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PRIME UP-FILTER OF THE THIRD KIND

IN MEET-COMMUTATIVE UP-ALGEBRAS

DANIEL A. ROMANO∗

ABSTRACT. UP-algebra was introduced by Iampan 2017 as a generalization of KU-algebra.
The concept of meet-commutative UP–algebras was introduced by Sawika et al. In such
algebras, the notion of prime UP-filter of the first kind and the notion of prime UP-filter of
the second kind are introduced. In this article, as a continuation of the previous two, the
concept of prime UP–filters of the third kind was introduced and the relationship between
these three types of prime UP-filters was discussed.

1. INTRODUCTION

The concept of KU-algebras was introduced in 2009 by Prabpayak and Leerawat in
the article [6]. Iampan introduced the concept of UP-algebras as a generalization of KU-
algebras ([1]). In [12], Somjanta et al. introduced the notion of filters in this class of
algebra. Proper UP-filter in a UP-algebra was introduced by Romano 2018 ([7, 8]). Jun
and Iampan then introduced and analyzed several classes of filters in UP algebras such as
implicative, comparative and shift UP-filters (see, for example, [2, 3, 4]). The concept of
weak implicative UP-filters in a UP-algebra was introduced and analyzed by Romano and
Jun ([9]).

The concept of meet-commutative UP-algebras was introduced in article [11]. In article
[5], a number of important properties of meet-commutative UP-algebras are given. In ad-
dition, in such UP-algebras, the concept of prime UP-filters was introduced and analyzed.
Then, in [10] the author introduces the notion of prime UP-filters of the second kind in
meet-commutative UP-algebras and connects it with the prime UP-filters of the first type.

In this article we introduce the concept of prime UP-filter of third kind in a meet-
commutative UP-algebra and we analyze the interrelationships of these three types of
prime UP-filters. It is shown that every prime UP-filter of the second kind in a meet-
commutative UP-algebra is a prime UP-filter of the third kind (Theorem 3.1) but that the
reverse does not have to be (Example 3.7). Also, it has been shown that a prime UP-filter
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of third kind in a meet-commutative UP-algebra does not have to be a prime UP-filter of
the first kind and vice versa. However, in a pre-linear meet-commutative UP-algebra, all
three of these observed types of prime UP-filters are coincide.

2. PRELIMINARIES

In this section, taking from the literature, we will repeat some concepts and statements
of interest for this research.

An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra (see [1]) if it satisfies the
following axioms:

(UP-1) (∀x, y,∈ A)((y · z) · ((x · y) · (x · z)) = 0),
(UP-2) (∀x ∈ A)(0 · x = x),
(UP-3) (∀x ∈ A)(x · 0 = 0),
(UP-4) (∀x, y ∈ A)((x · y = 0 ∧ y · x = 0) =⇒ x = y).

A UP-algebra A is said to be meet-commutative (see [3], Definition 3) if it satisfies the
condition

(∀x, y ∈ A)((x · y) · y = (y · x) · x).
This term also appears in the paper [11] (Definition 1.15).

In a UP-algebra, the order relation ‘6 ’ is defined as follows

(∀x, y ∈ A)(x 6 y ⇐⇒ x · y = 0).

A subset F of a UP-algebra A is called a UP-filter in A (see [12]) if it satisfies the
following conditions:

(F-1) 0 ∈ F ,
(F-2) (∀x, y ∈ A)((x ∈ F ∧ x · y ∈ F ) =⇒ y ∈ F ).
It is clear that every UP-filter F in a UP-algebra A satisfies:
(1) (∀x, y ∈ A)((x ∈ F ∧ x 6 y) =⇒ y ∈ F ).

We first characterize the meet-commutative UP-algebras.

Theorem 2.1 ([5], Theorem 3.1). Let A be a meet-commutative UP-algebra. Then the
following holds

(2) (∀x, y ∈ A)(x 6 y =⇒ y = (y · x) · x).

Theorem 2.2 ([5], Theorem 3.2). Let A be a meet-commutative UP-algebra. For any
x, y ∈ A, the element x t y := (x · y) · y = (y · x) · x is the least upper bound of x and y.

Proposition 2.3 ([5], Proposition 3.1; [10], Proposition 2.2). Let A be a meet-commutative
UP-algebra. Then

(3) (∀x, y ∈ A)(0 t x = x, x t 0 = 0, x t x = x, and x t y = y t x).
(4) (∀x, y, z ∈ A)((x t y) t z = (x t z) t (y t z)).
(5) (∀x, y, z ∈ A)((z · x) t (z · y) 6 z · (x t y)).
(6) (∀x, y, z ∈ A)((x t y) · z 6 (x · z) t (y · z)).
(7) (∀x, y ∈ A)(x t y 6 (y · x) t (x · y)).

3. PRIME UP-FILTERS OF THE THIRD KIND

The notion of prime UP-filters in a meet-commutative UP-algebra was introduced in
article [5]. For the purposes of this paper, we will recognize such a UP filter as a ’prime
UP filter of the first kind’.



PRIME UP-FILTER OF THE THIRD KIND IN MEET-COMMUTATIVE UP-ALGEBRAS 195

Definition 3.1. Let F be a UP-filter in a meet-commutative UP-algebra A. Then F is said
to be a prime UP-filter of the first kind in A if the following holds

(PF1) (∀x, y ∈ A)(x t y ∈ F =⇒ (x ∈ F ∨ y ∈ F )).

Example 3.2. Let A = {0, a, b, c} and operation ‘·’ is defined on A as follows:
· 0 a b c
0 0 a b c
a 0 0 c 0
b 0 c 0 c
c 0 b b 0

Then A = (A, ·, 0) is a meet-commutative UP-algebra. Subsets {0}, {0, b} and {0, c} are
UP-filters in A. It is not difficult to verify that UP-filters {0, b} and {0, c} are prime of
the first kind. It is clear that {0} is not a prime UP-filter of the first kind in A because
b t c = 0 ∈ {0} but b /∈ {0} and c /∈ {0}.

The following definition gives another type of prime UP-filter in meet-commutative
UP-algebras.

Definition 3.3. ([10], Definition 3.2) Let F be a UP-filter in a meet-commutative UP-
algebra A. Then F is said to be a prime UP-filter of the second kind in A if the following
holds

(PF2) (∀x, y ∈ A)(x · y ∈ F ∨ y · x ∈ F ).

Example 3.4. Let A be as in Example 3.2. Then A = (A, ·, 0) is a meet-commutative UP-
algebra. Subsets {0, c} is a prime UP-filter of the second kind in A. The subset F := {0, b}
is a prime UP-filter of the first kind but it is not a prime UP-filter of the second kind
because, for example, holds a · b = c /∈ F and b · a = c /∈ F .

In the previous example it was shown that a UP filter can be a prime UP-filter of the
first kind but it does not have to be a prime UP-filter of the second kind. However, it has
been shown ([10], Theorem 3.1) that if F satisfies the condition (PF2), then it satisfies the
condition (PF1) also, i.e. any prime UP-filter of the second kind in a meet-commutative
UP-algebra A is a prime UP-filter of the first kind in A.

The following definition introduces the term ’prime UP–filter of the third kind’ in meet-
commutative UP–algebras.

Definition 3.5. Let F be a UP–filter in a meet-commutative UP-algebra A. Then F is said
to be a prime UP-filter of the third kind in A if the following holds

(PF3) (∀x, y ∈ A)((x · y) t (y · x) ∈ F ).

The following example shows that a UP-filter in a meet-commutative UP algebra does
not have to be a prime UP-filter of the third kind.

Example 3.6. Let A be as in Example 3.2. Then A = (A, ·, 0) is a meet-commutative UP-
algebra. Subset F := {0} is a UP-filter in A but it is not a prime UP-filter of the third kind
in A because, for example, we have (a · b)t (b · a) = c /∈ F . The subset G; = {0, b} is not
a prime UP-filter of the third kind in A also because, for example, (a · b)t (b · a) = c /∈ G
holds. Subset {0, c} is a prime UP filter of the third kind in A.

The following example shows that a UP-filter in a meet-commutative algebra can be
a prime UP-filter of the third kind and neither a UP-filter of the first kind nor a prime
UP-filter of the second kind.
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Example 3.7. Let A = {1, a, b, c, d} and operations ’·’ on A as follows:

· 0 a b c d
0 0 a b c d
a 0 0 0 0 0
b 0 b 0 0 0
c 0 c c 0 d
d 0 d d c 0

Then (A, ·, 0) is a meet-commutative UP-algebra. Here it is (c · d) · d = d · d = 0, and
(d · c) · c = c · c = 0. So c t d = 0. Subset F := {0} is a UP-filter in A. Obviously,
this filter is not a prime UP-filter of the first kind because c t d = 0 ∈ F but c /∈ F and
d /∈ F . It can be shown by direct verification that F is a prime UP-filter of the third type
in A. Also, this UP-filter is not a prime UP-filter of the second type, because for x = c and
y = d we have x · y = c · d = d /∈ F and y · x = d · c = c /∈ F .

The following theorems show some of the basic properties of prime UP-filters of the
third kind.

Theorem 3.1. Any prime UP-filter of the second kind in a meet-commutative UP-algebra
A is a prime UP-filter of the third kind in A.

Proof. Let a UP-filter F satisfy the condition (PF2) and let x, y ∈ A be arbitrary elements.
Then x · y ∈ F or y · x ∈ F . Since the inequalities x · y 6 ((y · x) · (x · y)) · (x · y)
and y · x 6 ((x · y) · (y · x)) · (y · x) are valid formulas according to the claim (6) in the
Proposition 1.8 in [1], we conclude that (x · y) t (y · x) ∈ F according to (F-2). Hence
(PF3) holds. �

Theorem 3.2 (Extension property for prime UP-filters of the third kind). Let A be a meet-
commutative UP-algebra and let F and G be UP-filter in A such that F ⊆ G. If F is a
prime UP-filter of the third kind, then G is a prime UP-filter of the third kind also.

Proof. Since F is a prime UP-filter of the third kind of A that satisfies the condition (PF3),
it follows that the UP-filter G also satisfies the condition (PF3). Therefore, G is a prime
UP-filter of the third kind in A. �

Theorem 3.3. If the order relation in a meet-commutative UP-algebra A is a linear rela-
tion, then each UP-filter of A is a prime UP-filter of the third kind of A.

Proof. The proof of this theorem is obtained by combining Theorem 3.3 in [10] and The-
orem 3.1. �

Example 3.8. Let A = {0, a, b, c} and operation ‘·’ is defined on A as follows:
· 0 a b c
0 0 a b c
a 0 0 0 0
b 0 c 0 0
c 0 b c 0

Then A = (A, ·, 0) is a meet-commutative UP-algebra. Subsets {0} and {0, c} are UP-
filters in A. Due to the linearity of the order relation in A, both UP-filters are prime
UP-filters of the first / second / third kind in A.

The following theorem gives one sufficient condition that every UP-filter in a meet-
commutative UP-algebra be a prime UP-filter of the third kind.
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Theorem 3.4. If a meet-commutative UP-algebra A satisfies the following condition
(U) (∀x, y ∈ A)((x · y) t (y · x) = 0),

then any UP-filter in A is a prime UP-filter of the third kind in A.

Proof. Let x, y ∈ A be such that (x · y) t (y · x) = 0. Then (x · y) t (y · x) ∈ F for
any UP-filter in a meet-commutative UP-algebra A by (F-1). So, the UP-filter F is a prime
UP-filter of the third kind in A. �

At the end of this section, we give an example of a meet-commutative UP-algebra that
satisfies condition (U).

Example 3.9. Let A = {0, a, b, c, d} as in Example 3.7. Then (A, ·, 0) is a meet-commutative
UP-algebra where the order relation 6 is not linear. Indeed, the elements c and d are not
comparable but (b · c) t (c · b) = 0 t c = 0 is valid. Thus, this UP-algebra satisfies the
condition (U).

It is quite justified to ask the questions:
Question 1: What kind is a meet-commutative UP-algebra if the prime UP-filters of the

first kind and the prime UP-filters of the third kind in it are coincide?
Question 2: What kind is a meet-commutative UP-algebra if the prime UP-filters of the

second kind and the prime UP-filters of the third kind in it are coincide?

4. CONCLUSION AND FURTHER WORK

The concept of meet-commutative UP-algebras was introduced in the article [11] by
Sawika et al. In such UP-algebra, the concept of prime UP-filter (of the first kind) was
introduced by Muhiuddin et al. ([5]). In paper [10], the concept of prime UP-filter
of the second kind is introduced and the relationship of these two types of prime UP-
filters in these UP-algebras is considered. In this paper, the author introduce the concept
of prime UP-filter of the third kind of a meet-commutative UP-algebra and he observed
the connections between these three types of prime UP-filters in such algebras. For a
meet-commutative UP-algebra A that satisfies condition (U), the term ’pre-linear meet-
commutative UP-algebra’ can be used by looking at the MTL-algebra (for example, [13]).
In future work, a pre-linear meet-commutative UP-algebra could be observed, among other
things.
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