ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 1, Number 1 (2018), 26-37 ISSN: 2582-0818 © http://www.technoskypub.com

p-SEMISIMPLE NEUTROSOPHIC QUADRUPLE *BCI*-ALGEBRAS AND NEUTROSOPHIC QUADRUPLE *p*-IDEALS

G. MUHIUDDIN* AND YOUNG BAE JUN

ABSTRACT. Characterizations of neutrosophic quadruple BCI-algebra are considered. Conditions for the neutrosophic quadruple BCI-set to be a p-semisimple BCI-algebra are provided. A condition for a subalgebra to be an ideal in neutrosophic quadruple BCI-algebra is given. Conditions for the set NQ(A, B) to be a neutrosophic quadruple closed ideal and neutrosophic quadruple p-ideal are discussed. Characterizations of neutrosophic quadruple p-ideal are considered.

1. INTRODUCTION

As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is developed by Smarandache ([16], [17] and [18]). Neutrosophic algebraic structures in BCK/BCIalgebras are discussed in the papers [3], [7], [8], [9], [10], [12], [14], [15] and [20]. Smarandache [19] considered an entry (i.e., a number, an idea, an object etc.) which is represented by a known part (a) and an unknown part (bT, cI, dF) where T, I, F have their usual neutrosophic logic meanings and a, b, c, d are real or complex numbers, and then he introduced the concept of neutrosophic quadruple numbers. Neutrosophic quadruple algebraic structures and hyperstructures are discussed in [1] and [2]. Jun et al. [11] used neutrosophic quadruple numbers based on a set, and constructed neutrosophic quadruple BCK/BCI-algebras. They investigated several properties, and considered ideal and positive implicative ideal in neutrosophic quadruple BCK-algebra, and closed ideal in neutrosophic quadruple BCI-algebra. Given subsets A and B of a neutrosophic quadruple BCK/BCI-algebra, they considered sets NQ(A, B) which consists of neutrosophic quadruple BCK/BCI-numbers with a condition. They provided conditions for the set NQ(A, B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra, and the set NQ(A, B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra. They gave an example to show that the set $\{\overline{0}\}$ is not a positive implicative ideal in a neutrosophic quadruple *BCK*-algebra, and then they considered conditions for the set $\{0\}$ to be a positive implicative ideal in a neutrosophic quadruple BCK-algebra.

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 08A72.

Key words and phrases. Neutrosophic quadruple BCK/BCI-number; neutrosophic quadruple BCK/BCI-algebra; neutrosophic quadruple (closed) ideal; neutrosophic quadruple *p*-ideal.

^{*}Corresponding author.

In this paper, we consider characterizations of neutrosophic quadruple BCI-algebra, and give conditions for the neutrosophic quadruple BCI-set to be a p-semisimple BCIalgebra. We provide a condition for a subalgebra to be an ideal in neutrosophic quadruple BCI-algebra, and provide conditions for the set NQ(A, B) to be a neutrosophic quadruple closed ideal and neutrosophic quadruple p-ideal. We disuss characterizations of neutrosophic quadruple *p*-ideal.

2. PRELIMINARIES

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki (see [5] and [6]) and was extensively investigated by several researchers.

By a BCI-algebra, we mean a set S with a special element 0 and a binary operation *that satisfies the following conditions:

- (I) $(\forall x, y, z \in S) (((x * y) * (x * z)) * (z * y) = 0),$
- (II) $(\forall x, y \in S) ((x * (x * y)) * y = 0),$
- (III) $(\forall x \in S) (x * x = 0),$
- (IV) $(\forall x, y \in S) (x * y = 0, y * x = 0 \Rightarrow x = y).$

If a *BCI*-algebra *S* satisfies the following identity:

(V) $(\forall x \in S) (0 * x = 0),$

then S is called a BCK-algebra. Any BCK/BCI-algebra S satisfies the following conditions:

$$(\forall x \in S) (x * 0 = x), \tag{2.1}$$

$$(\forall x, y, z \in S) (x \le y \Rightarrow x * z \le y * z, z * y \le z * x),$$
(2.2)

$$\forall x, y, z \in S) ((x * y) * z = (x * z) * y),$$

$$\forall x, y, z \in S) ((x * z) * (y * z) \le x * y)$$
(2.3)
(2.4)

$$(\forall x, y, z \in S) ((x * z) * (y * z) \le x * y)$$
 (2.4)

where $x \leq y$ if and only if x * y = 0.

Any *BCI*-algebra *S* satisfies the following conditions (see [4]):

$$(\forall x, y \in S)(x * (x * (x * y)) = x * y),$$
(2.5)

$$(\forall x, y \in S)(0 * (x * y) = (0 * x) * (0 * y)),$$
(2.6)

$$(\forall x, y \in S)(0 * (0 * (x * y)) = (0 * y) * (0 * x)).$$
(2.7)

A BCI-algebra S is said to be p-semisimple (see [4]) if 0 * (0 * x) = x for all $x \in S$. Every *p*-semisimple BCI-algebra *S* satisfies (see [4]):

$$(\forall x, y, z \in S)((x * z) * (y * z) = x * y).$$
 (2.8)

A BCI-algebra S is p-semisimple if and only if the following assertion is valid.

$$(\forall x, y \in S)(x * (x * y) = y). \tag{2.9}$$

An element a in a BCI-algebra S is said to be minimal (see [4]) if the following assertion is valid.

$$(\forall x \in S)(x * a = 0 \Rightarrow x = a). \tag{2.10}$$

A nonempty subset S of a BCK/BCI-algebra S is called a *subalgebra* of S if $x * y \in S$ for all $x, y \in S$. A subset I of a BCK/BCI-algebra S is called an *ideal* of S if it satisfies:

$$0 \in I, \tag{2.11}$$

$$(\forall x \in S) (\forall y \in I) (x * y \in I \implies x \in I).$$
(2.12)

A subset I of a BCI-algebra S is called a *closed ideal* (see [4]) of S if it is an ideal of S which satisfies:

$$(\forall x \in S)(x \in I \Rightarrow 0 * x \in I).$$
(2.13)

A subset I of a BCI-algebra S is called a *p-ideal* (see [21]) of S if it satisfies (2.11) and

$$(\forall x, y, z \in S)(y \in I, (x * z) * (y * z) \in I \implies x \in I).$$

$$(2.14)$$

We refer the reader to the books [4, 13] for further information regarding BCK/BCIalgebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

We consider neutrosophic quadruple numbers based on a set instead of real or complex numbers.

Definition 2.1 ([11]). Let S be a set. A *neutrosophic quadruple* S-number is an ordered quadruple (a, xT, yI, zF) where $a, x, y, z \in S$ and T, I, F have their usual neutrosophic logic meanings.

The set of all neutrosophic quadruple S-numbers is denoted by NQ(S), that is,

$$NQ(S) := \{ (a, xT, yI, zF) \mid a, x, y, z \in S \},\$$

and it is called the *neutrosophic quadruple set* based on S. If S is a BCK/BCI-algebra, a neutrosophic quadruple S-number is called a *neutrosophic quadruple* BCK/BCI-number and we say that NQ(S) is the *neutrosophic quadruple* BCK/BCI-set.

Let S be a BCK/BCI-algebra. We define a binary operation \odot on NQ(S) by

$$(a, xT, yI, zF) \odot (b, uT, vI, wF) = (a * b, (x * u)T, (y * v)I, (z * w)F)$$

for all (a, xT, yI, zF), $(b, uT, vI, wF) \in NQ(S)$. Given $a_1, a_2, a_3, a_4 \in S$, the neutrosophic quadruple BCK/BCI-number (a_1, a_2T, a_3I, a_4F) is denoted by \tilde{a} , that is,

$$\tilde{a} = (a_1, a_2T, a_3I, a_4F)$$

and the zero neutrosophic quadruple BCK/BCI-number (0, 0T, 0I, 0F) is denoted by $\tilde{0}$, that is,

$$\tilde{0} = (0, 0T, 0I, 0F)$$

We define an order relation " \ll " and the equality "=" on NQ(S) as follows:

$$\tilde{x} \ll \tilde{y} \Leftrightarrow x_i \le y_i \text{ for } i = 1, 2, 3, 4,$$

 $\tilde{x} = \tilde{y} \Leftrightarrow x_i = y_i \text{ for } i = 1, 2, 3, 4$

for all $\tilde{x}, \tilde{y} \in NQ(S)$. It is easy to verify that " \ll " is an equivalence relation on NQ(S).

Theorem 2.1 ([11]). If S is a BCK/BCI-algebra, then $(NQ(S); \odot, \tilde{0})$ is a BCK/BCI-algebra.

We say that $(NQ(S); \odot, \tilde{0})$ is a *neutrosophic quadruple* BCK/BCI-algebra, and it is simply denoted by NQ(S).

Let S be a BCK/BCI -algebra. Given $a,b\in S$ and nonempty subsets A and B of S, consider the sets

$$\begin{split} NQ(a,B) &:= \{(a, aT, yI, zF) \in NQ(S) \mid y, z \in B\}, \\ NQ(A,b) &:= \{(a, xT, bI, bF) \in NQ(S) \mid a, x \in A\}, \\ NQ(A,B) &:= \{(a, xT, yI, zF) \in NQ(S) \mid a, x \in A; y, z \in B\}, \end{split}$$

28

$$NQ(A^*, B) := \bigcup_{a \in A} NQ(a, B),$$
$$NQ(A, B^*) := \bigcup_{b \in B} NQ(A, b),$$

and

$$NQ(A \cup B) := NQ(A, 0) \cup NQ(0, B).$$

The set NQ(A, A) is denoted by NQ(A).

3.
$$p$$
-semisimple neutrosophic quadruple BCI -algebras and ideals

Definition 3.1. Given nonempty subsets A and B of S, if NQ(A, B) is a (closed) ideal (resp., p-ideal) of a neutrosophic quadruple BCI-algebra NQ(S), we say NQ(A, B) is a neutrosophic quadruple (closed) ideal (resp., neutrosophic quadruple p-ideal) of NQ(S).

Theorem 3.1. Let NQ(S) be the neutrosophic quadruple set based on a set S. Then $(NQ(S); \odot, \tilde{0})$ is a neutrosophic quadruple BCI-algebra if and only if the following assertions are valid.

$$(\forall \tilde{x}, \tilde{y}, \tilde{z} \in NQ(S)) (((\tilde{x} \odot \tilde{y}) \odot (\tilde{x} \odot \tilde{z})) \odot (\tilde{z} \odot \tilde{y}) = 0),$$
(3.1)

$$(\forall \tilde{x}, \tilde{y} \in NQ(S)) \ (\tilde{x} \odot \tilde{y} = \tilde{0}, \ \tilde{y} \odot \tilde{x} = \tilde{0} \ \Rightarrow \tilde{x} = \tilde{y}), \tag{3.2}$$

$$(\forall \tilde{x} \in NQ(S)) \ (\tilde{x} \odot \tilde{0} = \tilde{x}). \tag{3.3}$$

Proof. Assume that $(NQ(S); \odot, \tilde{0})$ is a neutrosophic quadruple *BCI*-algebra. Then two conditions (3.1) and (3.2) are clearly true. Note that

$$\tilde{x} \odot \tilde{x} = \tilde{0}, \tag{3.4}$$

$$(\tilde{x} \odot (\tilde{x} \odot \tilde{y})) \odot \tilde{y} = \tilde{0} \tag{3.5}$$

for all $\tilde{x}, \tilde{y} \in NQ(S)$. Hence

$$(\tilde{x} \odot (\tilde{x} \odot \tilde{0})) \odot \tilde{0} = \tilde{0}$$
(3.6)

for all $\tilde{x} \in NQ(S)$, and it follows from (3.1), (3.4) and (3.6) that

$$\begin{split} \tilde{0} &= ((\tilde{x} \odot (\tilde{x} \odot \tilde{0})) \odot (\tilde{x} \odot \tilde{x})) \odot (\tilde{x} \odot (\tilde{x} \odot \tilde{0})) \\ &= ((\tilde{x} \odot (\tilde{x} \odot \tilde{0})) \odot \tilde{0}) \odot (\tilde{x} \odot (\tilde{x} \odot \tilde{0})) \\ &= \tilde{0} \odot (\tilde{x} \odot (\tilde{x} \odot \tilde{0})). \end{split}$$

Using (3.2), we have $\tilde{x} \odot (\tilde{x} \odot \tilde{0}) = \tilde{0}$ for all $\tilde{x} \in NQ(S)$. Also we have $(\tilde{x} \odot \tilde{0}) \odot \tilde{x} = (\tilde{x} \odot (\tilde{x} \odot \tilde{x})) \odot \tilde{x} = \tilde{0}$ by (3.4) and (3.5). Therefore (3.3) is valid by using (3.2).

Conversely, suppose that the neutrosophic quadruple set NQ(S) based on a set S satisfies three conditions (3.1), (3.2) and (3.3). It is sufficient to show that two conditions (3.4) and (3.5) are true. Let $\tilde{x}, \tilde{y} \in NQ(S)$. Using (3.3) and (3.1), we have

$$\tilde{x} \odot \tilde{x} = (\tilde{x} \odot \tilde{x}) \odot \tilde{0} = ((\tilde{x} \odot \tilde{0}) \odot (\tilde{x} \odot \tilde{0})) \odot (\tilde{0} \odot \tilde{0}) = \tilde{0}$$

and

$$(\tilde{x} \odot (\tilde{x} \odot \tilde{y})) \odot \tilde{y} = ((\tilde{x} \odot \tilde{0}) \odot (\tilde{x} \odot \tilde{y})) \odot (\tilde{y} \odot \tilde{0}) = \tilde{0}.$$

Therefore $(NQ(S); \odot, \tilde{0})$ is a neutrosophic quadruple *BCI*-algebra.

We consider conditions for the neutrosophic quadruple BCI-set NQ(S) to be a *p*-semisimple neutrosophic quadruple BCI-algebra.

29

Theorem 3.2. If S is a p-semisimple BCI-algebra, then $(NQ(S); \odot, \tilde{0})$ is a p-semisimple neutrosophic quadruple BCI-algebra.

Proof. Let S be a p-semisimple BCI-algebra. Then $(NQ(S); \odot, \tilde{0})$ is a neutrosophic quadruple BCI-algebra (see Theorem 2.1). For any $\tilde{x} = (x_1, x_2T, x_3I, x_4F) \in NQ(S)$, we have

$$\begin{split} \tilde{0} \odot (\tilde{0} \odot \tilde{x}) &= (0 * (0 * x_1), (0 * (0 * x_2))T, (0 * (0 * x_3))I, (0 * (0 * x_4))F) \\ &= (x_1, x_2T, x_3I, x_4F) = \tilde{x}. \end{split}$$

Hence $(NQ(S); \odot, \tilde{0})$ is a *p*-semisimple neutrosophic quadruple *BCI*-algebra.

Theorem 3.3. If the neutrosophic quadruple set NQ(S) based on a BCI-algebra S satisfies the following assertion

$$(\forall \tilde{x} \in NQ(S))(\tilde{0} \odot \tilde{x} = \tilde{0} \Rightarrow \tilde{x} = \tilde{0}), \tag{3.7}$$

then $(NQ(S); \odot, \tilde{0})$ is a p-semisimple neutrosophic quadruple BCI-algebra.

Proof. By Theorem 2.1, $(NQ(S); \odot, \tilde{0})$ is a neutrosophic quadruple *BCI*-algebra. Thus

$$\tilde{\mathbf{0}} \odot (\tilde{x} \odot \tilde{y}) = (\tilde{\mathbf{0}} \odot \tilde{x}) \odot (\tilde{\mathbf{0}} \odot \tilde{y})$$
(3.8)

$$\tilde{0} \odot (\tilde{0} \odot (\tilde{0} \odot \tilde{x})) = \tilde{0} \odot \tilde{x}$$
(3.9)

for all $\tilde{x}, \tilde{y} \in NQ(S)$. It follows from (3.4) that

$$\begin{split} \tilde{0} \odot (\tilde{x} \odot (\tilde{0} \odot (\tilde{0} \odot \tilde{x}))) &= (\tilde{0} \odot \tilde{x}) \odot (\tilde{0} \odot (\tilde{0} \odot (\tilde{0} \odot \tilde{x}))) \\ &= (\tilde{0} \odot \tilde{x}) \odot (\tilde{0} \odot \tilde{x}) = \tilde{0}. \end{split}$$

Hence $\tilde{x} \odot (\tilde{0} \odot (\tilde{0} \odot \tilde{x})) = \tilde{0}$ for all $\tilde{x} \in NQ(S)$ by (3.7). Since $(\tilde{0} \odot (\tilde{0} \odot \tilde{x})) \odot \tilde{x} = \tilde{0}$ for all $\tilde{x} \in NQ(S)$, it follows from (3.2) that $\tilde{0} \odot (\tilde{0} \odot \tilde{x}) = \tilde{x}$ for all $\tilde{x} \in NQ(S)$. Therefore $(NQ(S); \odot, \tilde{0})$ is a *p*-semisimple neutrosophic quadruple *BCI*-algebra.

Corollary 3.4. If the neutrosophic quadruple set NQ(S) based on a BCI-algebra S satisfies the following assertion

$$(\forall \tilde{x}, \tilde{y} \in NQ(S))(\tilde{x} \odot (\tilde{0} \odot \tilde{y}) = \tilde{y} \odot (\tilde{0} \odot \tilde{x})), \tag{3.10}$$

then $(NQ(S); \odot, \tilde{0})$ is a p-semisimple neutrosophic quadruple BCI-algebra.

Proof. By Theorem 2.1, $(NQ(S); \odot, \tilde{0})$ is a neutrosophic quadruple *BCI*-algebra. Let $\tilde{x} \in NQ(S)$ be such that $\tilde{0} \odot \tilde{x} = \tilde{0}$. Then

$$\tilde{x} = \tilde{x} \odot \tilde{0} = \tilde{x} \odot (\tilde{0} \odot \tilde{0}) = \tilde{0} \odot (\tilde{0} \odot \tilde{x}) = \tilde{0} \odot \tilde{0} = \tilde{0}$$

by (3.3), (3.4) and (3.10). It follows from Theorem 3.3 that $(NQ(S); \odot, \tilde{0})$ is a *p*-semisimple neutrosophic quadruple *BCI*-algebra.

In a neutrosophic quadruple *BCI*-algebra, any subalgebra may not be an ideal as seen in the following example.

Example 3.2. Consider a *BCI*-algebra $S = \{0, 1, a\}$ with the binary operation *, which is given in Table 1.

Then the neutrosophic quadruple BCI-algebra NQ(S) has 81 elements. If we take

 $B := \{\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}, \tilde{5}, \tilde{6}, \tilde{7}, \tilde{8}, \tilde{9}, \tilde{10}, \tilde{11}, \tilde{12}, \tilde{13}, \tilde{14}, \tilde{15}\}$

where

$$0 = (0, 0T, 0I, 0F), 1 = (0, 0T, 0I, aF), 2 = (0, 0T, aI, 0F),$$

~

30

TABLE 1. Cayley table for the binary operation "*"

*	0	1	a
0	0	0	a
1	1	0	a
a	a	a	0

$$\begin{split} \tilde{3} &= (0,0T,aI,aF), \tilde{4} = (0,aT,0I,0F), \tilde{5} = (0,aT,0I,aF), \\ \tilde{6} &= (0,aT,aI,0F), \tilde{7} = (0,aT,aI,aF), \tilde{8} = (a,0T,0I,0F), \\ \tilde{9} &= (a,0T,0I,aF), \tilde{10} = (a,0T,aI,0F), \tilde{11} = (a,0T,aI,aF), \\ \tilde{12} &= (a,aT,0I,0F), \tilde{13} = (a,aT,0I,aF), \end{split}$$

 $\tilde{14} = (a, aT, aI, 0F), \tilde{15} = (a, aT, aI, aF).$

Then B is a subalgebra of NQ(S). But it is not an ideal of NQ(S). In fact, if we take $\tilde{x} = (1, 1T, 0I, aF) \in NQ(S)$ then

$$\tilde{x} \odot \tilde{15} = (1, 1T, 0I, aF) \odot (a, aT, aI, aF) = (a, aT, aI, 0F) = \tilde{14} \in B$$

But $\tilde{x} = (1, 1T, 0I, aF) \notin B$.

We provide a condition for a subalgebra to be an ideal in neutrosophic quadruple BCI-algebra.

Theorem 3.5. If NQ(S) is a neutrosophic quadruple BCI-algebra based on a p-semisimple BCI-algebra S, then every subalgebra of NQ(S) is an ideal of NQ(S).

Proof. If S is a p-semisimple BCI-algebra, then $(NQ(S); \odot, \tilde{0})$ is a p-semisimple neutrosophic quadruple BCI-algebra by Theorem 3.2. Let NQ(S) be a subalgebra of NQ(S). It is clear that $\tilde{0} \in NQ(S)$. Let $\tilde{x}, \tilde{y} \in NQ(S)$ be such that $\tilde{x} \odot \tilde{y} \in NQ(S)$ and $\tilde{y} \in NQ(S)$. Then $\tilde{0} \odot \tilde{y} \in NQ(S)$ and $(\tilde{x} \odot \tilde{y}) \odot (\tilde{0} \odot \tilde{y}) \in NQ(S)$. Note that

$$\begin{aligned} ((\tilde{x} \odot \tilde{y}) \odot (\tilde{0} \odot \tilde{y})) \odot \tilde{x} &= ((\tilde{x} \odot \tilde{y}) \odot \tilde{x}) \odot (\tilde{0} \odot \tilde{y}) \\ &= ((\tilde{x} \odot \tilde{y}) \odot (\tilde{x} \odot \tilde{0})) \odot (\tilde{0} \odot \tilde{y}) \\ &= \tilde{0}. \end{aligned}$$

Since $(NQ(S); \odot, \tilde{0})$ is *p*-semisimple, we have $\tilde{x} = (\tilde{x} \odot \tilde{y}) \odot (\tilde{0} \odot \tilde{y}) \in NQ(S)$ by (3.2). Therefore NQ(S) is an ideal of NQ(S).

Lemma 3.6 ([11]). If A and B are (closed) ideals of a BCI-algebra S, then the set NQ(A, B) is a neutrosophic quadruple (closed) ideal of NQ(S).

Recall that there exist ideals A and B in a BCI-algebra S such that NQ(A, B) is not a neutrosophic quadruple closed ideal of NQ(S) (see [11, Example 3]).

We provide conditions for the set NQ(A, B) to be a neutrosophic quadruple closed ideal of NQ(S).

Theorem 3.7. Let A and B be ideals of a BCI-algebra S. Then the set NQ(A, B) is a neutrosophic quadruple closed ideal of NQ(S) if and only if the following assertion is valid.

$$(\forall a \in A, \forall b \in B)(0 * a \in A, 0 * b \in B).$$

$$(3.11)$$

Proof. Assume that NQ(A, B) is a neutrosophic quadruple closed ideal of NQ(S) for any ideals A and B of a BCI-algebra S. Let $a_1, a_2 \in A$ and $b_1, b_2 \in B$ be such that

 $(a_1, a_2T, b_1I, b_2F) \in NQ(A, B)$. Then

$$(0 * a_1, (0 * a_2)T, (0 * b_1)I, (0 * b_2)F) = (0, 0T, 0I, 0F) \odot (a_1, a_2T, b_1I, b_2F) \in NQ(A, B),$$

and so $0 * a_1, 0 * a_2 \in A$ and $0 * b_1, 0 * b_2 \in B$. Therefore (3.11) is valid.

Conversely, let A and B be ideals of a BCI-algebra S satisfying the condition (3.11). Then A and B are closed ideals of S. It follows from Lemma 3.6 that NQ(A, B) is a neutrosophic quadruple closed ideal of NQ(S).

Corollary 3.8. Given an ideal A of a BCI-algebra S, the set NQ(A) is a neutrosophic quadruple closed ideal of NQ(S) if and only if $0 * a \in A$ for all $a \in A$.

Theorem 3.9. For any ideals A and B of a BCI-algebra S, let m(A) and m(B) be the set of all minimal elements of A and B with $|m(A)| < \infty$ and $|m(B)| < \infty$, respectively. Then the set NQ(A, B) is a neutrosophic quadruple closed ideal of NQ(S).

Proof. For any $a \in A$, $b \in B$ and $n, k \in \mathbb{N}$, let $a_n = 0 * (0 * a)^n$ and $b_k = 0 * (0 * b)^k$. Then $a_n \in m(A)$ and $b_k \in m(B)$. Using (2.6) repeatedly, we have $a_n = 0 * (0 * a)^n = 0 * (0 * a^n)$ and $b_k = 0 * (0 * b)^k = 0 * (0 * b^k)$. Hence

$$a_n * a^n = (0 * (0 * a^n)) * a^n = (0 * a^n) * (0 * a^n) = 0 \in A$$

and

$$b_k * b^k = (0 * (0 * b^k)) * b^k = (0 * b^k) * (0 * b^k) = 0 \in B.$$

Since A and B are ideals, it follows that $a_n \in A$ and $b_k \in B$. Since $|m(A)| < \infty$ and $|m(B)| < \infty$, there exist $p, q \in \mathbb{N}$ such that $a_{n+p} = a_n$ and $b_{k+q} = b_k$, that is, $a_n * (0 * a)^p = a_n$ and $b_k * (0 * b)^q = b_k$. It follows that

$$a_p = 0 * (0 * a)^p = (a_n * (0 * a)^p) * a_n = a_n * a_n = 0$$

and

$$b_q = 0 * (0 * b)^q = (b_k * (0 * b)^q) * b_k = b_k * b_k = 0.$$

Thus $a_{p-1}*(0*a) = 0$ and $b_{q-1}*(0*b) = 0$, and so $0*a = a_{p-1} \in A$ and $0*b = b_{q-1} \in B$. Hence A and B are closed ideals of S. Therefore NQ(A, B) is a neutrosophic quadruple closed ideal of NQ(S). by Lemma 3.6.

4. NEUTROSOPHIC QUADRUPLE *p*-IDEALS

In what follows, let S be a BCI-algebra unless otherwise.

Question 1. If A and B are ideals of S, then is NQ(A, B) a neutrosophic quadruple *p*-ideal of NQ(S)?

The following example shows that the answer to Question 1 is negative.

Example 4.1. Consider a *BCI*-algebra $S = \{0, 1, a, b\}$ with the binary operation *, which is given in Table 2.

Then the neutrosophic quadruple BCI-algebra NQ(S) has 256 elements. Consider ideals $A = \{0, 1\}$ and $B = \{0, a\}$ of S. Note that $B = \{0, a\}$ is not a p-ideal of S. Then

$$NQ(A, B) = \{\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}, \tilde{5}, \tilde{6}, \tilde{7}, \tilde{8}, \tilde{9}, \tilde{10}, \tilde{11}, \tilde{12}, \tilde{13}, \tilde{14}, \tilde{15}\}$$

is a neutrosophic quadruple ideal of NQ(S) where

 $\tilde{0} = (0, 0T, 0I, 0F), \tilde{1} = (0, 0T, 0I, aF), \tilde{2} = (0, 0T, aI, 0F), \\ \tilde{3} = (0, 0T, aI, aF), \tilde{4} = (0, 1T, 0I, 0F), \\ \tilde{5} = (0, 1T, 0I, aF),$

TABLE 2. Cayley table for the binary operation "*"

*	0	1	a	b
0	0	0	a	a
1	1	0	b	a
a	a	a	0	0
b	b	a	1	0
0	0	u	T	0

$$\begin{split} \tilde{6} &= (0, 1T, aI, 0F), \tilde{7} = (0, 1T, aI, aF), \tilde{8} = (1, 0T, 0I, 0F), \\ \tilde{9} &= (1, 0T, 0I, aF), \tilde{10} = (1, 0T, aI, 0F), \tilde{11} = (1, 0T, aI, aF), \end{split}$$

 $\tilde{12} = (1, 1T, 0I, 0F), \tilde{13} = (1, 1T, 0I, aF),$

 $\tilde{14} = (1, 1T, aI, 0F), \tilde{15} = (1, 1T, aI, aF).$

(

If we take $\tilde{x}=(1,1T,bI,bF)\in NQ(S)$ and $\tilde{z}=(b,bT,bI,bF)\in NQ(S),$ then

$$\begin{split} \tilde{x} \odot \tilde{z}) \odot (7 \odot \tilde{z}) &= (a, aT, 0I, 0F) \odot (a, aT, 0I, 0F) \\ &= (0, 0T, 0I, 0F) = \tilde{0} \in NQ(A, B). \end{split}$$

But $\tilde{x} \notin NQ(A, B)$, and so NQ(A, B) is not a neutrosophic quadruple *p*-ideal of NQ(S).

We provide a condition for the set NQ(A, B) to be a neutrosophic quadruple *p*-ideal.

Theorem 4.1. Let A and B be ideals of S. If S is p-semisimple, then NQ(A, B) is a neutrosophic quadruple p-ideal of NQ(S).

Proof. If A and B are ideals of S, then NQ(A, B) is an ideal of NQ(S) (see Lemma 3.6), and so $\tilde{0} \in NQ(A, B)$. Let $\tilde{x}, \tilde{y}, \tilde{z} \in NQ(S)$ be such that $(\tilde{x} \odot \tilde{z}) \odot (\tilde{y} \odot \tilde{z}) \in NQ(A, B)$ and $\tilde{y} \in NQ(A, B)$. Since S is p-semisimple, it follows from (2.8) that

$$\begin{split} &(x_1*y_1,(x_2*y_2)T,(x_3*y_3)I,(x_4*y_4)F)\\ &=((x_1*z_1)*(y_1*z_1),((x_2*z_2)*(y_2*z_2))T,\\ &((x_3*z_3)*(y_3*z_3))I,((x_4*z_4)*(y_4*z_4))F)\\ &=(x_1*z_1,(x_2*z_2)T,(x_3*z_3)I,(x_4*z_4)F)\odot\\ &(y_1*z_1,(y_2*z_2)T,(y_3*z_3)I,(y_4*z_4)F)\\ &=((x_1,x_2T,x_3I,x_4F)\odot(z_1,z_2T,z_3I,z_4F))\odot\\ &((y_1,y_2T,y_3I,y_4F)\odot(z_1,z_2T,z_3I,z_4F))\\ &=(\tilde{x}\odot\tilde{z})\odot(\tilde{y}\odot\tilde{z})\in NQ(A,B). \end{split}$$

Hence $x_i * y_i \in A$ and $x_j * y_j \in B$ for i = 1, 2 and j = 3, 4. Since $y_1, y_2 \in A$ and $y_3, y_4 \in B$, we have $x_i \in A$ and $x_j \in B$ for i = 1, 2 and j = 3, 4. Thus $\tilde{x} = (x_1, x_2T, x_3I, x_4F) \in NQ(A, B)$. Therefore NQ(A, B) is a neutrosophic quadruple *p*-ideal of NQ(S).

Corollary 4.2. If A is an ideal of a p-semisimple BCI-algebra S, then NQ(A) is a neutrosophic quadruple p-ideal of NQ(S).

Corollary 4.3. If a BCI-algebra S satisfies:

$$(\forall x, y, z \in S)((x * y) * z = x * (y * z)), \tag{4.1}$$

then NQ(A, B) is a neutrosophic quadruple *p*-ideal of NQ(S) for all ideals A and B of S.

Proof. Using (2.3) and (4.1), we have

$$y * (x * (x * y)) = (y * x) * (x * y) = (y * (x * y)) * x$$
$$= ((y * x) * y) * x = (y * x) * (y * x) = 0$$

for all $x, y \in S$. It follows from (II) and (IV) that x * (x * y) = y. Hence S is p-semisimple, and therefore NQ(A, B) is a neutrosophic quadruple p-ideal of NQ(S) by Theorem 4.1.

Theorem 4.4. If A and B are p-ideals of S, then the set NQ(A, B) is a neutrosophic quadruple p-ideal of NQ(S).

Proof. Assume that A and B are p-ideals of S. Obviously, $\tilde{0} \in NQ(A, B)$. Let $\tilde{x} = (x_1, x_2T, x_3I, x_4F)$, $\tilde{y} = (y_1, y_2T, y_3I, y_4F)$ and $\tilde{z} = (z_1, z_2T, z_3I, z_4F)$ be elements of NQ(S) such that $(\tilde{x} \odot \tilde{z}) \odot (\tilde{y} \odot \tilde{z}) \in NQ(A, B)$ and $\tilde{y} \in NQ(A, B)$. Then

$$\begin{aligned} (\tilde{x} \odot \tilde{z}) \odot (\tilde{y} \odot \tilde{z}) &= ((x_1 * z_1) * (y_1 * z_1), ((x_2 * z_2) * (y_2 * z_2))T, \\ &\quad ((x_3 * z_3) * (y_3 * z_3))I, ((x_4 * z_4) * (y_4 * z_4))F) \in NQ(A, B), \end{aligned}$$

which implies that $(x_1*z_1)*(y_1*z_1) \in A$, $(x_2*z_2)*(y_2*z_2) \in A$, $(x_3*z_3)*(y_3*z_3) \in B$ and $(x_4*z_4)*(y_4*z_4) \in B$. Since $\tilde{y} \in NQ(A, B)$, we have $y_1, y_2 \in A$ and $y_3, y_4 \in B$. It follows from (2.14) that $x_1, x_2 \in A$ and $x_3, x_4 \in B$. Hence $\tilde{x} = (x_1, x_2T, x_3I, x_4F) \in NQ(A, B)$, and therefore NQ(A, B) is a neutrosophic quadruple *p*-ideal of NQ(S). \Box

Corollary 4.5. If A is a p-ideal of S, then NQ(A) is a neutrosophic quadruple p-ideal of NQ(S).

Proposition 4.6. For any *p*-ideals A and B of S, the set NQ(A, B) satisfies the following implication.

$$(\forall \tilde{x} \in NQ(S))(\tilde{0} \odot (\tilde{0} \odot \tilde{x}) \in NQ(A,B) \Rightarrow \tilde{x} \in NQ(A,B)).$$

$$(4.2)$$

Proof. If $\tilde{0} \odot (\tilde{0} \odot \tilde{x}) \in NQ(A, B)$, then

$$\begin{split} \tilde{0} \odot (\tilde{0} \odot \tilde{x}) &= (0, 0T, 0I, 0F) \odot ((0, 0T, 0I, 0F) \odot (x_1, x_2T, x_3I, x_4F)) \\ &= (0, 0T, 0I, 0F) \odot ((0 * x_1), (0 * x_2)T, (0 * x_3)I, (0 * x_4)F) \\ &= (0 * (0 * x_1), (0 * (0 * x_2))T, (0 * (0 * x_3))I, (0 * (0 * x_4))F) \\ &\in NQ(A, B). \end{split}$$

Hence $(x_1 * x_1) * (0 * x_1) = 0 * (0 * x_1) \in A$, $(x_2 * x_2) * (0 * x_2) = 0 * (0 * x_2) \in A$, $(x_3 * x_3) * (0 * x_3) = 0 * (0 * x_3) \in B$ and $(x_4 * x_4) * (0 * x_4) = 0 * (0 * x_4) \in B$. Since A and B are p-ideals of S, it follows from (2.14) that $x_1, x_2 \in A$ and $x_3, x_4 \in B$. Hence $\tilde{x} = (x_1, x_2T, x_3I, x_4F) \in NQ(A, B)$.

Corollary 4.7. For any p-ideal A of S, the set NQ(A) satisfies the following implication. $(\forall \tilde{x} \in NQ(S))(\tilde{0} \odot (\tilde{0} \odot \tilde{x}) \in NQ(A) \Rightarrow \tilde{x} \in NQ(A)).$ (4.3)

Theorem 4.8. Let A and B be ideals of S. Then NQ(A, B) is a neutrosophic quadruple *p*-ideal of NQ(S) if and only if the following assertion is valid.

$$(\tilde{x} \odot \tilde{z}) \odot (\tilde{y} \odot \tilde{z}) \in NQ(A, B) \Rightarrow \tilde{x} \odot \tilde{y} \in NQ(A, B)$$

$$(4.4)$$

for all $\tilde{x}, \tilde{y}, \tilde{z} \in NQ(S)$.

Proof. Assume that NQ(A, B) is a neutrosophic quadruple *p*-ideal of NQ(S). Let $\tilde{x}, \tilde{y}, \tilde{z} \in NQ(S)$ be such that $(\tilde{x} \odot \tilde{z}) \odot (\tilde{y} \odot \tilde{z}) \in NQ(A, B)$. Then

$$\begin{aligned} &((\tilde{x} \odot \tilde{y}) \odot (\tilde{x} \odot \tilde{y})) \odot (((\tilde{x} \odot \tilde{z}) \odot (\tilde{y} \odot \tilde{z})) \odot (\tilde{x} \odot \tilde{y})) \\ &= \tilde{0} \odot (((\tilde{x} \odot \tilde{z}) \odot (\tilde{x} \odot \tilde{y})) \odot (\tilde{y} \odot \tilde{z})) \\ &= \tilde{0} \odot \tilde{0} = \tilde{0} \in NQ(A, B), \end{aligned}$$

and so $\tilde{x} \odot \tilde{y} \in NQ(A, B)$ since NQ(A, B) is a neutrosophic quadruple *p*-ideal of NQ(S).

Conversely, let A and B be ideals of S such that the set NQ(A, B) satisfies the condition (4.4). Then NQ(A, B) is a neutrosophic quadruple ideal of NQ(S) by Lemma 3.6, and so $\tilde{0} \in NQ(A, B)$. Let $\tilde{x}, \tilde{y}, \tilde{z} \in NQ(S)$ be such that $(\tilde{x} \odot \tilde{z}) \odot (\tilde{y} \odot \tilde{z}) \in NQ(A, B)$ and $\tilde{y} \in NQ(A, B)$. Then $\tilde{x} \odot \tilde{y} \in NQ(A, B)$ by (4.4), and thus $\tilde{x} \in NQ(A, B)$. Therefore NQ(A, B) is a neutrosophic quadruple *p*-ideal of NQ(S).

Corollary 4.9. Given an ideal A of S, the set NQ(A) is a neutrosophic quadruple p-ideal of NQ(S) if and only if the following assertion is valid.

$$(\tilde{x} \odot \tilde{z}) \odot (\tilde{y} \odot \tilde{z}) \in NQ(A) \implies \tilde{x} \odot \tilde{y} \in NQ(A)$$

$$(4.5)$$

for all $\tilde{x}, \tilde{y}, \tilde{z} \in NQ(S)$.

Theorem 4.10. Let A and B be ideals of S such that

$$(\forall x \in S)(0 * (0 * x) \in A \text{ (resp., } B) \Rightarrow x \in A \text{ (resp., } B)).$$

$$(4.6)$$

Then NQ(A, B) is a neutrosophic quadruple p-ideal of NQ(S).

Proof. Let $x, y, z \in S$ be such that $(x * z) * (y * z) \in A$ (resp., B) and $y \in A$ (resp., B). Then

$$\begin{aligned} &(0*(0*((x*z)*(y*z))))*((x*z)*(y*z))) \\ &=(0*((x*z)*(y*z)))*(0*((x*z)*(y*z)))) \\ &=0\in A \text{ (resp., }B). \end{aligned}$$

and so $0 * (0 * ((x * z) * (y * z))) \in A$ (resp., B) since A and B are ideals of S. Now we have

$$\begin{aligned} 0*(0*(x*y)) &= (0*y)*(0*x) = (((0*z)*(0*z))*y)*(0*x) \\ &= (((0*(0*z))*z)*y)*(0*x) = (((0*y)*(0*z))*z)*(0*x) \\ &= ((0*(y*z))*z)*(0*x) = ((0*z)*(0*x))*(y*z) \\ &= ((0*(0*(0*z)))*(0*x))*(y*z) \\ &= ((0*(0*x))*(0*(0*z)))*(y*z) \\ &= (0*((0*x))*(0*(0*z)))*(y*z) = (0*(0*(x*z)))*(y*z) \\ &= (0*((0*x))*(0*(x*z)) = (0*(0*(x*z)))*(y*z) \\ &= (0*(y*z))*(0*(x*z)) = (0*(0*(y*z))))*(0*(x*z)) \\ &= (0*(0*(x*z)))*(0*(0*(y*z))) = 0*((0*(x*z)))*(0*(y*z))) \\ &= 0*(0*((x*z))*(y*z)) \in A \text{ (resp., }B). \end{aligned}$$

It follows from (4.6) that $x * y \in A$ (resp., B). Hence $x \in A$ (resp., B). This shows that A and B are p-ideals of S. Therefore NQ(A, B) is a neutrosophic quadruple p-ideal of NQ(S) by Theorem 4.4.

Corollary 4.11. Let A be an ideal of S such that

$$(\forall x \in S)(0 * (0 * x) \in A \Rightarrow x \in A).$$

$$(4.7)$$

G. MUHIUDDIN AND Y. B. JUN

Then NQ(A) is a neutrosophic quadruple p-ideal of NQ(S).

5. CONCLUSION

In this paper, we consider characterizations of neutrosophic quadruple BCI-algebra, and give conditions for the neutrosophic quadruple BCI-set to be a p-semisimple BCIalgebra. Futhermore, we provide a condition for a subalgebra to be an ideal in neutrosophic quadruple BCI-algebra, and provide conditions for the set NQ(A, B) to be a neutrosophic quadruple closed ideal and neutrosophic quadruple p-ideal. We hope that this work will provide a deep impact on the upcoming research in this field and other related areas to open up new horizons of interest and innovations. Indeed, this work may serve as a foundation for further study of neutrosophic subalgebras in BCK/BCI-algebras. To extend these results, one can further study the neutrosophic set theory of different algebras such as MTL-algerbas, BL-algebras, MV-algebras, EQ-algebras, R0-algebras and Q-algebras etc. One may also apply this concept to study some applications in many fields like decision making, knowledge base systems, medical diagnosis, data analysis and graph theory etc.

6. ACKNOWLEDGEMENTS

The authors are very thankful to the reviewers for careful detailed reading and helpful comments/suggestions that improved the overall presentation of this paper.

REFERENCES

- A.A.A. Agboola, B. Davvaz and F. Smarandache. Neutrosophic quadruple algebraic hyperstructures, Ann Fuzzy math. Inform., 14 (1) (2017), 29–42.
- [2] S.A. Akinleye, F. Smarandache and A.A.A. Agboola. On neutrosophic quadruple algebraic structures, Neutrosophic Sets and Systems, 12 (2016), 122–126.
- [3] A. Borumand Saeid and Y.B. Jun. Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform. 14 (1) (2017), 87–97.
- [4] Y. Huang. BCI-algebra, Science Press, Beijing, 2006.
- [5] K. Iséki. On BCI-algebras, Math. Seminar Notes 8 (1980), 125–130.
- [6] K. Iséki and S. Tanaka. An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1–26.
- [7] Y.B. Jun. Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann. Fuzzy Math. Inform. 14 (1) (2017), 75–86.
- [8] Y.B. Jun, S.J. Kim and F. Smarandache. Interval neutrosophic sets with applications in BCK/BCIalgebra, Axioms 2018, 7, 23.
- Y.B. Jun, F. Smarandache and H. Bordbar. Neutrosophic N-structures applied to BCK/BCI-algebras, Information 2017, 8, 128.
- [10] Y.B. Jun, F. Smarandache, S.Z. Song and M. Khan. Neutrosophic positive implicative N-ideals in BCK/BCI-algebras, Axioms 2018, 7, 3.
- [11] Y.B. Jun, S.Z. Song, F. Smarandache and H. Bordbar. Neutrosophic quadruple BCK/BCI-algebras, Axioms 2018, 7, 41; doi:10.3390/axioms7020041.
- [12] M. Khan, S. Anis, F. Smarandache and Y.B. Jun. Neutrosophic N-structures and their applications in semigroups, Ann. Fuzzy Math. Inform. 14 (6) (2017), 583–598.
- [13] J. Meng and Y. B. Jun. *BCK*-algebras, Kyungmoonsa Co. Seoul, Korea 1994.
- [14] G. Muhiuddin, H. Bordbar, F. Smarandache, Y. B. Jun, Further results on (\in, \in) -neutrosophic subalgebras and ideals in BCK/BCI-algebras, Neutrosophic Sets and Systems, Vol. **20** (2018), 36-43.
- [15] M.A. Öztürk and Y.B. Jun. Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst. 8 (2018), 1–17.
- [16] F. Smarandache. Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 105 p., 1998 http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (last edition online).

- [17] F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Reserch Press, Rehoboth, NM, 1999.
- [18] F. Smarandache. Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math. **24** (3) (2005), 287–297.
- [19] F. Smarandache. Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Sets and Systems, 10 (2015), 96–98.
- [20] S.Z. Song, F. Smarandache and Y.B. Jun. Neutrosophic commutative N-ideals in BCK- algebras, Information 2017, 8, 130.
- [21] X. Zhang, J. Hao and S.A. Bhatti. On p-ideals of a BCI-algebra, Punjab Univ. J. Math. (Lahore) 27 (1994), 121–128.

G. MUHIUDDIN

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TABUK, TABUK 71491, SAUDI ARABIA *Email address*: chishtygm@gmail.com

YOUNG BAE JUN

DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNIVERSITY, JINJU 660-701, KOREA

Email address: skywine@gmail.com