open up new horizons of interest and innovations. Indeed, this work may serve as a foundation for further study of neutrosophic subalgebras in $B C K / B C I$-algebras. To extend these results, one can further study the neutrosophic set theory of different algebras such as MTL-algerbas, BL-algebras, MV-algebras, EQ-algebras, R0-algebras and Q-algebras etc. One may also apply this concept to study some applications in many fields like decision making, knowledge base systems, medical diagnosis, data analysis and graph theory etc.

## 6. Acknowledgements

The authors are very thankful to the reviewers for careful detailed reading and helpful comments/suggestions that improved the overall presentation of this paper.

## REFERENCES

[1] A.A.A. Agboola, B. Davvaz and F. Smarandache. Neutrosophic quadruple algebraic hyperstructures, Ann Fuzzy math. Inform., 14 (1) (2017), 29-42.
[2] S.A. Akinleye, F. Smarandache and A.A.A. Agboola. On neutrosophic quadruple algebraic structures, Neutrosophic Sets and Systems, 12 (2016), 122-126.
[3] A. Borumand Saeid and Y.B. Jun. Neutrosophic subalgebras of $B C K / B C I$-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform. 14 (1) (2017), 87-97.
[4] Y. Huang. BCI-algebra, Science Press, Beijing, 2006.
[5] K. Iséki. On $B C I$-algebras, Math. Seminar Notes 8 (1980), 125-130.
[6] K. Iséki and S. Tanaka. An introduction to the theory of $B C K$-algebras, Math. Japon. 23 (1978), 1-26.
[7] Y.B. Jun. Neutrosophic subalgebras of several types in $B C K / B C I$-algebras, Ann. Fuzzy Math. Inform. 14 (1) (2017), 75-86.
[8] Y.B. Jun, S.J. Kim and F. Smarandache. Interval neutrosophic sets with applications in $B C K / B C I$ algebra, Axioms 2018, 7, 23.
[9] Y.B. Jun, F. Smarandache and H. Bordbar. Neutrosophic $\mathcal{N}$-structures applied to $B C K / B C I$-algebras, Information 2017, 8, 128.
[10] Y.B. Jun, F. Smarandache, S.Z. Song and M. Khan. Neutrosophic positive implicative $\mathcal{N}$-ideals in $B C K / B C I$-algebras, Axioms 2018, 7, 3.
[11] Y.B. Jun, S.Z. Song, F. Smarandache and H. Bordbar. Neutrosophic quadruple $B C K / B C I$-algebras, Axioms 2018, 7, 41; doi:10.3390/axioms7020041.
[12] M. Khan, S. Anis, F. Smarandache and Y.B. Jun. Neutrosophic $\mathcal{N}$-structures and their applications in semigroups, Ann. Fuzzy Math. Inform. 14 (6) (2017), 583-598.
[13] J. Meng and Y. B. Jun. BCK-algebras, Kyungmoonsa Co. Seoul, Korea 1994.
[14] G. Muhiuddin, H. Bordbar, F. Smarandache, Y. B. Jun, Further results on $(\in, \in)$-neutrosophic subalgebras and ideals in BCK/BCI-algebras, Neutrosophic Sets and Systems, Vol. 20 (2018), 36-43.
[15] M.A. Öztürk and Y.B. Jun. Neutrosophic ideals in $B C K / B C I$-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst. 8 (2018), 1-17.
[16] F. Smarandache. Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information \& Learning, Ann Arbor, Michigan, USA, 105 p., 1998 http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (last edition online).
[17] F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Reserch Press, Rehoboth, NM, 1999.
[18] F. Smarandache. Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math. 24 (3) (2005), 287-297.
[19] F. Smarandache. Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Sets and Systems, 10 (2015), 96-98.
[20] S.Z. Song, F. Smarandache and Y.B. Jun. Neutrosophic commutative $\mathcal{N}$-ideals in $B C K$-algebras, Information 2017, 8, 130.
[21] X. Zhang, J. Hao and S.A. Bhatti. On p-ideals of a BCI-algebra, Punjab Univ. J. Math. (Lahore) 27 (1994), 121-128.
G. MUHIUDDIN

Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia
Email address: chishtygm@gmail.com
Young BaE Jun
Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea

Email address: skywine@gmail.com


[^0]:    2010 Mathematics Subject Classification. 06F35, 03G25, 08A72.
    Key words and phrases. Neutrosophic quadruple BCK/BCI-number; neutrosophic quadruple BCK/BCIalgebra; neutrosophic quadruple (closed) ideal; neutrosophic quadruple $p$-ideal.
    *Corresponding author.

