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POSITIVE SOLUTIONS TO A DERIVATIVE DEPENDENT p-LAPLACIAN
EQUATION WITH RIEMANN-STIELTJES INTEGRAL BOUNDARY

CONDITIONS

SESHADEV PADHI, JAFFAR ALI AND JOHN R. GRAEF∗

ABSTRACT. This paper is concerned with the existence of two nontrivial positive solu-
tions to a class of boundary value problems involving a p-Laplacian of the form

(Φp(x
′
))

′
+ g(t)f(t, x, x′) = 0, t ∈ (0, 1),

x(0)− ax
′
(0) = α[x],

x(1) + bx
′
(1) = β[x],

where Φp(x) = |x|p−2x is a one dimensional p-Laplacian operator with p > 1, a and b
are real constants, and α and β are given by the Riemann-Stieltjes integrals

α[x] =

1∫
0

x(t)dA(t), β[x] =

1∫
0

x(t)dB(t),

with A and B functions of bounded variation. The approach used is based on fixed point
index theory. The results obtained in this paper are new in the literature.

1. INTRODUCTION

In this paper, we discuss the existence of positive solutions to the nonlinear boundary
value problem (BVP) with p-Laplacian

(Φp(x
′
))

′
+ g(t)f(t, x, x′) = 0, t ∈ (0, 1), (1.1)

together with the non-local boundary conditions

x(0)− ax
′
(0) = α[x],

x(1) + bx
′
(1) = β[x],

(1.2)
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where a and b are constants, α and β are linear functionals on C[0, 1]) defined by the
Riemann-Stieltjes integrals

α[x] =

∫ 1

0

x(t)dA(t), β[x] =

∫ 1

0

x(t)dB(t), (1.3)

A and B are functions of bounded variation, not both of which are identically zero. Here,
dA and dB can be signed measures. In (1.1), the function Φp(x) = |x|p−2x is a one-
dimensional p-Laplacian operator with p > 1, and the inverse operator Φq is defined by
Φ−1
p (x) = Φq(x) = |x|q−2x with 1

p + 1
q = 1.

Riemann-Stieltjes integrals play an important role in the literature, and as given in (1.3),
they include a variety of non-local boundary conditions such as:

α[x] = λx(η), λ ≥ 0, η ∈ (0, 1);

α[x] =

l∑
j=1

λjx(µj), λi ∈ R, j = 1, 2, . . . , l, 0 < η1 < η2 < · · · < ηl < 1;

α[x] =

∫ 1

0

x(t)h(t)dt, h ∈ C((0, 1),R).

If p = 2, then (1.1) reduces to the second order ordinary differential equation

x
′′

+ g(t)f(t, x, x′) = 0, t ∈ (0, 1). (1.4)

Equation (1.4) together with the boundary conditions (1.2) has been studied by many au-
thors in the literature, for example, see [2, 7, 12, 13, 16]. In a recent paper, Yang and
Wang [14] used the Avery-Peterson fixed point theorem to study the existence of at least
three positive solutions to the p-Laplacian equation (1.1) together with integral boundary
conditions of the type

x(0)− ax
′
(0) =

∫ 1

0

g1(s)x(s)ds, (1.5a)

x(1) + bx
′
(1) =

∫ 1

0

g2(s)x(s)ds, (1.5b)

where a, b ≥ 0 and p > 1. For BVPs with a p-Laplacian, we may refer the reader
to [1, 3, 5, 9, 10, 11, 15, 17, 18] and the references cited therein. The main tools used
in the above-cited papers are the upper-lower solution method, Krasnosel’skii’s fixed point
theorem, the Avery-Peterson fixed point theorem, the Leggett-William fixed point theorem,
and fixed point index theory. Webb [12] and Webb and Infante [13] proved that the fixed
point index approach is one of the most efficient methods to study the existence of multiple
positive solutions of the problem (1.4) together with the boundary condition (1.2).

We note that the integrals on the right hand side of (1.5) are particular cases of the
Riemann-Stieltjes integrals α[x] and β[x] defined in (1.3). There does not appear to be any
results in the literature on the existence of positive solutions of BVP (1.1)–(1.2). In this
paper, we shall use the method adopted in [14] to obtain an equivalent integral equation,
and then use the fixed point index approach to study (1.1)–(1.2).

In order to obtain our existence results, we shall use the following hypotheses through-
out this paper.

(A1) f ∈ C([0, 1] × [0,∞) × R, [0,∞)), g ∈ C([0, 1], [0,∞)), and g does not vanish
identically on any subinterval of [0,∞);

(A2) 0 < α[1] < 1 and 0 < β[1] < 1;
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(A3) There exists a constant µ > 0 and a continuous function pf : (0, 1) → [0,∞)
such that

f(t, x, x′) ≤ pf (t) for 0 ≤ t ≤ 1, µ ≤ x <∞, −∞ < x′ <∞;

(A4) We have

Φq

 1∫
0

g(r)pf (r)dr

 <∞,

aΦq

(
ρ∫
0

g(r)pf (r)dr

)
+

1∫
0

s∫
0

Φq

(
ρ∫
θ

g(r)pf (r)dr

)
dθdA(s)

1− α[1]

+

ρ∫
0

Φq

 ρ∫
s

g(r)pf (r)dr

 ds <∞

for s ≤ ρ, and

bΦq

(
1∫
ρ

g(r)pf (r)dr

)
+

1∫
0

1∫
s

Φq

(
θ∫
ρ

g(r)pf (r)dr

)
dθdB(s)

1− β[1]

+

1∫
ρ

Φq

 s∫
ρ

g(r)pf (r)dr

 ds <∞

for s ≥ ρ.

(A5)
1∫
0

t∫
0

Φq

(
ρ∫
s

g(r)pf (r)dr

)
ds dB(t) ≥ 0 and

1∫
0

1∫
t

Φq

(
s∫
ρ

g(r)pf (r)dr

)
ds dA(t) ≥ 0.

Throughout this work, we consider the Banach spaceX = C1([0, 1]) equipped with the
norm

||x||C1 = max{||x||∞, ||x′||∞},
where

||v||∞ = max
0≤t≤1

|v(t)|.

Section 2 in this paper contains some basic results for our problem. Our main results
and their proofs are in Section 3, and the last section contains some further discussion and
some examples to illustrate the applicability of our results.

2. PRELIMINARIES

In this section, we provide results similar to the those obtained in [14]. The proofs of
our Lemmas 2.1–2.5 are similar to the those of Lemmas 2.1–2.5 in [14]. Lemmas 2.1–2.5
in [14] are similar to lemmas in [8] and [15]. However, for completeness sake, we do
include proofs of our lemmas.

Lemma 2.1. Assume that

1− α[1] 6= 0 and 1− β[1] 6= 0. (2.1)
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Then for any given y ∈ X , the BVP

− (Φp(x
′
))

′
= y(t) for a.e. t ∈ (0, 1), (2.2)

x(0)− ax
′
(0) = α[x],

x(1) + bx
′
(1) = β[x],

(2.3)

has solutions given by

x(t) =

aΦq(φ̄0) +
1∫
0

t∫
0

Φq

(
φ̄0 −

s∫
0

y(r)dr

)
ds dA(t)

1− α[1]
+

t∫
0

Φq

φ̄0 −
s∫

0

y(r)dr

 ds

(2.4)
and

x(t) = −
bΦq

(
φ̄0 −

1∫
0

y(r)dr

)
+

1∫
0

1∫
t

Φq

(
φ̄0 −

s∫
0

y(r)dr

)
ds dB(t)

1− β[1]

−
1∫
t

Φq

φ̄0 −
s∫

0

y(r)dr

 ds, (2.5)

where φ̄0 satisfies the integral equation

aΦq(φ̄0) =

1∫
0

1∫
t

Φq

φ̄0 −
s∫

0

y(r)dr

 ds dA(t)−
1∫

0

Φq

φ̄0 −
s∫

0

y(r)dr

 ds

−
(

1− α[1]

1− β[1]

)bΦq
φ̄0 −

1∫
0

y(r)dr

+

1∫
0

1∫
t

Φq

φ̄0 −
s∫

0

y(r)dr

 ds dB(t)

 .
(2.6)

Proof. Integrating (2.2) from 0 to t, we have

x
′
(t) = Φq

φ̄0 −
t∫

0

y(s)ds

 , (2.7)

where φ̄0 = Φp(x
′
(0)). Integrating (2.7) from t to 1, we obtain

x(t) = x(1)−
1∫
t

Φq

φ̄0 −
s∫

0

y(r)dr

 ds. (2.8)

Substituting the second boundary condition in (2.3) into (2.8) gives

x(t) = −bx
′
(1) + β[x]−

1∫
t

Φq

φ̄0 −
s∫

0

y(r)dr

 ds. (2.9)

Multiplying both sides of (2.9) by dB(t) and integrating from 0 to 1, we obtain

β[x] =

bx
′
(1)β[1] +

1∫
0

1∫
t

Φq

(
φ̄0 −

s∫
0

y(r)dr

)
dsdB(t)

β[1]− 1
. (2.10)
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Using the above value of β[x] in (2.9), we obtain

x(t) = −
bx

′
(1) +

1∫
0

1∫
t

Φq

(
φ̄0 −

s∫
0

y(r)dr

)
dsdB(t)

1− β[1]
−

1∫
t

Φq

φ̄0 −
s∫

0

y(r)dr

 ds.

(2.11)
Using (2.7) with t = 1 in (2.11), we obtain (2.5).

Next, we integrate (2.7) from 0 to t to obtain

x(t) = x(0) +

t∫
0

Φq

φ̄0 −
s∫

0

y(r)dr

 ds. (2.12)

Multiplying both sides of (2.12) by dA(t), integrating from 0 to 1, and using the first
boundary condition in (2.3), we have

α[x] =

ax
′
(0)α[1] +

1∫
0

t∫
0

Φq

(
φ̄0 −

s∫
0

y(r)dr

)
dsdA(t)

1− α[1]
. (2.13)

Since x
′
(0) = Φq(φ̄0) (from (2.7)), using the above value of α[x] in the boundary condi-

tion x(0)− ax′
(0) = α[x], we obtain

x(0) =

aΦq(φ̄0) +
1∫
0

t∫
0

Φq

(
φ̄0 −

s∫
0

y(r)dr

)
dsdA(t)

1− α[1]

Using the above value of x(0) in (2.12) yields (2.4).
Finally, since

x
′
(1) = Φq

φ̄0 −
1∫

0

y(r)dr

 , (2.14)

from (2.10), we obtain

β[x] = −
bβ[1]Φq

(
φ̄0 −

1∫
0

y(r)dr

)
+

1∫
0

1∫
t

Φq

(
φ̄0 −

s∫
0

y(r)dr

)
dsdB(t)

1− β[1]
(2.15)

By (2.4), we have

x(1) =

aΦq(φ̄0) +
1∫
0

t∫
0

Φq

(
φ̄0 −

s∫
0

y(r)dr

)
dsdA(t)

1− α[1]
+

1∫
0

Φq

φ̄0 −
s∫

0

y(r)dr

 ds

(2.16)
Using (2.14)–(2.16) in the boundary condition x(1)+bx

′
(1) = β[x], we obtain (2.6). This

completes the proof of the lemma. �

Lemma 2.2. Let (2.1) hold and y ∈ C[0, 1] with y ≥ 0. Then there exist constants

l ∈
(

0,
1∫
0

y(s)ds

)
and ρ ∈ (0, 1) such that (2.6) is satisfied for φ̃0 = l :=

ρ∫
0

y(r)dr.
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Proof. For any θ ∈ [0,∞), set

λ(θ) = aΦq(θ)−
1∫

0

1∫
t

Φq

θ − s∫
0

y(r)dr

 dsdA(t) +

1∫
0

Φq

θ − s∫
0

y(r)dr

 ds

+
(1− α[1])

(1− β[1])

bΦq
θ − 1∫

0

y(r)dr

+

1∫
0

1∫
t

Φq

θ − s∫
0

y(r)dr

 ds dB(t)

 ;

then λ(θ) can be rewritten as

λ(θ) = aΦq(θ) +

1∫
0

t∫
0

Φq

θ − s∫
0

y(r)dr

 dsdA(t)

+ (1− α[1])

1∫
0

Φq

θ − s∫
0

y(r)dr

 ds

+
(1− α[1])

(1− β[1])

bΦq
θ − 1∫

0

y(r)dr

+

1∫
0

1∫
t

Φq

θ − s∫
0

y(r)dr

 ds dB(t)

 .
Notice that λ(θ) is continuous on [0,∞) by the continuity of Φq and y. Furthermore,
λ(0) < 0 and

λ

 1∫
0

y(r)dr

 =aΦq

 1∫
0

y(r)dr

+

1∫
0

t∫
0

Φq

 1∫
s

y(r)dr

 dsdA(t)

+ (1− α[1])

1∫
0

Φq

 1∫
s

y(r)dr

 ds

+
(1− α[1])

(1− β[1])

bΦq(0) +

1∫
0

1∫
t

Φq

 1∫
s

y(r)dr

 ds dB(t)

 > 0.

Then, by the monotonicity of λ, there exists a unique constant l ∈
(

0,
1∫
0

y(s)ds

)
such that

λ(l) = 0, that is, (2.6) is satisfied for θ = φ̃0 = l, and there exists a constant ρ ∈ (0, 1)

such that l =
ρ∫
0

y(r)dr. �

Remark. For φ̃0 = l =
ρ∫
0

y(r)dr, we can rewrite the solution x(t) of the BVP (2.2)–(2.3),

given in (2.4) and (2.5) as

x(t) =

aΦq

(
ρ∫
0

y(r)dr

)
+

1∫
0

t∫
0

Φq

(
ρ∫
s

y(r)dr

)
dsdA(t)

1− α[1]
+

t∫
0

Φq

 ρ∫
s

y(r)dr

 ds
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or

x(t) =

bΦq

(
1∫
ρ

y(r)dr

)
+

1∫
0

1∫
t

Φq

(
s∫
ρ

y(r)dr

)
dsdB(t)

1− β[1]
+

1∫
t

Φq

 s∫
ρ

y(r)dr

 ds

respectively.

In what follows, we consider the cone K in X defined by

K = {x ∈ X : x(t) ≥ 0 and x(t) is concave on [0, 1], α[x] ≥ 0, and β[x] ≥ 0} .
Now if we define an operator T : K → K by

Tx(t)=



aΦq

(
ρ∫
0

g(r)f(r, x(r), x′(r))dr

)
+

1∫
0

s∫
0

Φq

(
ρ∫
θ

g(r)f(r, x(r), x′(r))dr

)
dθdA(s)

1− α[1]

+
t∫

0

Φq

(
ρ∫
s

g(r)f(r, x(r), x′(r))dr

)
ds, 0 ≤ s, t ≤ ρ,

bΦq

(
1∫
ρ

g(r)f(r, x(r), x′(r))dr

)
+

1∫
0

1∫
s

Φq

(
θ∫
ρ

g(r)f(r, x(r), x′(r))dr

)
dθdB(s)

1− β[1]

+
1∫
t

Φq

(
s∫
ρ

g(r)f(r, x(r), x′(r))dr

)
ds, ρ ≤ s, t ≤ 1,

(2.17)
then in view of Remark 2, a function x(t) is a solution of BVP (1.1)–(1.2) if and only if
x(t) is a fixed point of the operator T given in (2.17).

Remark. From (2.17), we see that Tx(t) ≥ 0 for t ∈ [0, 1], and

(Tx)
′
(t) = Φq

 ρ∫
t

g(r)f(r, x(r), x′(r))dr

 ≥ 0 for t ≤ ρ

and

(Tx)
′
(t) = −Φq

 t∫
ρ

g(r)f(r, x(r), x′(r))dr

 ≤ 0 for t ≥ ρ.

Hence
max

0≤t≤1
Tx(t) = Tx(ρ).

For x ∈ K, we may proceed along the lines of the proof of Lemma 2.2 in [6] to obtain
a Harnack type inequality as given in the following lemma.

Lemma 2.3. Let x(t) ≥ 0 be concave on [0, 1]. Then for any δ ∈ (0, 1/2), we have

min
t∈[δ,1−δ]

x(t) ≥ δ max
0≤t≤1

x(t) = δ||x||∞.

Now, we list few properties of the classical fixed point index for compact maps [4]. Let
K be a cone in a Banach space X . If Ω is a bounded open subset of K (in the relative
topology), we denote by Ω̄ and ∂Ω the closure and boundary relative to K. When U is an
open bounded subset of X , we write UK = U ∩K which is an open subset of K.
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Theorem 2.4. Let U be an bounded open set with UK 6= φ and ŪK 6= K. Assume that
T : ŪK → K is a compact map such that x 6= Tx for x ∈ ∂UK . Then the fixed point
index iK(T,UK) has the following properties:

(1) If there exists e ∈ K \ {0} such that x 6= Tx+λe for all x ∈ ∂UK and all λ > 0,
then iK(T,UK) = 0.

(2) If ||T || ≤ ||x|| for all x ∈ ∂UK , then iK(T,UK) = 1
(3) Let V be open in X with V̄ ⊂ UK . If iK(T,UK) = 1 and ik(T, VK) = 0, then

T has a fixed point in UK \ V̄K . The same results holds if iK(T,UK) = 0 and
iK(T, VK) = 1.

We end this section with the following important lemma that we will use in the proof of
our main result (Theorem 3.1 below).

Lemma 2.5. Let conditions (A1)–(A5) hold. Then the mapping T defined in (2.17) is
compact and continuous.

Proof. The verification of the continuity of T is straight forward and hence we omit the
details. Clearly, for x ∈ K, Tx ≥ 0 for all t ∈ [0, 1]. Also, Tx is a concave function.
Since

α[Tx] =

∫ 1

0

Tx(t) dA(t)

=
α[1]

(1− α[1])

aΦq

 ρ∫
0

g(r)f(r, x(r), x′(r))dr


+

1∫
0

s∫
0

Φq

 ρ∫
θ

g(r)f(r, x(r), x′(r))dr

 dθdA(s)


+

α[1]

(1− α[1])

 1∫
0

t∫
0

Φq

 ρ∫
s

g(r)f(r, x(r), x′(r))dr

 dsdA(t)


≥ 0

and

β[Tx] =

∫ 1

0

Tx(t) dB(t)

=
β[1]

(1− α[1])

aΦq

 ρ∫
0

g(r)f(r, x(r), x′(r))dr


+

1∫
0

s∫
0

Φq

 ρ∫
θ

g(r)f(r, x(r), x′(r))dr

 dθdA(s)


+

β[1]

(1− α[1])

 1∫
0

t∫
0

Φq

 ρ∫
s

g(r)f(r, x(r), x′(r))dr

 dsdB(t)


≥ 0
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for 0 ≤ s, t ≤ ρ, and

α[Tx] =

∫ 1

0

Tx(t) dA(t)

=
α[1]

(1− β[1])

bΦq
 1∫
ρ

g(r)f(r, x(r), x′(r))dr


+

1∫
0

1∫
s

Φq

 θ∫
ρ

g(r)f(r, x(r), x′(r))dr

 dθdB(s)


+

α[1]

(1− α[1])

 1∫
0

1∫
t

Φq

 s∫
ρ

g(r)f(r, x(r), x′(r))dr

 dsdA(t)


≥ 0

and

β[Tx] =

∫ 1

0

Tx(t) dB(t)

=
β[1]

(1− β[1])

bΦq
 1∫
ρ

g(r)f(r, x(r), x′(r))dr


+

1∫
0

1∫
s

Φq

 θ∫
ρ

g(r)f(r, x(r), x′(r))dr

 dθdB(s)


+

β[1]

(1− α[1])

 1∫
0

1∫
t

Φq

 s∫
ρ

g(r)f(r, x(r), x′(r))dr

 dsdB(t)


≥ 0

for ρ ≤ s, t ≤ 1 holds, we see that T (K) ⊂ K.
Next, we wish to prove that T : K → K is completely continuous. Let γ > 0 be any

real number and set
Ωγ = {x ∈ K : ‖x‖C1 < γ};

then Ωγ is an bounded open set in K. Hence, by (A4), for any x ∈ Ωγ and t ∈ [0, 1], we
have

‖Tx‖∞ = Tx(ρ)

=

bΦq

(
1∫
ρ

g(r)f(r, x(r), x′(r))dr

)
+

1∫
0

1∫
s

Φq

(
θ∫
ρ

g(r)f(r, x(r), x′(r))dr

)
dθdB(s)

1− β[1]

+

1∫
ρ

Φq

 s∫
ρ

g(r)f(r, x(r), x′(r))dr

 ds
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≤
bΦq

(
1∫
ρ

g(r)pf (r)dr

)
+

1∫
0

1∫
s

Φq

(
θ∫
ρ

g(r)pf (r)dr

)
dθdB(s)

1− β[1]

+

1∫
ρ

Φq

 s∫
ρ

g(r)pf (r)dr

 ds

for ρ ≤ s, and

‖Tx‖∞ = Tx(ρ)

=

aΦq

(
ρ∫
0

g(r)f(r, x(r), x′(r))dr

)
+

1∫
0

s∫
0

Φq

(
ρ∫
θ

g(r)f(r, x(r), x′(r))dr

)
dθdA(s)

1− α[1]

+

t∫
0

Φq

 ρ∫
s

g(r)f(r, x(r), x′(r))dr

 ds

≤
aΦq

(
ρ∫
0

g(r)pf (r)dr

)
+

1∫
0

s∫
0

Φq

(
ρ∫
θ

g(r)pf (r)dr

)
dθdA(s)

1− α[1]

+

ρ∫
0

Φq

 ρ∫
s

g(r)pf (r)dr

 ds

for s ≤ ρ. Also, from the facts that

(Tx)
′
(t) = Φq

 ρ∫
t

g(r)f(r, x(r), x′(r))dr

 ≥ 0 for t ≤ ρ

and

(Tx)
′
(t) = −Φq

 t∫
ρ

g(r)f(r, x(r), x′(r))dr

 ≤ 0 for t ≥ ρ,

we have

|(Tx)
′
(t)| ≤ Φq

 1∫
0

g(r)f(r, x(r), x′(r))dr

 .

Thus, for ρ ≤ s or s ≤ ρ, we have from (A4), that ‖Tx‖C1 <∞, which implies that T is

uniformly bounded. Next, for every ε > 0, there exists a δ ∈
(

0, ε

Φq(
∫ 1
0
g(s)pf (s) ds)

)
such

that for any t1, t2 ∈ [0, 1] with |t1 − t2| < δ, we have

|Tx(t2)− Tx(t1)| ≤
∣∣∣∣∫ t2

t1

Φq

(∫ 1

0

g(r)f(r, x(r), x′(r))dr

)
ds

∣∣∣∣
≤ |t1 − t2|Φq

(∫ 1

0

g(r)f(r, x(r), x′(r))dr

)
< δΦq

(∫ 1

0

g(r)pf (r)dr

)
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< ε.

Hence, T is equicontinuous.
The equicontinuity of {(Tx)′(t)} can be shown in a similar fashion. Therefore, T is

relatively compact on Ωγ , and hence compact on Ωγ . Therefore, T : K → K is compact
and continuous. �

3. MAIN RESULTS

In this section, we shall apply Theorem 2.4 to prove our main results. For any δ ∈
(0, 1/2) denote the three real numbers L, M1, and M2 by

L = Φq

(∫ 1

0

g(r)dr

)
, M1 = min

{
δΦq

(∫ 1−δ

δ

g(r)dr

)
,

∫ δ

0

Φq

(∫ δ

s

g(r)dr

)
ds

}
and

M2 =

∫ 1

1−δ
Φq

(∫ s

1−δ
g(r)dr

)
ds.

Theorem 3.1. Let δ ∈ (0, 1/2) be any real number and assume that (A1)–(A5). In addi-
tion, assume that

(A6) for any x ∈ [0,∞) and y ∈ R, the mapping t 7→ f(t, x, y) is decreasing.
(A7) for any t ∈ [0, 1], the mapping x 7→ f(t, x, y) is increasing.
(A8) there exists constant ri, i = 1, 2, 3, with

0 < r1 < r2 <
r2

δ
< r3

such that

f(0, ri, y) < min

{
Φp

(
ri(1− β[1])

(1 + b)L

)
,Φp

(ri
L

)}
for ri ≤ y ≤ ri, i = 1, 3,

f(1− δ, x, y) > Φp

(
r2

M1

)
for r2 ≤ x ≤

r2

δ
and

r2

δ
≤ y ≤ r2

δ
,

and

f(1, x, y) > Φp

(
r2

M2

)
for r2 ≤ x ≤

r2

δ
and

r2

δ
≤ y ≤ r2

δ
.

Then the BVP (1.1)–(1.2) has at least two positive solutions x1(t) and x2(t) with 0 < r1 <
‖x1‖ < r2/δ < ‖x2‖ < r3.

Proof. We shall show that T satisfies all the conditions of Theorem 2.4. By Lemma 2.5,
T : K → K is compact and continuous. Set

Ωri = {x ∈ K : ||x||C1 < ri} i = 1, 2, 3;

then for any x ∈ ∂Ωri , i = 1, 2, 3, we have 0 ≤ x(t) ≤ ||x|| = ri, t ∈ [0, 1]. Hence,
−ri ≤ x′(t) ≤ ri, i = 1, 3.

First we consider the case i = 1 and 3. For x ∈ ∂Ωri , i = 1 and 3. we have

||Tx||∞ = max
0≤t≤1

Tx(t) = Tx(ρ)

=

bΦq

(
1∫
ρ

g(r)f(r, x(r), x′(r))dr

)
+

1∫
0

1∫
s

Φq

(
θ∫
ρ

g(r)f(r, x(r), x′(r))dr

)
dθ dB(s)

1− β[1]
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+

∫ 1

ρ

Φq

 s∫
ρ

g(r)f(r, x(r), x′(r))dr

 ds

≤
bΦq

(
1∫
0

g(r)f(r, x(r), x′(r))dr

)
+ β[1]Φq

(
1∫
0

g(r)f(r, x(r), x′(r))dr

)
(1− β[1])

+ Φq

 1∫
0

g(r)f(r, x(r), x′(r))dr


≤ (1 + b)

(1− β[1])
Φq

 1∫
0

g(r)f(r, x(r), x′(r))dr


≤ (1 + b)

(1− β[1])
Φq

 1∫
0

g(r)f(0, x(r), x′(r))dr


≤ (1 + b)

(1− β[1])
Φq

 1∫
0

g(r)f(0, ri, x
′(r))dr


< ri

and

|(Tx)′| ≤ Φq(

1∫
0

g(r)f(0, x(r), x′(r))dr)

≤ Φq(

1∫
0

g(r)f(0, ri, x
′(r))dr)

≤ ri,
which implies that ||Tx||C1 < ri = ||x||C1 for i = 1, 3. This indicates that ||Tx||C1 <
||x||C1 for any x ∈ ∂Ωri with i = 1, 3. By Theorem 2.4 (2), we have iK(T,Ωri) = 1, i =
1, 3.

Next, for the case i = 2, we consider the set

Vr2 =

{
x ∈ K : min

t∈[δ,1−δ]
x(t) < r2

}
.

Then Ωr2 ⊂ Vr2 ⊂ Ωr2/δ and mint∈[δ,1−δ] x(t) = r2 for x ∈ ∂Vr2 . Further, by Lemma
2.3, we have for any x ∈ K,

max
0≤t≤1

x(t) ≤ 1

δ
min

t∈[δ,1−δ]
x(t) =

r2

δ
.

So for any x ∈ ∂Vr2 , we obtain

r2 = min
t∈[δ,1−δ]

x(t) ≤ x(t) ≤ max
0≤t≤1

x(t) ≤ r2

δ
. (3.1)

Thus, − r2δ ≤ x′ ≤ r2
δ for δ ≤ t ≤ 1− δ. Let e(t) ≡ 1 for t ∈ [0, 1]. Then, it is clear that

e ∈ K \ {0}. We claim that x 6= Tx+ λe for all x ∈ ∂Vr2 and all λ ≥ 0. To the contrary,
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suppose that there exists x∗(t) ∈ ∂Vr2 and λ∗ ≥ 0 such that

x∗(t) = Tx∗(t) + λ∗e(t).

Then,
r2 = min

t∈[δ,1−δ]
x∗(t) = min

t∈[δ,1−δ]
Tx∗(t) + λ∗. (3.2)

We consider three cases depending on the location of ρ in [0, 1], and obtain contradictions
in each case. First suppose that ρ ∈ [δ, 1− δ]. Then we have, either mint∈[δ,1−δ] Tx

∗(t) =
x∗(δ) or mint∈[δ,1−δ] Tx

∗(t) = x∗(1 − δ). If mint∈[δ,1−δ] Tx
∗(t) = x∗(δ), then from

(3.2) we have

r2 = min
t∈[δ,1−δ]

Tx∗(t) + λ∗

≥ Tx∗(δ) + λ∗

=

aΦq

(
ρ∫
0

g(r)f(r, x∗(r), x∗
′
(r))dr

)
1− α[1]

+

1∫
0

s∫
0

Φq

(
ρ∫
θ

g(r)f(r, x∗(r), x∗
′
(r))dr

)
dsdA(s)

1− α[1]

+

δ∫
0

Φq

 ρ∫
s

g(r)f(r, x∗(r), x∗
′
(r))dr

 ds+ λ∗

≥
δ∫

0

Φq

 δ∫
s

g(r)f(r, x∗(r), x∗
′
(r))dr

 ds+ λ∗

≥
δ∫

0

Φq

 δ∫
s

g(r)f(1− δ, x∗(r), x∗
′
(r))dr

 ds+ λ∗.

Hence, for x∗ ∈ ∂Vr2 , using (3.1) and (A8), we obtain the contraction that r2 > r2 + λ∗.
If mint∈[δ,1−δ] Tx

∗(t) = x∗(1− δ), then from (3.2) we have

r2 = min
t∈[δ,1−δ]

Tx∗(t) + λ∗

≥ Tx∗(1− δ) + λ∗

=

bΦq

(
1∫
ρ

g(r)f(r, x∗(r), x∗
′
(r))dr

)
1− β[1]

+

1∫
0

1∫
s

Φq

(
θ∫
ρ

g(r)f(r, x∗(r), x∗
′
(r))dr

)
dθdB(s)

1− β[1]

+

1∫
1−δ

Φq

 s∫
ρ

g(r)f(r, x∗(r), x∗
′
(r))dr

 ds+ λ∗
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≥
1∫

1−δ

Φq

 s∫
1−δ

g(r)f(r, x∗(r), x∗
′
(r))dr

 ds+ λ∗

≥
1∫

1−δ

Φq

 s∫
1−δ

g(r)f(1, x∗(r), x∗
′
(r))dr

 ds+ λ∗

> r2 + λ∗,

which is a contradiction.
Next, suppose that ρ ∈ [1− δ, 1]. Then from (3.2), we have

r2 = min
t∈[δ,1−δ]

Tx∗(t) + λ∗

= Tx∗(δ) + λ∗

≥
δ∫

0

Φq

 ρ∫
s

g(r)f(r, x∗(r), x∗
′
(r))dr

 ds+ λ∗

≥
δ∫

0

Φq

 1−δ∫
s

g(r)f(1− δ, x∗(r), x∗
′
(r))dr

 ds+ λ∗

≥
δ∫

0

Φq

 1−δ∫
δ

g(r)f(1− δ, x∗(r), x∗
′
(r))dr

 ds+ λ∗, (∵ s ≤ δ)

> r2 + λ∗,

which again is a contradiction.
Finally, suppose that ρ ∈ [0, δ). From (3.2), we have

r2 = min
t∈[δ,1−δ]

Tx∗(t) + λ∗e

= Tx∗(1− δ) + λ∗

≥
1∫

1−δ

Φq

 s∫
ρ

g(r)f(r, x∗(r), x∗
′
(r))dr

 ds+ λ∗

≥
1∫

1−δ

Φq

 s∫
1−δ

g(r)f(r, x∗(r), x∗
′
(r))dr

 ds+ λ∗

≥
1∫

1−δ

Φq

 s∫
1−δ

g(r)f(1, x∗(r), x∗
′
(r))dr

 ds+ λ∗

> r2 + λ∗,

a contradiction.
Hence, our claim holds, that is, x 6= Tx + λe for all x ∈ ∂Vr2 and all λ ≥ 0. By

Theorem 2.4(a), we see that iK(T, Vr2) = 0, so by Theorem 2.4(c), the operator T has two
fixed points x1 and x2 that in turn are positive solutions of the BVP (1.1)–(1.2) satisfying
x1, x2 ∈ K with r1 < ||x1||∞ < r2/δ < ||x2||∞ < r3. This completes the proof of the
theorem. �
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By proceeding as in the lines of the proof of Theorem 3.1, we can prove the following
theorem; we omit the details.

Theorem 3.2. In addition to conditions (A1)–(A7) assume that
(A9): there exists constant ri, i = 1, 2, 3 with

0 < r1 <
r1

δ
< r2 <

r2

δ
< r3

such that

f(0, r2, y) < min

{
Φp

(
r2(1− β[1])

(1 + b)L

)
,Φp

(r2

L

)}
for − r2/δ ≤ y ≤ r2/δ,

f(1− δ, ri, y) > Φp

(
ri
M1

)
for for − ri/δ ≤ y ≤ ri/δ, i = 1, 3,

and

f(1, ri, y) > Φp

(
ri
M2

)
for for − ri/δ ≤ y ≤ ri/δ, i = 1, 3

are satisfied. Then the BVP (1.1)–(1.2) has at least two positive solution x1, x2 with r1
δ <

||x1||∞ < r2 and r2
δ < ||x2||∞ < r3

δ .

4. DISCUSSION AND EXAMPLES

As mentioned earlier, the Riemann-Stieltjes integrals α[x] and β[x] are quite general
and include a variety of nonlocal boundary conditions. For example:

(i) If α[x] = αx(η), 0 < η < 1 and β[x] = βx(µ), 0 < µ < 1, then condition (A2)
reduces to 0 < α < 1 and 0 < β < 1,

(ii) Ifα[x] = α
η2−η1

∫ η2
η1
αtx(t) dt, 0 < η1 < η2 < 1 and β[x] = β

µ2−µ1

∫ µ2

µ1
αtx(t) dt,

0 < µ1 < µ2 < 1, α and β are positive constants, then (A2) becomes 0 <
α(η1 + η2) < 2 and 0 < β(µ1 + µ2) < 2.

(iii) If α[x] = α
∫ 1

0
tmx(t)dt and β[x] = β

∫ 1

0
tnx(t)dt, m,n > −1, then (A2) re-

duces to 0 < α < m+ 1 and 0 < β < n+ 1.

Example 4.1. Let p > 1 and q > 1 be such that 1/p + 1/q = 1. Let δ ∈ (0, 1/2) and
assume that (A2) is satisfied. Set

φ1 := Φp

(
r1(1− β[1])

(1 + b)L

)
, φ2 := Φp

(
r2

M1

)
,

φ̃2 := Φp

(
r2

M2

)
, and φ3 := Φp

(
r3(1− β[1])

(1 + b)L

)
,

where r1, r2, and r3 are chosen such that 0 < r1 < r2 < r2/δ < r3 and the inequalities
r2
1 <

7225(3−δ)
2(1+δ) φ1,

r2
3 <

7225((5−3δ)φ3−(1+δ)φ2)
4(1+δ) ,

φ3 >
(

4−3δ
δ

)
max{φ2, φ̃2}

(4.1)

are satisfied. Set

f1(x, y) =
φ1

2

(
1

2
− 1

2
cos

(
πx

r1

))
+

y2

7225
,

f2(x, y) =
1

8
(2φ1 + 3φ2 + φ3) +

1

8
(2φ1 − 3φ2 − φ3) cos

(
π(x− r1)

(r2 − r1)

)
+

y2

7225
,
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f3(x, y) =
1

8
(5φ2 + 3φ3) +

1

8
(φ2 − φ3) cos

(
π(x− r2)

(r2/δ − r2)

)
+

y2

7225
,

f4(x, y) =
1

8
(3φ2 + 5φ3) +

1

8
(φ2 − φ3) cos

(
π(x− r2/δ)

(r3 − r2/δ)

)
+

y2

7225
,

and for 0 ≤ t < 1, let

f(t, x, y) =
(1 + δ − t)

2


f1(x, y), 0 ≤ x ≤ r1,

f2(x, y), r1 ≤ x ≤ r2,

f3(x, y), r2 ≤ x ≤ r2/δ,

f4(x, y), r2/δ ≤ x ≤ r3.

(4.2)

It is easy to see that conditions (A6) and (A7) are satisfied. Using (4.1), we have

f(0, r1, y) =
(1 + δ)

2

[
φ1

2
+

r2
1

7225

]
< φ1 := Φp

(
r1(1− β[1])

(1 + b)L

)
,

f(0, r3, y) =
(1 + δ)

2

[
(φ2 + 3φ3)

4
+

r2
3

7225

]
< φ3,

f(1− δ, x) ≥ f(1− δ, r2) = δ
(3φ2 + φ3)

4
> φ2

and

f(1, x) ≥ f(1, r2) = δ
(3φ2 + φ3)

4
> φ̃2

for r2 ≤ x ≤ r2/δ, so Theorem 3.1 can be applied to the BVP (1.1)–(1.2), with f given in
(4.2).

Next, we give a particular example to illustrate Theorem 3.1.

Example 4.2. Let p = 3, δ = 1/4, g(t) ≡ 1, b = 1, and β[x] = 1
2x(η), 0 < η < 1.

Then β[1] = 1
2 , q = 3

2 , L = 1, M1 = min
{

1√
2
, 1

12

}
= 1

12 , and M2 = 1
12 . Here

(1−β[1])
(1+b) = 1

4 < 1. For 0 ≤ t < 1, let

f(t, x, y) =
(1 + δ − t)

2



1
1024 −

1
1024 cos 4πx+ y2

7225 , 0 ≤ x ≤ 1/4,

1212417
1024 − 1212415

1024 cosπ(4x− 1) + y2

7225 , 1/4 ≤ x ≤ 1/2,

3264− 896 cos π3 (2x− 1) + y2

7225 , 1/2 ≤ x ≤ 2,

5056− 896 cos π
350 (x− 2) + y2

7225 , 2 ≤ x ≤ 352.
(4.3)

The conditions (A6) and (A7) are satisfied. Set r1 = 1/4, r2 = 1/2 and r3 = 352; then
0 < r1 < r2 < r2/δ < r3,

φ1 := Φp

(
r1(1− β[1])

(1 + b)L

)
=

1

256
, φ2 := Φp

(
r2

M1

)
= 576,

φ̃2 := Φp

(
r2

M2

)
= 36 φ3 := Φp

(
r3(1− β[1])

(1 + b)L

)
= 7744

and the conditions in (4.1) are satisfied.
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Since

f(0, r1, y) =f(0, 1/4, y) ≤ 5

8

[
1

512
+

1

16× 7225

]
<

1

256
= Φp

(
r1(1− β[1])

(1 + b)L

)
for − 1/4 ≤ y ≤ 1/4,

f(0, r3, y) =f(0, 352, y) ≤ 5

8

[
5952 +

123904

7225

]
= 3318.218

< 7744 = Φp

(
r3(1− β[1])

(1 + b)L

)
for − 352 ≤ y ≤ 532,

f(1− δ, x, y) ≥ f(1− δ, r2, y) = f(3/4, 1/2, y) > 592 > 36 = Φp

(
r2

M1

)
for −1/8 ≤ y ≤ 1/8, and

f(1, x, y) ≥ f(1, r2, y) = f(1, 1/2, y) > 296 > 36 = Φp

(
r2

M2

)
for −1/8 ≤ y ≤ 1/8, Theorem 3.1 can be applied to the BVP

(Φp(x
′
))

′
+ f(t, x, x′) = 0, 0 ≤ t ≤ 1,

x(0)− ax′
(0) = αx(η), 0 < η < 1,

x(1) + x
′
(1) = 1

2x(µ), 0 < µ < 1,

(4.4)

with f given in (4.3). By Theorem 3.1, the problem (4.4) has at least two positive solutions
x1, x2 with 1/4 ≤ ‖x1‖ ≤ 2 and 2 ≤ ‖x2‖ ≤ 352.

Remark. The piecewise continuous function f given in (4.3) can also be replaced by

f(t, x, y) =
(1 + δ − t)

2

[
128203375523

3808115850
x4 − 2753271348983

230794900
x3

+
106156471625653

3808115850
x2 − 3950296709102

634685975
x+

y2

7225

]
.

(4.5)

We can then apply Theorem 3.1 to the problem (4.4) with f given in (4.5) to show that the
problem has at least two positive solutions x1, x2 with 1/4 ≤ ‖x1‖ ≤ 2 and 2 ≤ ‖x2‖ ≤
352.

In Example 4.1, a general result was obtained for the existence of positive solutions of
(1.1)–(1.2), with f given in (4.2), p, q > 1, 0 < r1 < r2 < r2/δ < r3, and the constants
φ1, φ2, φ̃2, and φ3 satisfying the inequalities in (4.1). We conclude this paper with example
for the case p = q = 2.

Example 4.3. Consider the boundary value problem
x

′′
+ f(t, x, x′) = 0, 0 ≤ t ≤ 1,

x(0)− ax′
(0) = α[x],

x(1) + x
′
(1) = β[x].

(4.6)
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Let g(t) ≡ 1, b = 1, and β[x] = 1
2x(η), 0 < η < 1. Then, β[1] = 1

2 , q = 2, L = 1,
M1 = 1

32 , and M2 = 1
32 . If we set r1 = 1/4, r2 = 1/2, r3 = 1860, and

f(t, x, y) =
(1 + δ − t)

2



1
64 −

1
64 cos 4πx+ y2

8850 , 0 ≤ x ≤ 1/4,

4105
64 −

4103
64 cosπ(4x− 1) + y2

8850 , 1/4 ≤ x ≤ 1/2,

1475
8 − 449

8 cos π3 (2x− 1) + y2

8850 , 1/2 ≤ x ≤ 2,

2373
8 − 449

8 cos π
1858 (x− 2) + y2

8850 , 2 ≤ x ≤ 1860,

(4.7)

then the inequalities

f(0, 1/4, y) <
1

16
for − 1/4 ≤ y ≤ 1/4,

f(0, 1860, y) < 464.790784 < 465 for − 1860 ≤ y ≤ 1860,

f(3/4, 1/2, y) ≥ 513

16
> 16 for − 1/8 ≤ y ≤ 1/8,

and
f(1, 1/2, y) ≥ 513

32
for − 1/8 ≤ y ≤ 1/8

imply that all the conditions of Theorem 3.1 are satisfied, so the BVP (4.6) with f given in
(4.7) has at least two positive solutions x1, x2 with 1/4 ≤ ‖x1‖ ≤ 2 and 2 ≤ ‖x2‖ ≤ 1860.
We can also replace the function f in (4.7) by

f(t, x, y) =
(1 + δ − t)

2

[
114789441720137

334631973966780
x4 − 855116002574918627

1338527895867120
x3

+
4027592955239820581

2677055791734240
x2 − 449844227597169277

1338527895867120
x+

y2

8850

]
(4.8)

and Theorem 3.1 can be applied to problem (4.6) with f is given in (4.8).
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