ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 3, Number 2 (2020), 132-138 ISSN: 2582-0818 (© http://www.technoskypub.com



# ON RARELY FUZZY *e*\*-CONTINUOUS FUNCTIONS IN THE SENSE OF ŠOSTAK'S

E. ELAVARASAN\*

ABSTRACT. In this paper, we introduce the concepts of rarely fuzzy  $e^*$ -continuous functions in the sense of  $\tilde{S}$  ostak's is introduced. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.

# 1. INTRODUCTION

Kubiak [8] and Šostak [13] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and fuzzy topology [2], in the sense that not only the objects are fuzzified, but also the axiomatics. In [14, 15], Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al., [4] have redefined the same concept under the name gradation of openness. Popa [11] introduced the notion of rarely continuity as a generalization of weak continuity [9] which has been further investigated by Long and Herrington [10] and Jafari [6] and [7]. Recently Vadivel et al. [17], [18] introduced the concept of fuzzy  $e^*$ -open, fuzzy  $e^*$ -closed sets and fuzzy  $e^*$  continuity in Šostak's fuzzy topological spaces. In this paper, we introduce the concepts of rarely fuzzy  $e^*$ -continuous functions in the sense of Šostak's. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.

## 2. PRELIMINARIES

Throughout this paper, let X be a nonempty set, I = [0, 1] and  $I_0 = (0, 1]$ . For  $\lambda \in I^X$ ,  $\overline{\lambda}(x) = \lambda$  for all  $x \in X$ . For  $x \in X$  and  $t \in I_0$ , a fuzzy point  $x_t$  is defined by  $x_t(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$  Let Pt(X) be the family of all fuzzy points in X. A fuzzy point  $x_t \in \lambda$  iff  $t < \lambda(x)$ . All other notations and definitions are standard, for all in the fuzzy set theory.

<sup>2010</sup> Mathematics Subject Classification. 54A40.

Key words and phrases. Rarely fuzzy  $e^*$ -continuous; fuzzy  $e^*$ -compact space; rarely fuzzy  $e^*$ -almost compact space; rarely  $fe^*$ - $T_2$ -spaces.

Received: June 15, 2020. Accepted: July 15, 2020.

**Definition 2.1.** [13] A function  $\tau : I^X \to I$  is called a fuzzy topology on X if it satisfies the following conditions:

- $(O1) \ \tau(\overline{0}) = \tau(\overline{1}) = 1,$
- (O2)  $\tau(\bigvee_{i\in\Gamma}\mu_i) \ge \bigwedge_{i\in\Gamma}\tau(\mu_i)$ , for any  $\{\mu_i\}_{i\in\Gamma} \subset I^X$ , (O3)  $\tau(\mu_1 \land \mu_2) \ge \tau(\mu_1) \land \tau(\mu_2)$ , for any  $\mu_1, \ \mu_2 \in I^X$ .
- The pair  $(X, \tau)$  is called a fuzzy topological space (for short, fts). A fuzzy set  $\lambda$  is

called an *r*-fuzzy open (*r*-fo, for short) if  $\tau(\lambda) \ge r$ . A fuzzy set  $\lambda$  is called an *r*-fuzzy closed (*r*-fc, for short) set iff  $\overline{1} - \lambda$  is an *r*-fo set.

**Theorem 2.1.** [3] Let  $(X, \tau)$  be a fts. Then for each  $\lambda \in I^X$  and  $r \in I_0$ , we define an operator  $C_\tau : I^X \times I_0 \to I^X$  as follows:  $C_\tau(\lambda, r) = \bigwedge \{ \mu \in I^X : \lambda \leq \mu, \tau(\overline{1} - \mu) \geq r \}$ . For  $\lambda, \mu \in I^X$  and  $r, s \in I_0$ , the operator  $C_\tau$  satisfies the following statements:

(C1)  $C_{\tau}(\overline{0}, r) = \overline{0},$ (C2)  $\lambda \leq C_{\tau}(\lambda, r),$ (C3)  $C_{\tau}(\lambda, r) \lor C_{\tau}(\mu, r) = C_{\tau}(\lambda \lor \mu, r),$ (C4)  $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, s) \text{ if } r \leq s,$ (C5)  $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r).$ 

**Theorem 2.2.** [3] Let  $(X, \tau)$  be a fts. Then for each  $\lambda \in I^X$  and  $r \in I_0$ , we define an operator  $I_{\tau} : I^X \times I_0 \to I^X$  as follows:  $I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \mu \leq \lambda, \tau(\mu) \geq r \}$ . For  $\lambda, \mu \in I^X$  and  $r, s \in I_0$ , the operator  $I_{\tau}$  satisfies the following statements:

(11)  $I_{\tau}(\overline{1}, r) = \overline{1}$ , (12)  $I_{\tau}(\lambda, r) \leq \lambda$ , (13)  $I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r) = I_{\tau}(\lambda \wedge \mu, r)$ , (14)  $I_{\tau}(\lambda, r) \leq I_{\tau}(\lambda, s) \text{ if } s \leq r$ , (15)  $I_{\tau}(I_{\tau}(\lambda, r), r) = I_{\tau}(\lambda, r)$ . (16)  $I_{\tau}(\overline{1} - \lambda, r) = \overline{1} - C_{\tau}(\lambda, r) \text{ and } C_{\tau}(\overline{1} - \lambda, r) = \overline{1} - I_{\tau}(\lambda, r)$ 

**Definition 2.2.** [12] Let  $(X, \tau)$  be a fts,  $\lambda \in I^X$  and  $r \in I_0$ . Then

- (1) a fuzzy set  $\lambda$  is called *r*-fuzzy regular open (for short, *r*-fro) if  $\lambda = I_{\tau}(C_{\tau}(\lambda, r), r)$ .
- (2) a fuzzy set  $\lambda$  is called *r*-fuzzy regular closed (for short, *r*-frc) if  $\lambda = C_{\tau}(I_{\tau}(\lambda, r), r)$ .

**Definition 2.3.** [16] Let  $(X, \tau)$  be a fts. For  $\lambda, \mu \in I^X$  and  $r \in I_0$ .

- (1) The *r*-fuzzy  $\delta$ -closure of  $\lambda$ , denoted by  $\delta$ - $C_{\tau}(\lambda, r)$ , and is defined by  $\delta$ - $C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X | \mu \ge \lambda, \mu \text{ is } r\text{-frc } \}.$
- (2) The *r*-fuzzy δ-interior of λ, denoted by δ-*I*<sub>τ</sub>(λ, *r*), and is defined by δ-*I*<sub>τ</sub>(λ, *r*) = \{μ ∈ *I<sup>X</sup>* |μ ≤ λ, μ is *r*-fro }.

**Definition 2.4.** [16] Let  $(X, \tau)$  be a fts and  $\lambda \in I^X$ ,  $r \in I_0$ . Then  $\lambda$  is called

- (1) *r*-fuzzy *e*-open (for short, *r*-feo) if  $\lambda \leq I_{\tau}(\delta C_{\tau}(\lambda, r), r) \vee C_{\tau}(\delta I_{\tau}(\lambda, r), r)$ .
- (2) *r*-fuzzy *e*-closed (for short, *r*-fec) if  $\lambda \ge I_{\tau}(\delta C_{\tau}(\lambda, r), r) \land C_{\tau}(\delta I_{\tau}(\lambda, r), r)$ .

**Definition 2.5.** [17] Let  $(X, \tau)$  be a fts and  $\lambda \in I^X$ ,  $r \in I_0$ . Then  $\lambda$  is called

- (1) *r*-fuzzy  $e^*$ -open (for short, r-f $e^*$ o) if  $\lambda \leq C_{\tau}(I_{\tau}(\delta C_{\tau}(\lambda, r), r), r)$ .
- (2) *r*-fuzzy  $e^*$ -closed (for short, r-f $e^*$ c) if  $\lambda \ge I_\tau(C_\tau(\delta I_\tau(\lambda, r), r), r)$ .

**Definition 2.6.** [17] Let  $(X, \tau)$  be a fts. For  $\lambda, \mu \in I^X$  and  $r \in I_0$ .

- (1) The *r*-fuzzy  $e^*$ -closure of  $\lambda$ , denoted by  $e^*C_{\tau}(\lambda, r)$ , and is defined by  $e^*C_{\tau}(\lambda, r) = \bigwedge \{\mu \in I^X | \mu \ge \lambda, \mu \text{ is } r\text{-}fe^*c \}.$
- (2) The *r*-fuzzy  $e^*$ -interior of  $\lambda$ , denoted by  $e^*I_{\tau}(\lambda, r)$ , and is defined by  $e^*I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X | \mu \leq \lambda, \mu \text{ is } r \text{-f} e^* \text{o} \}.$

#### E. ELAVARASAN

**Definition 2.7.** [18] Let  $(X, \tau)$  and  $(Y, \eta)$  be a fts's. Let  $f : (X, \tau) \to (Y, \eta)$  be a function. Then f is called

- (1) fuzzy  $e^*$ -continuous (for short,  $fe^*$ -continuous) iff  $f^{-1}(\mu)$  is r-f $e^*$ o for each  $\mu \in I^Y$ ,  $r \in I_0$  with  $\eta(\mu) \ge r$ .
- (2) fuzzy  $e^*$ -open (for short,  $fe^*$ -open) iff  $f(\lambda)$  is r-f $e^*$ o for each  $\lambda \in I^X$ ,  $r \in I_0$  with  $\tau(\lambda) \ge r$ .
- (3) fuzzy  $e^*$ -closed (for short,  $fe^*$ -closed) iff  $f(\lambda)$  is r-f $e^*$ c for each  $\lambda \in I^X$ ,  $r \in I_0$  with  $\tau(\overline{1} \lambda) \ge r$ .
- (4) fuzzy e<sup>\*</sup>-irresolute (for short, fe<sup>\*</sup>-irresolute) iff f<sup>-1</sup>(μ) is r-fe<sup>\*</sup>c for each r-fe<sup>\*</sup>c set μ ∈ I<sup>Y</sup>.

**Definition 2.8.** [1] Let  $(X, \tau)$  be a fts and  $r \in I_0$ . For  $\lambda \in I^X$ ,  $\lambda$  is called an *r*-fuzzy rare set if  $I_{\tau}(\lambda, r) = \overline{0}$ .

**Definition 2.9.** [1] Let  $(X, \tau)$  and  $(Y, \eta)$  be a fts's. Let  $f : (X, \tau) \to (Y, \eta)$  be a function. Then f is called

- (1) weakly continuous if for each  $\mu \in I^Y$ , where  $\sigma(\mu) \ge r, r \in I_0, f^{-1}(\mu) \le I_{\tau}(f^{-1}(C_{\sigma}(\mu, r)), r).$
- (2) rarely continuous if for each  $\mu \in I^Y$ , where  $\sigma(\mu) \ge r$ ,  $r \in I_0$ , there exists an r-fuzzy rare set  $\lambda \in I^Y$  with  $\mu + C_{\sigma}(\lambda, r) \ge 1$  and  $\rho \in I^X$ , where  $\tau(\rho) \ge r$  such that  $f(\rho) \le \mu \lor \lambda$ .

**Proposition 2.3.** [1] Let  $(X, \tau)$  and  $(Y, \sigma)$  be any two fts's,  $r \in I_0$  and  $f : (X, \tau) \to (Y, \sigma)$  is fuzzy open and one-to-one, then f preserves r-fuzzy rare sets.

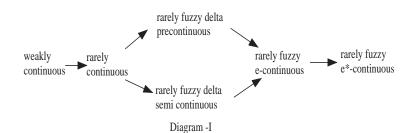
# 3. Rarely fuzzy $e^*$ -continuous functions

**Definition 3.1.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be two fts's, and  $f : (X, \tau) \to (Y, \sigma)$  be a function. Then f is called

- (1) rarely fuzzy *e*-continuous (for short, rarely *fe*-continuous) if for each  $\mu \in I^Y$ , where  $\sigma(\mu) \geq r, r \in I_0$ , there exists an *r*-fuzzy rare set  $\lambda \in I^Y$  with  $\mu + C_{\sigma}(\lambda, r) \geq 1$  and a *r*-feo set  $\rho \in I^X$  such that  $f(\rho) \leq \mu \vee \lambda$ .
- (2) rarely fuzzy  $e^*$ -continuous (for short, rarely  $fe^*$ -continuous) if for each  $\mu \in I^Y$ , where  $\sigma(\mu) \geq r, r \in I_0$ , there exists an r-fuzzy rare set  $\lambda \in I^Y$  with  $\mu + C_{\sigma}(\lambda, r) \geq 1$  and a r-f $e^*$ o set  $\rho \in I^X$  such that  $f(\rho) \leq \mu \lor \lambda$ .
- **Remark.** (1) Every weakly continuous (resp. fuzzy continuous) function is rarely continuous [1] (resp. fuzzy e-continuous [16]) but converse is not true.
  - (2) Every rarely continuous function [5] is rarely  $f\delta s$ -continuous and rarely  $f\delta p$ -continuous function but converse is not true.
  - (3) Every rarely  $f\delta s$ -continuous and rarely  $f\delta p$ -continuous function [5] is rarely fecontinuous but converse is not true.
  - (4) Every rarely fe-continuous function is rarely  $fe^*$ -continuous but converse is not true.

From the above definition and remark it is not difficult to conclude that the following diagram of implications is true.

134



**Example 3.2.** Let  $X = \{a, b, c\} = Y$ . Define  $\lambda_1, \lambda_2 \in I^X$ ,  $\lambda_3 \in I^Y$  as follows:  $\lambda_1(a) = 0.4$ ,  $\lambda_1(b) = 0.6$ ,  $\lambda_1(c) = 0.5$ ,  $\lambda_2(a) = 0.6$ ,  $\lambda_2(b) = 0.4$ ,  $\lambda_2(c) = 0.4$ ,  $\lambda_3(a) = 0.6$ ,  $\lambda_3(b) = 0.4$ ,  $\lambda_3(c) = 0.5$ . Define the fuzzy topologies  $\tau, \sigma: I^X \to I$  as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{10} & \text{if } \lambda = \lambda_1, \\ \frac{1}{10} & \text{if } \lambda = \lambda_2, \\ \frac{1}{10} & \text{if } \lambda = \lambda_1 \lor \lambda_2, \\ \frac{1}{10} & \text{if } \lambda = \lambda_1 \land \lambda_2, \\ 0 & \text{otherwise}, \end{cases} \sigma(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{10} & \text{if } \lambda = \lambda_3, \\ 0 & \text{otherwise}. \end{cases}$$

Let r = 1/10. Let  $f : (X, \tau) \to (Y, \sigma)$  be defined by f(a) = a, f(b) = a, f(c) = cand  $\gamma \in I^Y$  be a 1/10-fuzzy rare set defined by  $\gamma(a) = 0.4$ ,  $\gamma(b) = 0.5$ ,  $\gamma(c) = 0.5$ and a *r*-feo set  $\lambda_4 \in I^X$  is defined by  $\lambda_4(a) = 0.6$ ,  $\lambda_4(b) = 0.4$ ,  $\lambda_4(b) = 0.5$ ,  $f(\lambda_4) = (0.6, 0.4, 0.5) \le \lambda_3 \lor \gamma = (0.6, 0.4, 0.5)$ . Then *f* is rarely *fe*-continuous.

**Example 3.3.** Let  $X = \{a, b, c\} = Y$ . Define  $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in I^X$ ,  $\lambda_5 \in I^Y$  as follows:  $\lambda_1(a) = 0.3$ ,  $\lambda_1(b) = 0.4$ ,  $\lambda_1(c) = 0.5$ ,  $\lambda_2(a) = 0.6$ ,  $\lambda_2(b) = 0.5$ ,  $\lambda_2(c) = 0.5$ ,  $\lambda_3(a) = 0.6$ ,  $\lambda_3(b) = 0.5$ ,  $\lambda_3(c) = 0.4$ ,  $\lambda_4(a) = 0.3$ ,  $\lambda_4(b) = 0.4$ ,  $\lambda_4(c) = 0.4$ ,  $\lambda_5(a) = 0.7$ ,  $\lambda_5(b) = 0.6$ ,  $\lambda_5(c) = 0.4$ . Define the fuzzy topologies  $\tau, \sigma: I^X \to I$  as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{10} & \text{if } \lambda = \lambda_1, \\ \frac{1}{10} & \text{if } \lambda = \lambda_2, \\ \frac{1}{10} & \text{if } \lambda = \lambda_3, \\ \frac{1}{10} & \text{if } \lambda = \lambda_4, \\ 0 & \text{otherwise,} \end{cases} \sigma(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{10} & \text{if } \lambda = \lambda_5, \\ 0 & \text{otherwise.} \end{cases}$$

Let r = 1/10. Let  $f : (X, \tau) \to (Y, \sigma)$  be defined by f(a) = a, f(b) = a, f(c) = cand  $\gamma \in I^Y$  be a 1/10-fuzzy rare set defined by  $\gamma(a) = 0.4$ ,  $\gamma(b) = 0.5$ ,  $\gamma(c) = 0.6$  and a *r*-fe<sup>\*</sup>o set  $\lambda_6 \in I^X$  is defined by  $\lambda_6(a) = 0.7$ ,  $\lambda_6(b) = 0.6$ ,  $\lambda_6(b) = 0.4$ ,  $f(\lambda_6) = (0.7, 0.6, 0.4) \le \lambda_5 \lor \gamma = (0.7, 0.6, 0.4)$ . Then *f* is rarely *fe*\*-continuous but not rarely *fe*-continuous, because  $\lambda_6 \in I^X$  is not *r*-*feo* set.

**Definition 3.4.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be two fts's, and  $f : (X, \tau) \to (Y, \eta)$  be a function. Then f is called weakly fuzzy  $e^*$ -continuous (for short, weakly  $fe^*$ -continuous) if for each r-f $e^*$ o set  $\mu \in I^Y$ ,  $r \in I_0$ ,  $f^{-1}(\mu) \leq I_{\tau}(f^{-1}(C_{\sigma}(\mu, r)), r)$ .

**Definition 3.5.** A fts  $(X, \tau)$  is said to be  $fe^*$ - $T_{1/2}$ -space if every r-f $e^*$  o set  $\lambda \in I^X$ ,  $r \in I_0$  is r-fo set.

**Proposition 3.1.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be any two fts's. If  $f : (X, \tau) \to (Y, \sigma)$  is both  $fe^*$ -open,  $fe^*$ -irresolute and  $(X, \tau)$  is  $fe^*$ - $T_{1/2}$  space, then it is weakly  $fe^*$ -continuous.

*Proof.* Let  $\lambda \in I^X$ ,  $r \in I_0$  with  $\tau(\lambda) \ge r$ . Since f is  $fe^*$ -open  $f(\lambda) \in I^Y$  is r-f $e^*$ o. Also, since f is  $fe^*$ -irresolute,  $f^{-1}(f(\lambda)) \in I^X$  is r-f $e^*$ o set. Since  $(X, \tau)$  is  $fe^*$ - $T_{1/2}$  space, every r-f $e^*$ o set is r-fo set, now,  $\tau(f^{-1}(f(\lambda))) \ge r$ .

Consider  $f^{-1}(f(\lambda)) \leq f^{-1}(C_{\sigma}(f(\lambda), r))$  from which  $I_{\tau}(f^{-1}(f(\lambda)), r) \leq I_{\tau}(f^{-1}(C_{\sigma}(f(\lambda), r)), r).$ Since  $\tau(f^{-1}(f(\lambda))) \geq r, f^{-1}(f(\lambda)) \leq I_{\tau}(f^{-1}(C_{\sigma}(f(\lambda), r)), r),$  thus f is weakly  $fe^*$ -continuous.

**Definition 3.6.** Let  $(X, \tau)$  be a fts. A *r*-fuzzy  $e^*$ -open cover of  $(X, \tau)$  is the collection  $\{\lambda_i \in I^X, \lambda_i \text{ is } r\text{-}fe^*o, i \in J\}$  such that  $\bigvee_{i \in J} \lambda_i = \overline{1}$ .

**Definition 3.7.** A fts  $(X, \tau)$  is said to be a *r*-fuzzy  $e^*$ -compact space if every *r*-fuzzy  $e^*$ -open cover of  $(X, \tau)$  has a finite sub cover.

**Definition 3.8.** A fts  $(X, \tau)$  is said to be rarely fuzzy  $e^*$ -almost compact if for every r-fuzzy  $e^*$ -open cover  $\{\lambda_i \in I^X, \lambda_i \text{ is } r\text{-}fe^*\text{o}, i \in J\}$  of  $(X, \tau)$ , there exists a finite subset  $J_0$  of J such that  $\bigvee_{i \in J} \lambda_i \lor \rho_i = \overline{1}$  where  $\rho_i \in I^X$  are r-fuzzy rare sets.

**Proposition 3.2.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be any two fts's,  $r \in I_0$  and  $f : (X, \tau) \to (Y, \sigma)$  be rarely  $fe^*$ -continuous. If  $(X, \tau)$  is r-fuzzy  $e^*$ -compact then  $(Y, \sigma)$  is rarely fuzzy  $e^*$ -almost compact.

*Proof.* Let  $\{\lambda_i \in I^Y, i \in J\}$  be *r*-fuzzy *e*<sup>\*</sup>-open cover of  $(Y, \sigma)$ . Then  $\overline{1} = \bigvee_{i \in J} \lambda_i$ . Since *f* is rarely  $fe^*$ -continuous, there exists a *r*-fuzzy rare sets  $\rho_i \in I^Y$  such that  $\lambda_i + C_{\sigma}(\rho_i, r) \geq \overline{1}$  and a *r*-fe<sup>\*</sup> o set  $\mu_i \in I^X$  such that  $f(\mu_i) \leq \lambda_i \lor \rho_i$ . Since  $(X, \tau)$  is *r*-fuzzy *e*<sup>\*</sup>-compact, every fuzzy *e*<sup>\*</sup>-open cover of  $(X, \tau)$  has a finite sub cover. Thus  $\overline{1} \leq \bigvee_{i \in J_0} \mu_i$ . Hence  $\overline{1} = f(\overline{1}) = f(\bigvee_{i \in J_0} \mu_i) = \bigvee_{i \in J_0} f(\mu_i) \leq \bigvee_{i \in J_0} \lambda_i \lor \rho_i$ . Therefore  $(Y, \sigma)$  is rarely fuzzy *e*<sup>\*</sup>-almost compact.

**Proposition 3.3.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be any two fts's,  $r \in I_0$  and  $f : (X, \tau) \to (Y, \sigma)$  be rarely fe-continuous. If  $(X, \tau)$  is r-fuzzy e<sup>\*</sup>-compact then  $(Y, \sigma)$  is rarely fuzzy e<sup>\*</sup>-almost compact.

*Proof.* Since every rarely fe-continuous function is rarely  $fe^*$ -continuous, then proof follows immediately from the Proposition 3.2.

**Proposition 3.4.** Let  $(X, \tau)$ ,  $(Y, \sigma)$  and  $(Z, \eta)$  be any fts's. If  $f : (X, \tau) \to (Y, \sigma)$  be rarely  $fe^*$ -continuous,  $fe^*$ -open and  $g : (Y, \sigma) \to (Z, \eta)$  is fuzzy open and one-to-one, then  $g \circ f : (X, \tau) \to (Z, \eta)$  is rarely  $fe^*$ -continuous.

*Proof.* Let  $\lambda \in I^X$ ,  $r \in I_0$  with  $\tau(\lambda) \ge r$ . Since f is  $fe^*$ -open  $f(\lambda) \in I^Y$  with  $\sigma(f(\lambda)) \ge r$ . Since f is rarely  $fe^*$ -continuous and there exists a r-fuzzy rare set  $\rho \in I^Y$  with  $f(\lambda) + C_{\sigma}(\rho, r) \ge \overline{1}$  and a r-fe $^*$ o set  $\mu \in I^X$  such that  $f(\mu) \le f(\lambda) \lor \rho$ . By the proposition 2.3,  $g(\rho) \in I^Z$  is also a r-fuzzy rare set. Since  $\rho \in I^Y$  is such that  $\rho < \gamma$  for all  $\gamma \in I^Y$  with  $\sigma(\gamma) \ge r$  and g is injective, it follows that  $(g \circ f)(\lambda) + C_{\eta}(g(\rho), r) \ge \overline{1}$ . Then  $(g \circ f)(\mu) = g(f(\mu)) \le g(f(\lambda) \lor \rho) \le g(f(\lambda)) \lor g(\rho) \le (g \circ f)(\lambda) \lor g(\rho)$ . Hence the result.

**Proposition 3.5.** Let  $(X, \tau)$ ,  $(Y, \sigma)$  and  $(Z, \eta)$  be any fts's and  $r \in I_0$ . If  $f : (X, \tau) \to (Y, \sigma)$  be fe<sup>\*</sup>-open, onto and  $g : (Y, \sigma) \to (Z, \eta)$  be a function such that  $g \circ f : (X, \tau) \to (Z, \eta)$  is rarely fe<sup>\*</sup>-continuous, then g is rarely fe<sup>\*</sup>-continuous.

*Proof.* Let  $\lambda \in I^X$  and  $\mu \in I^Y$  be such that  $f(\lambda) = \mu$ . Let  $(g \circ f)(\lambda) = \gamma \in I^Z$  with  $\eta(\gamma) \geq r$ . Since  $(g \circ f)$  is  $fe^*$ -continuous, there exists a r-fuzzy rare set  $\rho \in I^Z$  with  $\gamma + C_\eta(\rho, r) \geq \overline{1}$  and a r-fe\*o set  $\delta \in I^X$  such that  $(g \circ f)(\delta) \leq \gamma \lor \rho$ . Since f is  $fe^*$ -open,  $f(\delta) \in I^Y$  is a r-fe\*o set. Thus there exists a r-fuzzy rare set  $\rho \in I^Z$  with  $\gamma + C_\eta(\rho, r) \geq \overline{1}$  and a r-fe\*o set  $f(\delta) \in I^Y$  such that  $g(f(\delta)) \leq \gamma \lor \rho$ . Hence g is rarely  $fe^*$ -continuous.

**Proposition 3.6.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be any two fts's and  $r \in I_0$ . If  $f : (X, \tau) \to (Y, \sigma)$  be rarely  $fe^*$ -continuous and  $(X, \tau)$  is  $fe^*$ - $T_{1/2}$ -space, then f is rarely continuous.

Proof. The proof is trivial.

**Definition 3.9.** A fts  $(X, \tau)$  is said to be rarely  $fe^* - T_2$ -space if for each pair  $\lambda$ ,  $\mu \in I^X$  with  $\lambda \neq \mu$  there exist r-f $e^*$ o sets  $\rho_1$ ,  $\rho_2 \in I^X$  with  $\rho_1 \neq \rho_1$  and a r-fuzzy rare set  $\gamma \in I^X$  with  $\rho_1 + C_\tau(\gamma, r) \geq \overline{1}$  and  $\rho_2 + C_\tau(\gamma, r) \geq \overline{1}$  such that  $\lambda \leq \rho_1 \vee \gamma$  and  $\mu \leq \rho_2 \vee \gamma$ .

**Proposition 3.7.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be any two fts's and  $r \in I_0$ . If  $f : (X, \tau) \to (Y, \sigma)$  be  $fe^*$ -open and injective and  $(X, \tau)$  is rarely  $fe^*$ - $T_2$  space, then  $(Y, \sigma)$  is also a rarely  $fe^*$ - $T_2$  space.

*Proof.*  $\lambda, \mu \in I^X$  with  $\lambda \neq \mu$ . Since f is injective,  $f(\lambda) \neq f(\mu)$ . Since  $(X, \tau)$  is a rarely  $fe^* \cdot T_2$ -space, there exist  $r \cdot fe^*$  o sets  $\rho_1, \rho_2 \in I^X$  with  $\rho_1 \neq \rho_1$  and a r-fuzzy rare set  $\gamma \in I^X$  with  $\rho_1 + C_\tau(\gamma, r) \geq \overline{1}$  and  $\rho_2 + C_\tau(\gamma, r) \geq \overline{1}$  such that  $\lambda \leq \rho_1 \lor \gamma$  and  $\mu \leq \rho_2 \lor \gamma$ . Since f is  $fe^*$ -open,  $f(\rho_1), f(\rho_2) \in I^Y$  are  $r \cdot fe^*$  o sets with  $f(\rho_1) \neq f(\rho_2)$ . Since f is  $fe^*$ -open and one-to-one,  $f(\gamma)$  is also a r-fuzzy rare set with  $f(\rho_1) + C_\sigma(\gamma, r) \geq \overline{1}$  and  $f(\rho_2) + C_\sigma(\gamma, r) \geq \overline{1}$  such that  $f(\lambda) \leq f(\rho_1 \lor \gamma)$  and  $f(\mu) \leq f(\rho_1 \lor \gamma)$ . Thus  $(Y, \sigma)$  is a rarely  $fe^* \cdot T_2$ -space.

### 4. CONCLUSIONS

Šostak's fuzzy topology has been recently of major interest among fuzzy topologies. In this paper, we have introduced rarely fuzzy  $e^*$ -continuous functions in fuzzy topological spaces of Šostak's. We have also introduced fuzzy  $e^*$ -compact space, rarely fuzzy  $e^*$ -almost compact space, rarely  $fe^*$ - $T_2$ -spaces and some properties and characterizations of them are investigated.

### 5. ACKNOWLEDGEMENTS

The author would like to thank from the anonymous reviewers for carefully reading of the manuscript and giving useful comments, which will help us to improve the paper.

#### REFERENCES

- B. Amudhambigai, M. K. Uma and E. Roja, On rarely *g*-continuous functions in smooth fuzzy topological spaces, The Journal of Fuzzy Mathematics., 20(2) (2012), 433–442.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190.
- [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology, Fuzzy Sets and Systems, 54 (1993), 207–212.
- [4] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness, Fuzzy Sets and Systems, 49(2) (1992), 237–242.
- [5] E. Elavarasan and A. Vadivel On rarely fuzzy e-continuous functions in the sense of sostak's (submitted).
- [6] S. Jafari, A note on rarely continuous functions, Univ. Bacau. Stud. Cerc. St. Ser. Mat., 5, 29–34.
- [7] S. Jafari, On some properties of rarely continuous functions, Univ. Bacau. Stud. Cerc. St. Ser. Mat., 7, 65–73.
- [8] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, A. Mickiewicz, Poznan, (1985).

#### E. ELAVARASAN

- [9] N. Levine, Decomposition of continuity in topological spaces, Amer. Math. Monthly., 60, 44–46.
- [10] P. E. Long and L. L. Herrington, properties of rarely continuous functions, Glasnik Math., 17(37), 147–153.
- [11] V. Popa, sur certain decompositionde la continuite dans les espaces topologiques, Glasnik Mat. Setr III., 14(34) 359–362.
- [12] Seok Jong Lee and Eun Pyo Lee, Fuzzy r-regular open sets and fuzzy almost r-continuous maps, Bull. Korean Math. Soc., 39(3) (2002), 441–453.
- [13] A. P. Šostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser II, 11 (1986), 89-103.
- [14] A. P. Šostak, Basic structures of fuzzy topology, J. Math. Sci., 78(6) (1996), 662–701.
- [15] A. P. Šostak, Two decades of fuzzy topology : Basic ideas, Notion and results, Russian Math. Surveys, 44(6) (1989), 125-186.
- [16] D. Sobana and V. Chandrasekar and A. Vadivel, Fuzzy e-continuity in Šostak's fuzzy topological spaces, AIP Conference Proceedings 21770:020090, December 2019.
- [17] A. Vadivel, B. Vijayalakshmi and R. Prabhu, Fuzzy e\*-open sets in Šostak's fuzzy topological spaces (submitted).
- [18] A. Vadivel, B. Vijayalakshmi and R. Prabhu, Fuzzy e\*-continuity in Šostak's fuzzy topological spaces (submitted).

E. ELAVARASAN

Department of Mathematics, Shree Raghavendra Arts and Science College (Affiliated to Thiruvalluvar University), Keezhamoongiladi, Chidambaram-608102, Tamil Nadu, India.

Email address: maths.aras@gmail.com