ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 5, Number 3 (2022), 145-152 ISSN: 2582-0818 © http://www.technoskypub.com

FUNCTIONS AND IT'S IMPLICATIONS ON (-NANO TOPOLOGICAL SPACE

K. S. JENAVEE, R. ASOKAN* AND O. NETHAJI

ABSTRACT. In this paper, we are studying about a function's between domain ζ -nano topological spaces and codomain nano topological spaces which means every nano topology has its inverse image in ζ -nano topology(i.e., ζ -continuous). We establish the ζ -cluster point in ζ -continuous. We search image from a ζ -open sets (ζ -closed set) to a nano open sets(nano closed sets) is called a ζ -open map(ζ -closed map). Finally, some of the results are portrayed with these ζ -continuity with N-continuity and we extended to ζ -homeomorphism.

1. INTRODUCTION AND PRELIMINARIES

Thivagar and Richard [4] found the result of Nano-Topology(\mathcal{N}). In this paper, we choose ζ element as one of the elements are $\mathcal{L}_{\mathcal{R}}$, $\mathcal{U}_{\mathcal{R}}$, and $\mathcal{B}_{\mathcal{R}}$. And compare with all open set containing in the nano topological space and then we get some new open elements which is subcollection of ζ element. From this expansion of nano topology was called ζ -nano topology is developed by Jenavee et al [1, 3] and also investigate with some results related with ζ open and ζ closed sets.

Definition 1.1. [4] Let \mathcal{V} be a non-empty finite set of members are called the universe and \mathcal{R} has an equivalence relation on \mathcal{V} known as the indiscernibility relation. Members belonging to the same equivalence class are called to be indiscernible with each other. The pair $(\mathcal{V}, \mathcal{R})$ is called to be the approximation-space. Let $\mathcal{X} \subset \mathcal{V}$.

The lower approximation of X with respect to R is the set of all members, which can be for certain classified as X with respect to R and it is represented by L_R(X). That is,

$$\mathcal{L}_{\mathcal{R}}(\mathcal{X}) = \bigcup_{x \in \mathcal{V}} \{ \mathcal{R}(\mathcal{X}) : \mathcal{R}(\mathcal{X}) \subseteq \mathcal{X} \},\$$

where $\mathcal{R}(\mathcal{X})$ denoted the equivalence class determined by \mathcal{X} .

(2) The upper approximation of \mathcal{X} with respect to \mathcal{R} is the set of all members, which can be possibly classified as \mathcal{X} with respect to \mathcal{R} and it is represented by $\mathcal{U}_{\mathcal{R}}(\mathcal{X})$.

(i.e.),
$$\mathcal{U}_{\mathcal{R}}(\mathcal{X}) = \bigcup_{x \in \mathcal{V}} \{\mathcal{R}(\mathcal{X}) : \mathcal{R}(\mathcal{X}) \cap \mathcal{X} \neq \phi\}$$

¹⁹⁹¹ Mathematics Subject Classification. 54-01, 54A05, 54C05, 54C10.

Key words and phrases. ζ -continuity; ζ -cluster point; ζ -open map; ζ -closed map; ζ -homeomorphism. Received: September 29, 2022. Accepted: October 30, 2022. Published: December 31, 2022.

^{*}Corresponding author.

(3) The boundary region of \mathcal{X} wit respect to \mathcal{R} is the set of all members, which can be neither in nor as not- \mathcal{X} with respect to \mathcal{R} and it is represented by $\mathcal{B}_{\mathcal{R}}(\mathcal{X})$.

(i.e.),
$$\mathcal{B}_{\mathcal{R}}(\mathcal{X}) = \mathcal{U}_{\mathcal{R}}(\mathcal{X}) - \mathcal{L}_{\mathcal{R}}(\mathcal{X})$$

Definition 1.2. [4] Let \mathcal{V} be the universe \mathcal{R} be an equivalence relation on \mathcal{V} and $\tau_{\mathcal{R}}(\mathcal{X}) = \{\mathcal{V}, \phi, \mathcal{U}_{\mathcal{R}}(\mathcal{X}), \mathcal{L}_{\mathcal{R}}(\mathcal{X}), \mathcal{B}_{\mathcal{R}}(\mathcal{X})\}$, where $\mathcal{X} \subset \mathcal{V}$. Then $\tau_{\mathcal{R}}(\mathcal{X})$ satisfies the following axioms:

- (1) \mathcal{V} and $\phi \in \tau_{\mathcal{R}}(\mathcal{X})$.
- (2) The union of the members of any sub-collection of $\tau_{\mathcal{R}}(\mathcal{X})$ is in $\tau_{\mathcal{R}}(\mathcal{X})$.
- (3) The intersection of the members of finite sub-collection of $\tau_{\mathcal{R}}(\mathcal{X})$ is in $\tau_{\mathcal{R}}(\mathcal{X})$.

That is, $\tau_{\mathcal{R}}(\mathcal{X})$ is a topology on \mathcal{V} is called the Nano topology on \mathcal{V} with respect to \mathcal{X} . $(\mathcal{V}, \tau_{\mathcal{R}}(\mathcal{X}))$ is called the Nano topological space. Members of the Nano topology are called Nano open sets in \mathcal{V} . Members of $[\tau_{\mathcal{R}}(\mathcal{X})]^c$ are called Nano closed sets.

Definition 1.3. [1] A subset J of a Nano topological space $(V, \mathcal{N}_{\mathcal{R}})$ is called ζ -Nano-open set if there exists a Nano open set $Z \in \mathcal{N}_{\mathcal{R}}$ -O, such that

- (1) $Z \neq \phi, V$.
- (2) $J \subseteq \mathcal{N}_{\mathcal{R}}$ -int $(J) \cup Z$.

In $(V, \mathcal{N}_{\mathcal{R}})$, the member of the open set is said to be ζ -Nano-open and the complement is ζ -Nano-closed set. The collection of all ζ -Nano-open including ϕ, V is said to be ζ -Nano-topological space if satisfies topological space definition. So, this $(V, \mathcal{N}_{\mathcal{R}}, \zeta)$ or \mathcal{N} - $\tau_{\zeta}(J)$ can be rewritten in the form ζ -Nano-topological space on V.

Definition 1.4. [1] Let E be a subset of a ζ -Nano-Topology.

- The union of all Nano-ζ sets contained in E is represent in the form of ζ-Nanoint(E). We can rewrite in the form ζ_i(E).
- (2) The intersection of all Nano- ζ sets containing in E is represent in the form of ζ -Nano-cl(E). Also we write in the form $\zeta_c(E)$.
- (3) The exterior of ζ -Nano-Topology in E is defined by $\zeta_e(E) = \zeta_i(V E)$.
- (4) The frontier of ζ -Nano-Topology in E is defined by $\zeta_f(E) = \zeta_c(E) \cap \zeta_c(V E)$.

Proposition 1.1. [1] In $(V, \mathcal{N}_{\mathcal{R}}, \zeta)$, if *E* and *F* are subsets, then the following should be attained.

(1) $\zeta_{\mathcal{N}}$ -*i*-(ϕ) = ϕ and $\zeta_{\mathcal{N}}$ -*c*-(ϕ) = ϕ . (2) $\zeta_{\mathcal{N}}$ -*i*-(V) = V and $\zeta_{\mathcal{N}}$ -*c*-(V) = V. (3) $\zeta_{\mathcal{N}}$ -*i*-(E) $\subseteq E \subseteq \zeta_{\mathcal{N}}$ -*c*-(E). (4) $E \subseteq F \Rightarrow \zeta_{\mathcal{N}}$ -*i*-(E) $\subseteq \zeta_{\mathcal{N}}$ -*i*-(F) and $\zeta_{\mathcal{N}}$ -*c*-(E) $\subseteq \zeta_{\mathcal{N}}$ -*i*-(F). (5) $\zeta_{\mathcal{N}}$ -*i*-($E \cap F$) $\subseteq \zeta_{\mathcal{N}}$ -*i*-(E) $\cap \zeta_{\mathcal{N}}$ -*i*-(F). (6) $\zeta_{\mathcal{N}}$ -*c*-($E \cap F$) = $\zeta_{\mathcal{N}}$ -*c*-(E) $\cap \zeta_{\mathcal{N}}$ -*c*-(F). (7) $\zeta_{\mathcal{N}}$ -*c*-($E \cup F$) $\supseteq \zeta_{\mathcal{N}}$ -*c*-(E) $\cup \zeta_{\mathcal{N}}$ -*c*-(F). (8) $\zeta_{\mathcal{N}}$ -*i*-($E \cup F$) $\subseteq \zeta_{\mathcal{N}}$ -*i*-(E). (9) $\zeta_{\mathcal{N}}$ -*i*-($\zeta_{\mathcal{N}}$ -*c*-(E)) $\supseteq \zeta_{\mathcal{N}}$ -*c*-(E). (10) $\zeta_{\mathcal{N}}$ -*c*-($\zeta_{\mathcal{N}}$ -*c*-(E)) $\supseteq \zeta_{\mathcal{N}}$ -*c*-(E). (11) $\zeta_{\mathcal{N}}$ -*i*-(E) = $E = \zeta_{\mathcal{N}}$ -*c*-(E).

Theorem 1.2. [3] In (V, τ_{ζ}) , Z is ζ -closed set iff $Z = \zeta$ -closure set.

Corollary 1.3. [3] In (V, τ_{ζ}) , Z is ζ -open set iff $Z = \zeta$ -interior set.

Lemma 1.4. [3] In (V, τ_{ζ}) , $\zeta_c(S)$ is the smallest ζ -closed set containing S.

ζ -NANO FUNCTIONS

The rest of the paper is content are present: In section-2, gives some functions and it's implications like ζ -continuity, ζ -open map, ζ -closed map, ζ -cluster point and ζ -homeomorphism. Few result is based with these content are present. The conclusion of the current study is set forth in section-3.

2. ζ -Continuity

Definition 2.1. Let $(V, \tau_{\zeta}(Y))$ is ζ -nano topological space and $(W, \tau_{\mathcal{N}}(Z))$ is nano topological space. Then a mapping $\mathfrak{f} : (V, \tau_{\zeta}(Y)) \to (W, \tau_{\mathcal{N}}(Z))$ is ζ -continuous on V, if \mathfrak{f}^{-1} is a ζ -open set in V for each \mathcal{N} -open set Z in W.

Example 2.2. Let $V = \{v_1, v_2, v_3, v_4\}$ with $V / \mathcal{R} = \{\{v_1, v_3\}, \{v_2\}, \{v_4\}\}$. Then, $Y = \{v_1, v_4\} \subseteq V$. So, $\tau_{\mathcal{N}}(Y) = \{\phi, V, \{v_4\}, \{v_1, v_3, v_4\}, \{v_1, v_3\}\}$. Now, $\zeta_Y = \{v_1, v_3\}$ then $\tau_{\zeta}(Y) = \{\phi, V, \{v_1\}, \{v_3\}, \{v_4\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_3, v_4\}, \{v_1, v_3, v_4\}\}$. Let $W = \{w_1, w_2, w_3, w_4\}$ with $W / \mathcal{R} = \{\{w_1, w_3\}, \{w_2\}, \{w_4\}\}$. Then, $Z = \{w_1, w_4\} \subseteq W$. So, $\tau_{\mathcal{N}}(Z) = \{\phi, W, \{w_4\}, \{w_1, w_3, w_4\}, \{w_1, w_3\}\}$.

Define $\mathfrak{f} : (V, \tau_{\zeta}(Y)) \to (W, \tau_{\mathcal{N}}(Z))$ and \mathfrak{f} are denoted as $\mathfrak{f}(v_1) = w_1, f(v_2) = w_2, f(v_3) = w_3, f(v_4) = w_4$. Then, $\mathfrak{f}^{-1}(\{w_4\}) = \{v_4\}, \mathfrak{f}^{-1}(\{w_1, w_3\}) = \{v_1, v_3\}, \mathfrak{f}^{-1}(\{w_1, w_3, w_4\}) = \{v_1, v_3, v_4\}$. (i.e) (That is), the inverse image of every ζ -open set in V is \mathcal{N} -open in W. Thence, \mathfrak{f} is ζ -continuous.

Note:

- (1) In codomain, the collection of all τ_N open members on W.
- (2) In domain, the collection of all τ_{ζ} open members on V.
- (3) In domain, the different colour denotes different open sets,
 - (a) red- ζ -nano open sets.
 - (b) green-nano open sets.
 - (c) cyan-mapping between domain and codomain.

Theorem 2.1. *Every* N*-continuous function is* ζ *-continuous.*

Proof. Let $\mathfrak{f}: V \to W$ be a \mathcal{N} -continuous function. If Z is \mathcal{N} -open in W, then $\mathfrak{f}^{-1}(Z)$ is \mathcal{N} -open in V and by definition 1.3, $\mathfrak{f}^{-1}(Z)$ is ζ -open in W. So, using definition 2.1, \mathfrak{f} is ζ -continuous.

Remark. The converse of the last theorem 2.1 may be false.

Example 2.3. In example 2.2, $\mathfrak{f}^{-1}(\{v_1, v_4\}) = \{w_1, w_4\}$ is ζ -open but not \mathcal{N} -open.

Definition 2.4. Let V be a space and $Z \subseteq V$. Then, a point $z \in V$ is called a ζ -cluster point of Z if for every ζ -open set U containing z, $U \cap (Z - \{z\}) \neq \phi$.

Proposition 2.2. In $(V, \tau_{\zeta}(Y))$,

- (1) If Z_i is ζ -closed for each $i \in \mathcal{I}$, then $\bigcap_{i \in \mathcal{I}} Z_i$ is ζ -closed.
- (2) If Z_i is ζ -open for each $i \in \mathcal{I}$, then $\bigcup_{i \in \mathcal{I}} Z_i$ is ζ -open.
- *Proof.* (1) Let that $Z = \bigcap_{i \in \mathcal{I}} Z_i$ and $z \in \zeta_c(Z)$. By definition 2.4, for every ζ -open set O containing $z, Z \cap O \neq \phi \Rightarrow Z_i \cap O \neq \phi$ for each $i \in \mathcal{I}$. If $z \notin Z$, then $z \notin Z_i$ for some $i \in \mathcal{I}$. Since Z_i is ζ -closed, by theorem 1.2, $Z_i = \zeta_c(Z_i)$ and $z \notin \zeta_c(Z_i) \Rightarrow \exists a \zeta$ -open set O containing z such that $Z_i \cap O = \phi$. This contradiction gives that $z \in Z$ and $\zeta_c(Z) \subseteq Z$. By using proposition 1.1, it gives $Z = \zeta_c(Z)$. Using theorem 1.2, Z is ζ -closed, (i. e), $\bigcap_{i \in \mathcal{I}} Z_i$. Hence, it proves (1).
 - (2) Let Z_i is ζ-open for each i ∈ I. Then, from the definition 1.3, V − Z_i is ζ-closed for each i ∈ I. From (i), ∩_{i∈I}(V − Z_i) is ζ-closed ⇒ V − (∪_{i∈I}Z_i) is ζ-closed and ∪_{i∈I}Z_i is ζ-open. Thus, it proves (2).

Theorem 2.3. A function $\mathfrak{f} : V \to W$ is ζ -continuous \Leftrightarrow for each point $v \in V$ and each \mathcal{N} -open set Z in W with $\mathfrak{f}(v) \in Z$, there is a ζ -open set U in V such that $v \in U$ and $\mathfrak{f}(U) \subseteq Z$.

Proof. Let \mathfrak{f} is ζ -continuous. Assume $v \in V$ and Z be \mathcal{N} -open set in W such that $\mathfrak{f}(v) \in Z$. Then, $v \in \mathfrak{f}^{-1}(Z)$ and by definition 2.1, $\mathfrak{f}^{-1}(Z)$ is a ζ -open set in V. Now, take $U = \mathfrak{f}^{-1}(Z)$. Then, U is ζ -open set in V such that $v \in U$ and $\mathfrak{f}(U) \subseteq V$.

 \Leftarrow , Assume for each point $v \in V$ and each \mathcal{N} -open set Z in W with $\mathfrak{f}(v) \in Z$, there is a ζ-open set U in V such that $v \in U$ and $\mathfrak{f}(U) \subseteq Z$. Let Z be \mathcal{N} -open in W and $v \in \mathfrak{f}^{-1}(Z)$. Then, $\mathfrak{f}(z) \in Z$. By our assumption, \exists a ζ-open set U_v in V such that $v \in U_v$ and $\mathfrak{f}(U_v) \subseteq Z \Rightarrow v \in U_v \subseteq \mathfrak{f}^{-1}(Z)$ and $\mathfrak{f}^{-1}(Z) = \cup \{U_v : v \in \mathfrak{f}^{-1}(Z)\}$. Using the proposition 2.2, $\mathfrak{f}^{-1}(Z)$ is ζ-open in V and then by definition 2.1, \mathfrak{f} is ζ-continuous. \Box

Theorem 2.4. Let $f: V \to W$ is a function. Then, the following are equivalent:

- (1) f is ζ -continuous.
- (2) The inverse image of each closed set in W is ζ -closed in V.
- (3) For each subset Z of V, $\mathfrak{f}(\zeta_c(Z)) \subseteq \zeta_c(\mathfrak{f}(Z))$.

Proof. Case (1): (1) \Rightarrow (2). Assume f is ζ -continuous. Let P be a \mathcal{N} -closed subset of W. Then, W - P is \mathcal{N} -open in W. And by definition 2.1, $\mathfrak{f}^{-1}(W - P)$ is ζ -open in V $\Rightarrow V - \mathfrak{f}^{-1}(P)$ is ζ -open in V and $\mathfrak{f}^{-1}(P)$ is ζ -closed in V. Hence, it proves.

Case (2): (2) \Rightarrow (3). Assume the inverse image of every closed set in W is ζ -closed in V. Let $Z \subseteq V$ Then, $\mathfrak{f}(Z) \subseteq \mathcal{N}_c(\mathfrak{f}(Z)) \Rightarrow \mathfrak{f}^{-1}(\mathfrak{f}(Z)) \subseteq \mathfrak{f}^{-1}(\mathcal{N}_c(\mathfrak{f}(Z))) \Rightarrow Z \subseteq \mathfrak{f}^{-1}(\mathcal{N}_c(\mathfrak{f}(Z)))$. Here, $\mathcal{N}_c(\mathfrak{f}(Z))$ is a closed set in W and $\mathfrak{f}^{-1}(\mathcal{N}_c(\mathfrak{f}(Z)))$ is ζ -closed in V containing Z, by our assumption. By lemma 1.4, $Z \subseteq \zeta_c(Z) \subseteq \mathfrak{f}^{-1}(\mathcal{N}_c(\mathfrak{f}(Z))) \Rightarrow \mathfrak{f}(\zeta_c(Z)) \subseteq (\mathfrak{f}(\mathfrak{f}^{-1}(\mathcal{N}_c(\mathfrak{f}(Z))))) \subseteq \mathcal{N}_c(\mathfrak{f}(Z))$. Thus, it proves.

Case (3): (3) \Rightarrow (1). Assume that for each subset Z of V, $\mathfrak{f}(\zeta_c(Z)) \subseteq \mathcal{N}_c(\mathfrak{f}(Z))$. Let P be a \mathcal{N} closed subset of W. Then, $\mathfrak{f}^{-1}(P) \subseteq V$. Since, we have $\mathfrak{f}(\zeta_c(\mathfrak{f}^{-1}(P))) \subseteq \mathcal{N}_c(\mathfrak{f}(\mathfrak{f}^{-1}(Z))) \subseteq \mathcal{N}_c(P) = P \Rightarrow \zeta_c(\mathfrak{f}^{-1}(P)) \subseteq \mathfrak{f}^{-1}(P)$. By theorem 1.1, $\mathfrak{f}^{-1}(P) \subseteq \zeta_c(\mathfrak{f}^{-1}(P))$. Then, $\mathfrak{f}^{-1}(P) = \zeta_c(\mathfrak{f}^{-1}(P))$. It gives, $\mathfrak{f}^{-1}(P)$ is ζ -closed in V. If Q is \mathcal{N} -open in W, then W-Q is \mathcal{N} -closed in W. Since, $\mathfrak{f}^{-1}(W-Q)$ is ζ -closed in V $\Rightarrow V - \mathfrak{f}^{-1}(Q)$ ζ -closed in V and $\mathfrak{f}^{-1}(Q)$ is ζ -open in V. From definition 2.1, \mathfrak{f} is ζ -continuous. Thence, it proves.

Corollary 2.5. A function $\mathfrak{f} : V \to W$ is ζ -continuous \Leftrightarrow for each subset P of W, $\zeta_c(\mathfrak{f}^{-1}(P)) \subseteq \mathfrak{f}^{-1}(\zeta_c(P)).$

Proof. Let \mathfrak{f} is ζ -continuous and $P \subseteq W$. Then, $\mathfrak{f}^{-1}(P) \subseteq V$. From the theorem 2.4, $\mathfrak{f}(\zeta_c(\mathfrak{f}^{-1}(P))) \subseteq \mathcal{N}_c(\mathfrak{f}(\mathfrak{f}^{-1}(P))) \subseteq \mathcal{N}_c(P)$ and $\zeta_c(\mathfrak{f}^{-1}(P)) \subseteq \mathfrak{f}^{-1}(\mathcal{N}_c(P))$.

 $\Leftarrow (\text{Conversely}), \text{ let for each subset P of W, } \zeta_c(\mathfrak{f}^{-1}(P)) \subseteq \mathfrak{f}^{-1}(\mathcal{N}_c(P)) \text{ and P be} \\ \mathcal{N}-\text{open in W. Since, } \zeta_c(\mathfrak{f}^{-1}(P)) \subseteq \mathfrak{f}^{-1}(\mathcal{N}_c(P)) \Rightarrow \mathfrak{f}(\zeta_c(\mathfrak{f}^{-1}(P))) \subseteq \mathfrak{f}(\mathfrak{f}^{-1}(\mathcal{N}_c(P))) \subseteq \\ \mathcal{N}_c(P). \text{ If } P = \mathfrak{f}(Z) \text{ where } Z \subseteq V, \text{, then } \mathfrak{f}(\zeta_c(P)) \subseteq \mathcal{N}_c(\mathfrak{f}(Z)) \text{ and by theorem 2.4, } \mathfrak{f} \text{ is} \\ \zeta \text{-continuous.} \qquad \Box$

Definition 2.5. A function $f: V \to W$ is said to be ζ -open map if the image of each open set in V is a ζ -open set in W.

We can rewrite ζ -open map as ζ -open.

Proposition 2.6. *Every* \mathcal{N} *open map is* ζ *-open.*

Proof. Let V is \mathcal{N} open. Since, \exists nano open O such that $O = \mathcal{N}_i$. From the definition 1.3, Therefore, V is ζ -open.

Remark. The converse of the before theorem 2.6 can be false.

Example 2.6. Let $V = \{v_1, v_2, v_3, v_4\}$ with $V \nearrow \mathcal{R} = \{\{v_1, v_3\}, \{v_2\}, \{v_4\}\}$. Then, $Y = \{v_1, v_4\} \subseteq V$. So, $\tau_{\mathcal{N}}(Y) = \{\phi, V, \{v_4\}, \{v_1, v_3, v_4\}, \{v_1, v_3\}\}$. Now, $\zeta_Y = \{v_1, v_3\}$ then $\tau_{\zeta}(Y) = \{\phi, V, \{v_1\}, \{v_3\}, \{v_4\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_3, v_4\}, \{v_1, v_3, v_4\}\}$. Define $\mathfrak{f} : (V, \tau_{\mathcal{N}}(Y)) \rightarrow (V, \tau_{\zeta}(Y))$ and \mathfrak{f} are denoted as $\mathfrak{f}(v_1) = w_1, \mathfrak{f}(v_2) = w_2, \mathfrak{f}(v_3) = w_3, \mathfrak{f}(v_4) = w_4$. $\mathfrak{f}(\{v_3, v_4\}) = \{v_3, v_4\}$ is ζ -open but not \mathcal{N} open.

Theorem 2.7. A function $f: V \to W$ is ζ -open \Leftrightarrow for any subset P of W and any closed subset Q of V containing $f^{-1}(P)$, $\exists a \zeta$ -closed set R of W containing P such that $f^{-1}(R) \subseteq Q$.

Proof. Let f is ζ -open, $P \subseteq W$ and Q be a closed subset of V such that $\mathfrak{f}^{-1}(P) \subseteq Q$. So, V-Q is \mathcal{N} -open in V. Since, f is ζ -open, by definition 2.5, $\mathfrak{f}(V-Q)$ is ζ -open in W $\Rightarrow W - \mathfrak{f}(V-Q)$ is ζ -closed in W. Since $\mathfrak{f}^{-1}(P) \subseteq Q$, $V-Q \subseteq V - \mathfrak{f}^{-1}(P) = \mathfrak{f}^{-1}(W-P) \Rightarrow \mathfrak{f}(V-Q) \subseteq \mathfrak{f}(\mathfrak{f}^{-1}(W-P)) \subseteq W-P$. So $P \subseteq W - \mathfrak{f}(V-Q)$. Then, $\mathfrak{f}^{-1}(W - \mathfrak{f}(V-Q)) = V - \mathfrak{f}^{-1}(\mathfrak{f}(V-Q)) \subseteq Q$. Hence, $R = W - \mathfrak{f}(V-Q)$ is ζ -closed set of W containing P and $\mathfrak{f}^{-1}(R) \subseteq Q$.

 \Leftarrow , let reverse part is holds. Let U be \mathcal{N} -open in V. Then V-U is \mathcal{N} -closed in V and $\mathfrak{f}^{-1}(W - \mathfrak{f}(U)) \subseteq V - U$. Since, \exists a ζ -closed set R of W such that $W - \mathfrak{f}(U) \subseteq R$ and $\mathfrak{f}^{-1}(R) \subseteq V - U$. Therefore, $W - \mathfrak{f}(U) \subseteq R \Rightarrow W - R \subseteq \mathfrak{f}(U)$. And $\mathfrak{f}^{-1}(R) \subseteq V - U \Rightarrow U \subseteq V - \mathfrak{f}^{-1}(R) = \mathfrak{f}^{-1}(W - R) \Rightarrow \mathfrak{f}(U) \subseteq \mathfrak{f}(\mathfrak{f}^{-1}(W - R) \subseteq W - R$. This gives, $\mathfrak{f}(U) = W - R$ and $\mathfrak{f}(U)$ is ζ -open in W. Thus, \mathfrak{f} is ζ -open. \Box

Theorem 2.8. If $\mathfrak{f}: V \to W$ is ζ -open, then $\mathfrak{f}(\mathcal{N}_i(Z)) \subseteq \zeta_i(\mathfrak{f}(Z))$ for every subset Z of V.

Proof. Suppose $\mathfrak{f}: V \to W$ is ζ -open and $Z \subseteq V$. Since, $\mathcal{N}_i(Z)$ is \mathcal{N} -open in V, by definition 2.5, $\mathfrak{f}(\mathcal{N}(Z))$ is ζ -open in W and by corollary 1.3, then $\mathfrak{f}(\mathcal{N}_i(Z)) = \zeta_i(\mathfrak{f}(\mathcal{N}_i(Z)))$. So, $\mathfrak{f}(\mathcal{N}(Z)) \subseteq \mathfrak{f}(Z)$. By proposition 1.1(4), $\zeta_i(\mathfrak{f}(\mathcal{N}_i(Z))) \subseteq \zeta_i(\mathfrak{f}(Z))$ and $\mathfrak{f}(\mathcal{N}(Z)) \subseteq \zeta_i(\mathfrak{f}(Z))$. **Theorem 2.9.** If $\mathfrak{f}: V \to W$ is ζ -open, then $\mathfrak{f}^{-1}(\zeta_c(P)) \subseteq \mathcal{N}_c(\mathfrak{f}^{-1}(P))$ for every subset P of W.

Proof. Let $\mathfrak{f}: V \to W$ is ζ -open and $P \subseteq Y$. Then, $\mathfrak{f}^{-1}(P) \subseteq \mathcal{N}_c(\mathfrak{f}^{-1}(P))$ and $\mathcal{N}_c(\mathfrak{f}^{-1}(P))$ is closed in V. By theorem 2.7, \exists a ζ -closed set Q of W containing P such that $\mathfrak{f}^{-1}(Q) \subseteq \mathcal{N}_c(\mathfrak{f}^{-1}(P))$. Since, $P \subseteq Q$, by proposition 2.2 and theorem 1.2, $\zeta_c(P) \subseteq \zeta_c(Q) = Q$. So, $\mathfrak{f}^{-1}(\zeta_c(P)) \subseteq \mathfrak{f}^{-1}(Q) \subseteq \mathcal{N}_c(\mathfrak{f}^{-1}(P))$.

Definition 2.7. A function $f: V \to W$ is said to be ζ -closed map if the image of each closed set in V is a ζ -closed set in W. We rewrite ζ -closed map as ζ -closed.

Theorem 2.10. *Every* \mathcal{N} *closed map is* ζ *-closed.*

Proof. Let V is \mathcal{N} closed. Since, \exists nano closed C such that $C = \mathcal{N}_c$. From the definition 1.3, Therefore, V is ζ -closed.

Remark. The converse of the before theorem 2.10 can be false.

Example 2.8. In example 2.6, $\mathfrak{f}(\{v_2, v_3\}) = \{v_2, v_3\}$ is ζ -closed but not \mathcal{N} -closed.

Theorem 2.11. A function $\mathfrak{f} : V \to W$ is ζ -closed \Leftrightarrow for each subset P of W and each open set Q in V containing $\mathfrak{f}^{-1}(P)$, $\exists a \zeta$ -open set O of W containing P such that $\mathfrak{f}^{-1}(O) \subseteq Q$.

Proof. Let \mathfrak{f} is ζ -closed and $P \subseteq W$ and Q be an open set of V such that $\mathfrak{f}^{-1}(P) \subseteq Q$. Then, V - Q is closed in V. Since, \mathfrak{f} is ζ -closed, by definition 2.7, $\mathfrak{f}(V - Q)$ is ζ -closed in W. We take $O = W - \mathfrak{f}(V - Q)$. Then O is ζ -open in W. Again since, $\mathfrak{f}^{-1}(P) \subseteq Q$, then $P \subseteq O$ and $\mathfrak{f}^{-1}(O) = \mathfrak{f}^{-1}(W - \mathfrak{f}(V - Q)) = V - \mathfrak{f}^{-1}(\mathfrak{f}(V - Q)) \subseteq Q$.

 \Leftarrow , let for each subset P of W and each open set Q in V containing $f^{-1}(P)$, ∃ a ζopen set O of W containing P such that $f^{-1}(O) \subseteq Q$ and G be a closed set of V. Then, V-G is open in V and $f^{-1}(W - f(G)) \subseteq V - G$. By our assumption, ∃ a ζ-open set O of W such that $W - f(G) \subseteq O$ and $f^{-1}(O) \subseteq V - G$. So, $G \subseteq V - f^{-1}(O)$. Then, $W - O \subseteq f(G) \subseteq f(V - f^{-1}(O)) = f(f^{-1}(W - O) \subseteq W - O \Rightarrow f(G) = W - O$. And f(G) is ζ-closed in W. This gives f is ζ-closed. □

Theorem 2.12. If $\mathfrak{f}: V \to W$ is ζ -closed, then $\zeta_c(\mathfrak{f}(Z)) \subseteq \mathfrak{f}(\mathcal{N}_c(Z))$ for every subset Z of V.

Proof. Let $\mathfrak{f}: V \to W$ is ζ -closed and $Z \subseteq V$. Then, $\mathcal{N}_c(Z)$ is closed in V. By definition 2.7, $\mathfrak{f}(\mathcal{N}_c(Z))$ is ζ -closed in W. By theorem 1.2(4), $\zeta_c(\mathfrak{f}(\mathcal{N}_c(Z))) = \mathfrak{f}(\mathcal{N}_c(Z))$. Since, $\mathfrak{f}(Z) \subseteq \mathfrak{f}(\mathcal{N}_c(Z))$, by proposition 1.1(4), $\zeta_c(\mathfrak{f}(Z)) \subseteq \zeta_c(\mathfrak{f}(\mathcal{N}_c(Z))) = \mathfrak{f}(\mathcal{N}_c(Z))$.

Theorem 2.13. For each bijective function $f: V \to W$, the following are equivalent :

- (1) $\mathfrak{f}^{-1}: W \to V$ is ζ -continuous.
- (2) f is ζ -open.
- (3) f is ζ -closed.

Proof. Case(1): Let \mathfrak{f}^{-1} is ζ -continuous. If O is open in V, then by definition 2.1, $(\mathfrak{f}^{-1})^{-1}(O) = \mathfrak{f}(O)$ is ζ -open in W. So, \mathfrak{f} is ζ -open. Hence, $(1) \Rightarrow (2)$.

Case(2): Assume \mathfrak{f} is ζ -open. If C is \mathcal{N} -closed set of V, then V C is \mathcal{N} -open in V. From definition 2.5, $\mathfrak{f}(V - C) = W - \mathfrak{f}(C)$ is ζ -open in W and so $\mathfrak{f}(C)$ is ζ -closed in W. Thus, $(2) \Rightarrow (3)$.

Case(3): Suppose \mathfrak{f} is ζ -closed. If C is a \mathcal{N} -closed set of V, then by definition 2.7, $\mathfrak{f}(C)$ is ζ -closed in W. So, $(\mathfrak{f}^{-1})^{-1}(C)$ is ζ -closed in W. By theorem 2.4, \mathfrak{f}^{-1} is ζ -continuous. Hence, $(3) \Rightarrow (1)$.

Definition 2.9. A bijection $f: V \to W$ is said to be ζ -homeomorphism if both f and f^{-1} are ζ -continuous.

Theorem 2.14. *Every* N*-homeomorphism is a* ζ *-homeomorphism.*

Proof. Suppose, if $\mathfrak{f}: V \to W$ is a \mathcal{N} -homeomorphism, then \mathfrak{f} is bijective and both \mathfrak{f} and \mathfrak{f}^{-1} are \mathcal{N} -continuous. From the theorem 2.1, \mathfrak{f} and \mathfrak{f}^{-1} are ζ -continuous. So, by definition 2.9, \mathfrak{f} is a ζ -homeomorphism.

Remark. The converse before theorem 2.14 can be false.

Example 2.10. In example 2.6, $\mathfrak{f}(\{v_3, v_4\}) = \{v_3, v_4\}$ is ζ -homeomorphism but not \mathcal{N} -homeomorphism because it is not both \mathfrak{f} and \mathfrak{f}^{-1} are ζ -continuous.

Theorem 2.15. Let $\mathfrak{f}: V \to W$ be a bijective ζ -continuous function. Then, the following are equivalent :

- (1) f is ζ -open.
- (2) f is ζ -homeomorphism.
- (3) f is ζ -closed.

Proof. Case (1): Assume (1) holds. If O is open in V, then by definition 2.5, $\mathfrak{f}(O)$ is ζ -open in W. But, $\mathfrak{f}(O) = (\mathfrak{f}^{-1})^{-1}(O)$. So, $(\mathfrak{f}^{-1})^{-1}(O)$ is ζ -open in W. From the definition 2.1, \mathfrak{f}^{-1} is ζ -continuous. Thus, (2) is proved.

Case (2): Assume (2) holds. Let C be closed in V. Then, by definition 7.1, \mathfrak{f}^{-1} is ζ -continuous. And by theorem 2.4, $(\mathfrak{f}^{-1})^{-1}(C) = \mathfrak{f}(C)$ is ζ -closed in W. By definition 1.4, \mathfrak{f} is ζ -closed. Thus, (3) is proved.

Case (3): Assume (3) holds. If O is open in V, then V-O is closed in V. By definition 2.7, $\mathfrak{f}(V - O)$ is ζ -closed in W. But $\mathfrak{f}(V - O) = W - \mathfrak{f}(O) \Rightarrow W - \mathfrak{f}(O)$ is ζ -closed in W and so $\mathfrak{f}(O)$ is ζ -open in W. From the definition 1.1, \mathfrak{f} is ζ -open. Thus, (1) is proved. \Box

3. CONCLUSION

This paper, we learned the concept of functions like ζ -continuity, ζ -open map, ζ -closed map, ζ -cluster point and ζ -homeomorphism. In the future, we can study in the area of irresolute functions (i.e., the domain and the codomain are the ζ -nano topological spaces) and as well as ζ -open map, ζ -closed map. We can extend by finding an inverse image or image for the ζ closed set to ζ closed set also. And we can learn in various areas of topological spaces with associated applications.

4. ACKNOWLEDGEMENTS

Thanks for RUSA for supporting my research carrier. Thanks for editorial team for make us our paper appears fruitful and consider it for publication.

References

- K. S. Jenavee, R. Asokan, and O. Nethaji. ζ-open sets in nano topological space, Indian journal of natural sciences, 13(74) (2022), 49015-49020.
- [2] K. S. Jenavee, R. Asokan, and O. Nethaji. A Note on ζ -nano topological space, (Communicated).
- [3] K. S. Jenavee, R. Asokan, and O. Nethaji. New separation axioms in ζ -nano topological space, Turkish journal of computer and mathematical education, 13(3) 2022, 133-139.
- [4] M. Lellis Thivagar, and Carmel Richard. On Nano Forms of Weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31-37.
- [5] Lynn Arthur Steen, and J. Arthur Seebach. Counterexamples in topology, Dover Publications, (1995).
- [6] Z. Pawalk, Rough Sets, International Journal of Computer and Information Science, 11 (5)(1982), 341-356..
- [7] Z. Pawalk, Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, Boston, (1991).

K. S. JENAVEE

SCHOOL OF MATHEMATICS, MADURAI KAMARAJ UNIVERSITY, MADUARI -625021, TAMIL NADU, INDIA *E-mail address*: jenaveeharshi@gmail.com

R. ASOKAN

SCHOOL OF MATHEMATICS, MADURAI KAMARAJ UNIVERSITY, MADUARI -625021, TAMIL NADU, INDIA *E-mail address*: asokan.maths@mkuniversity.org

O. NETHAJI

PG AND RESEARCH DEPARTMENT OF MATHEMATICS, KAMARAJ COLLEGE, THOOTHUKUDI , TAMIL NADU, INDIA

E-mail address: jionetha@yahoo.com