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PYTHAGOREAN CUBIC IDEAL IN SEMIGROUP

V. CHINNADURAI AND A. ARULSELVAM*

ABSTRACT. In this paper, we introduce the notion of Pythagorean cubic ideal in semi-
group. Also, we discuss some of their properties with examples.

1. INTRODUCTION

In 1965, Zadeh|[8, |9] presented the idea of a fuzzy set. He also developed the notion of
interval-valued fuzzy set in 1975 which is an expansion of the fuzzy set. A semigroup is an
algebraic structure comprising of a non-empty set along with an affiliated bi- nary opera-
tion. Atanassvo[2] presented the intuitionistic fuzzy set with certain properties. Atanassvo
et al.[3] developed the idea of interval-valued intuitionistic fuzzy set. In 2012, Jun et
al.[5] presented the idea of cubic set a combination of interval-valued fuzzy set and fuzzy
set and talked about some related properties. Afterward, in 2013, Jun and Khan[6] pre-
sented the idea of cubic ideals in the semigroup. In 2013, Yager[?] started the idea of
Pythagorean fuzzy set, the sum of the squares degree of membership(DOM) and degree of
non-membership(DONM) has a place with the unit interval [0,1]. In 2019, Abbas et al.[1]
introduced Cubic Pythagorean fuzzy sets. In 2019, Hussain et al.[4] started the ideas of
Rough Pythagorean fuzzy ideals in the semigroup. In this paper, we introduce the proper-
ties of Pythagorean cubic ideals in semigroup.

2. PRELIMINARIES

Definition 2.1. [?] Let X be a universe of discourse, A Pythagorean fuzzy set (PFS)
P = {w, ¢,(w),Yp(w)/w e X} where ¢ : X — [0,1] and ¢ : X — [0, 1] represent
the DOM and DONM of the object w € X to the set P subset to the condition 0 <
(¢p(w))? + (1bp(w))* < 1 forall w € X. For the sake of simplicity a PFS is denoted as

P = ((bp(w)vq/)p(w))-
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3. PYTHAGOREAN CUBIC IDEAL IN SEMIGROUP

Definition 3.1 A Pythagorean cubic set(PCS) P¢ = (¢¢, 1:¢) = <[Z/>;{/7p} ,(¢p,¢p)>

on S is known to be a Pythagorean cubic sub-semigroup(PFSS) of S. If for all wy, w2 € S,
it holds

By (wiws) = min {6y(w1), 6, (w2) }
by (wrws) < maa { i (wn), ¥y (w2) }
)

®p (w1w2 < maz {¢p(wl) ¢p(w2)}
Yy (wiwz) > min {1, (w1), ¥y (w2)}

Consider

TABLE 1. Cayley table
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Example 3.2. Consider a semigroup S = {u, v, w, z,y} with the above Cayley Table.
Define a Pythagorean cubic set(PCS) P¢ = < [25;, @;] s (&, ¢p)> in S as follows.

S| | p(wi), p(wr) (fp(w1), Pp(wr))
u | [0.7,0.8],]0.1,0.2] 0.2,0.7
v | [0.4,0.6],[0.4,0.5] 0.4,0.5
w | [0.3,0.5],]0.5,0.6] 0.5,0.3
x | [0.1,0.2],[0.3,0.5] 0.3,0.2
y | [0.3,0.5],[0.5,0.6] 0.5,0.3

Thus P¢ = < [@,, wp} (6, zpp)> is a PCSS of S.

Definition 3.3. APCS P¢ = (@pe, ¢pe ) on semigroup S, is said to be a PCL (P5 ;)(resp.PCR(Pg;))
ideal of S.If fg\rjall wy,wq € 5, it holds.

Pp (w1w2) > ¢p (w2): Pp (Wrw2) < ¢y (w2)

Py (wrw2) < Py, (w2); Yy (Wrw2) > Yy, (w2)

resp.right(Pg;)

fg (wiwg) > f?ﬁ(wl); Op (w1w2) < @y (w1)

Py (wiwz) < Yy (w1); Yy (wrwz) > Py (w1).

Definition 3.4. A PCS P° = (¢, 1hye) = < [;ﬁ; Jp} (6, ¢,,)> on S is called (PCI)Pythagorean

cubic ideal (Pf)of S. If for all w;,wy € S, it P¢ is both a left and right (PCI)Pythagorean
cubic ideal of 5.

(j)p (wiwe) > max (;Sp )s &p wg)}

N( we) < min {wp w1 ), P ’11}2)}
bp (w1w2) < min {¢y(w1), dp (wz)}
Yp (wrw2) > maz {1y (w1 ), Yp(wa)}.
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Definition 3.5. A PCS P = (¢pe, tpe) = <[$; {Jp} (6, qpp)> on S is known to be a
(PCBI)Pythagorean cubic Bi-ideal (Pg;) of S. If for all wy, we, w3 € S, and satisfy.

Oy (wiwaws) = min {6, (w1), & (ws) }

by (wrwaws) < maz {1, (wn), Uy (ws) |

)
¢p (wrwaw3z) < max {¢y(w1), ¢p(w3)}
Vp (w1waws) > min {1y, (w1), ¥y (w3)}.

Example 3.6. Consider a semigroup S = {u, v, w, T, y} with the above Cayley Table.
Define a Pythagorean cubic set P¢ = < [;b;, 7,71; , (¢p, 1/)p)> in S as follows.

S| | p(wi), p(wr) (op(w1), Pp(wr))
u | [0.8,0.9],]0.1,0.3] 0.2,0.7
v | [0.3,0.5],[0.7,0.9] 0.8,0.3
w | [0.4,0.6],[0.6,0.7] 0.5,0.4
x | [0.3,0.5],[0.7,0.9] 0.8,0.3
y | [0.7,0.8],[0.4,0.5] 0.4,0.6

Thus P¢ = < {2;5;, QZ;} (6, ¢p)> is a PCBI of S.

Definition 3.7. A PCS P¢ = (¢pe, pe) = <F§;, %} , (ép, ¢p)> on S is known to be a
Pythagorean cubic interior ideal (P5;) of S. If for all wy, w2, ws € S, and satisfy.
?\;}(wlw2w3) > %(U&)

Yy (wrwows) < ¥y, (ws)

bp (wrwows) < ¢p(w2)

Vp (w1waws) > Py (w2).

Definition 3.8. For any non-empty subset [V of a semigroup S is defined to be a struc-
ture xy = {wh [¢XN (w1)7 wXN (wl)]? (¢XN (w1)7 d]XN (wl))‘wl € S} which is briefly

denoted by xny = <[<EXN,JXN], (¢XN,wXN)> where,

5 (w1) lifre N ~ (wr) Oifr e N
w = ~ w =< ~
v AL 0 otherwise xv AT 1 otherwise
_JOifreN _JlifreN
2% (wr) = {1 otherwise Vo (wr) = {O otherwise

Theorem 3.1. Let S be a semigroup. Then,

(i) The intersection of two Pythagorean cubic sub-semigroup (PCSS) of S, is a Pythagorean
cubic sub-semigroup (PCSS)of S.

(ii) The intersection of two Pythagorean cubic left(PCL)(resp. PCR)ideal of S, is PCLI(resp.
PCRI) of S.

Proof. Let P{ = <[$p1a$p1} a(¢p17¢p1)> and Py = <{$pzv&pz} 7(¢P27¢P2)> be two

Pythagorean cubic sub-semigroup of S. Let wq,ws € S.
Then,

(B 16 ) (wr,w2) = min {Jy, (w1,1w2) Gy (w1, w2) |
> min {mm {(Epl (wl) 7(Z~5p1 (w2)} , TN {$p2 (wl) 7(75172 (w2)}}
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= min {min { gy, (w1), Gy, (w1) }smin {Sy, (w2) Gy (1w2) )}
= min{ Gy, 06y, (w1), Gy, Ny (02) }

({/;pl U{/;pz> (w1, w2) = max {{/;pl (w1, w2) , U, (whwz)}
< maz {maz {4, (1) Py, (wa) | ;maz {dpa (w1) By (w2) } |

= mazx {max {{Epl (wy), 'LZPQ (’w1)} , max {{Epl (w2) , Py, (w2)

= max {{/;pl U 1/Jp2 (w1), wpl U i[;pz (w2)}

(¢p1 U ¢;D2) (wlv wQ) = max {¢p1 (wlv wQ) P2 (wlv w2)}
< maz{mazx{¢p, (w1),¢p, (w2)}, max{¢p, (w1), dp, (w2)}}
= maz {maz {¢p, (w1), Pp, (w1)},maz {¢p, (w2), ¢p, (w2)}}
= max {(bpl U ¢P2 ( 1) ¢p1 U ¢P2 (w2)}

(wm n ¢P2) (w17 w2) = min {¢P1 (wlv w2) wl)z (w17 w2)}
> min {min {1, (w1), %/Jpl (w2)},min{p, (w1), ¢p, (w2)}}
= min {mm {1/)171 (wl) ) (wl)} , Min {wpl ( 2) 7'1/)172 (wQ)}}
= min {1y, NPy, (w1), wp N tp, (w2)}

Therefore, Pf N P§ = {<(¢p1 N <Z)p2> , (wm U wp2)> (Pp, U dpy) s (0p, N T/Jpz)}
PCSS of S.
(i1) (¢p1 N qbpz) (w1, ws) = min {(Epl (w1, ws), (wl,wg)}

¢
> min {qul (ws) ;gpz (w2)}
= (5171 N apz) (w2)

(T 0T G, 02) = e (B, o 02) e 0 02)
< mazx {Jpl (w2) ,?sz (w2)}
= (Jm U {/;m) (w2)

(69, U Bpy) (wr, w2) = maz {p, (w1, wz), p, (w1, w2)}
< maz {¢p, (w2), Pp, (w2)}

= (¢P1~U (bpz) (w2) _
(W ) (1, 02) = i { Gy (1, 02) Dy (w01, 02)

> min{p, (w2) ,¥p, (wa2)}
(’(/}pl N ¢P2) (

Therefore, (i) and (i) PYNPs = { { (&, 1 ¢p2) (B Uda) )+ (6, U630 (0, N85 }
is a Pythagorean cubic left(resp. right) ideal of S.

O
Theorem 3.2. A PCS P¢ = <[5p7 ip] s (ép, L/Jp)> of a semigroup S is a PCBI of S, iff

<(¢£a¢5) ’ (¢£a¢5)>and(¢p7¢p) [lré’PFIOfS.

Proof. Let P¢ = <{¢7p, Jp} , (6p, wp)> be a PFBI(Pythagorean cubic bi-ideal) of S, for

any wy,ws € S.
Then, we have membership

[oF (wiws), o¥ (wiw2)] = dp(wrws)

> min {qu(uh), 511(“12)}
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= min { [¢E(w1), @Y (w1)] , [$L (w2), ¢¥ (w2)] }
:mzn{[ 5 wy), ¢L w2)] [ Y (wn), ¢pU(w )]}
It follows that ¢£(w1w2) > min {¢L wl),r,b wa) }and (bU (wrwz) > min {¢U(w1),¢g(wz)}
and non-membership ~
[ (wiws), i (wrws)] = p(wiwz)
< mazx {wp(ﬂh)’w (w2)}
= maz { [k (wr), vY (wr)], [V (wa), ¥ (w2)] }
= maz { [¥F (wr), of (w2)], [ (wr), ¢ (w3)] }.
It follows that L (wyws) < maz {¢L (wy), ¥L (w2)} and ¥¥ (wiws) < maz {$Y (w1), ¢Y (w2) }

Clearly, ¢, (wiw2) < maz {¢p(w1), ¢p(w2)} and Y, (wiwa) > min {¢p(w1), Yp(wa)}.
Therefore, P = (¢, Y ) , (£, 4Y)) and (¢, ¢,) are Pythagorean fuzzy ideal of S.

Conversely, suppose that ([¢5, ¢V ], L, 45 ]) and (¢, 1) are Pythagorean fuzzy ideal
of S, let wy,wy € S.

bp (wrwa) = [pF (wiws), ¢ (wywy)]
> [min {¢f (w1), o5 (ws)}, m{¢U (wr), Y (w2) }]
=min {[¢f (w1), oY (w1)] , [¢ (w2), oY (w2)] }
= mm{gbp wy) ¢p wWo }

Uy (wywy) = [1/15 wiws), w1w2 ]
< [maz {4k ( wl) VL (ws) ), maz {5 ( wl) o
= maz { [Pk (w), wU(wl)]  [0f (wa), ¥ (w2)]
= max {wp(wl),wp(wg)}.

Clearly, ¢, (wiw2) < max {¢p(w1), ¢p(w2)} and ¢p(wiwz) = min {¢p(w1), ¥p(w2)}

= < [(EW zzp} s (&, z/zp)> is a Pythagorean cubic sub-semigroup of S.

U
P

(W)H
ki

Gp (wiwaws) = [BL (wiwaws), F (wiwaws)]
> [min {0 (1), 6% us)y . min {68 (1), 68 ()}
= min { ¢} wl)st(wl)] (05 (ws), ¢} (w3)] }
= min {d)p(uh), bp(w3)
by (wiwsws) = [Pk (wiwsws), ¥Y (wiwsws)]
< [mas {i(01). D )} mas {08 ar), 08 ()}
= max { [ibL w1)~1/1U(w1)] ['l/)L(wS wU wS)H
= max {¢p(w1)7¢p(w3)}
Clearly, ¢, (wi1waws) < maz {¢p(w1), ¢p(ws)} and ¢ (w1waws) > min {1, (w1), Yp(ws) }
- < [&fw {Ep} (P, z/;p)> is a Pythagorean cubic bi-ideal of S. 0

Theorem 3.3. If { P;},_; is a family of Pythagorean cubic bi-ideal of a semigroup S. Then
NP; is a Pythagorean cubic bi-ideal of S. Where NP; = ((ﬂggpi, U{/;pi) s (U, s Ny, ))
(51, ) = inf{(%z) ) (w1)/i € I,wy € S}
(1/1 )—sup{( ) wy)/i €1, w165}
U (¢p
N (

o) = sup{(dp,) (wr1)/i € I,w1 € S},
wpi) =inf{(¢p,) (w1)/i € I,w, € S} andi € I is any index set.
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Proof. Since P; = <[$pi, in} s (Gpss Up) i €T > is a family of Pythagorean cubic bi-
ideals of S. Let w1, wq, w3 € S.
ﬂggpi (’U.)l,'wz) = 'Lnf {5}71 (wlva) /7’ € I , W1, W2 € S}
>inf{min{ pe (W1), ¢p (U12)}}
= min {mf ((bp (wq )) inf (¢p (WQ))}
= min {ﬂqﬁ,) (w1), ﬁ¢p (w2) }
Uipi (wywy) = sup {zpm (wrwe) /i € I,wy, we € 5}
< sup {max {in (w1) , Yps (w2)}}
= max {sup (ZZpi (w1)) , SUp (lZpi (w2))}
= max {Ui[:p,; (wr) 7U7;Zp7: (wQ)}
Uy, (wiw2) = sup {¢p, (wiws) /i € I, w1, wz € S}
< sup {max {QSPL (wl) 7¢Pi (wQ)}}
= maz {sup (¢p, (w1)), sup (¢p, (w2))}
= maz {Usy, (1), Uy, (w2)}
Wﬂpi (wlw2) =inf {’(/Jpl (w1w2) /Z € Lwy,wy € S}
> inf {min {1, (w1),¥p, (w2)}}
= min {inf (Yp, (w1)),inf (¢Yp, (w2))}
= min{Mpp, (w1), MYy, (w2)}.
Hence, NP¢ = (<ﬂ$pi , U{/;pi) , (Udp, W/in)) is a Pythagorean cubic sub-semigorup of

ﬂqui (wrwows) = inf {EEPL’ (w1, wows) /i € I, w1, ws, w3 € S}
>inf {mzn {(Zpi (w1), (Zpi (w3)}}
= min {inf (qui (w1)) yinf (fgpi (w;»,))}
= min {ﬁgpi (w1), ﬂgpi (w3)}

Uy, (wrwgws) = sup { Ty, (wrwows) /i € Lun s, wy € 5}
< sup {ma:c {"Zp1 (wl) 7'{/;177‘, (w3)}}
= mazx {sup ({bvpi (w1)> , Sup (/(Zpi (wB))}
= max {U{Epi (w1), U{Epi (w3)}

Uy, (wrwaws) = sup{¢p, (wiwaws) /i € I, wy, wy, ws € S}
< sup {max {¢p, (w1), ¢p, (w3)}}
= max {sup (¢p, (w1)), sup (¢p, (w3))}
= max {Udp, (w1),Ud,, (ws)}

Ny, (wiwaws) = inf {iby, (wrwows) /i € I, wy,ws, wy € S}
> inf {min {1, (w1),¥p, (w3)}}
=min {inf (¥p, (w1)),inf (Yp, (w3))}
= nmin {m'@[]pi (wl) 701/1171' (w3)}

Hence, NP = ((Ndy,, Uy, ), (U, N0y,) ) is a PCBI of S. 0
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Theorem 3.4. Let N be any non-empty subset of a semigroup S. Then N is a bi-ideal of

S, iff the characteristic Pythagorean cubic set Xy = < [QNSPX N Jpx N} + (Dpxn s Upx N)> is
PCBI of S.

Proof. Assume that N is a bi-ideal of S. Let wy, wa, w3 € S. Suppose that ¢,,XN (wrws) <
min {¢pXN (w1), ¢pxzv (w2)} and prN (wywg) > mazx {¢px1v (w1), wPXN (w2)} it fol-
lows that @y (w1ws) = 0, min {%m(wl)v Poxn (wz)} =1, Py (wrwa) = 1,

max {{/;PXN (w1), QZPXN(U}Q)} =0, Ppxn (W1w2) > maz {pyy (W1), Ppyn (w2)} and

Vpxn (wiwz) < min {thpyy (01), Ppyy (w2)} it follows that ¢y (w1ws) = 1,

max {¢pr (w1), Ppxn (w2)} =0, Ypxn (wrwz) = 0, min {%XN (w1), wBXN (w2)} = 1.

This implies that wi, ws € N by wi,ws ¢ N a contradiction to N. So ¢py  (wrwz) >

min {ngN (w1), 5PXN (U’Z)}’ {EPXN (wiw2) < max {{/JVPXN (w1), {/;PXN (U’Z)}’ Gpyn (W1w2) <
max {¢pr (w1), Ppxn (w2)} and Ypxn (wrwz) > min {wpr (w1), Ypxn (wa)}.

Suppose that gngN (wrwaws) < min {@,XN (w1), ngN (ws) ¢ and
{/;T,XN (wrwows) > max {{/;T,XN (w1), QZPXN (ws)} it follows that
(EPXN (wiwaws) = 0,min {5PXN (w1), aPXN (U’S)} =1,

(L (wiwew3) = 1, max {prN (w1), (L (w3)} =0,

Ppxn (W1waw3) > maz {dpyy (W1), Ppyn (w3)}

and Vp,y , (wiwaws) < min {py (W1), Ypy y (w3)} it follows that

Ppxn (W1waw3) = 1, maz {dpy  (W1), Ppyn (w3)} =0,

Vpyn (W1waws) = 0, min {1y (w1), Ppy y (w3)} = 1.

This implies that wy, wo, w3 € N by wy, we, w3 ¢ N a contradiction to N.
S0 ¢pyn (wrw2ws) > min {¢p><zv (w1), Ppxw (wB)}’

{/IPXN (wrwaws) < mazx {{/IPXN (wl)»{/;pr (ws) ¢,

Ppxn (W1w2w3) < max {Ppyy (1), Ppxy (W3)}
and Ypy  (w1waws) > man {Ypyy (W1), Ypy y (w3) }-
This shows that y x is a Pythagorean cubic bi-ideal of S.

Conversely, xny = < [(prw , JPXN} (Dpxn s z/JpXN)> is PCBI of S for any subset IV of S.

Let wi,wy € N then ¢y (w1) = ¢pXN (wy) = 1, prN (w1) = ’l/)pXN (wy) = 0 and
Gpxn (W1) = Ppyy (W2) = 0 and Py (w1) = Ppyy (w2) = 1 since xn is a PCBI of S.

O (w1102) = min { Sy (w1), Gy (w2) } = min{T, T} =1,
G (wrw2) < maz { D (1), Gy (w2) } < maz{0, 0} =0,

Ppxn (w1wz) < max {¢pXN(w1)7 Pxn (wa)} < max{ﬁ, 6}~: 0

and ¥y (wiwa) > min {Ppy y (W1), Ypyy (w2)} > min{l,I} =1
This implies that wiws € N.

Let w1, wows € N then gZ)pXN(wl) gpr(wg) = apXN(wg) =1, Jpxw(wj) =
prN (w2) = TZ)pr (w3) = 0 and ¢pr (w1) = Ppxn(w2) = Ppxn (ws) = 0 and
Voxew (W1) = Py (W2) = thpy x (w3) = 1 since x is a PCBI of S. ¢y x (w1waws) >
min {¢pXN (w1); Ppxn (w3>} > min{1,1} =1, Upxn (W1w2w3) < mazx {’ll}PXN (w1); Ypxn (w3>} <
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maz{0,0} =0, -

Dpxn (W1waws3) < maz {Gpy (1), Ppxn (wSZ} < max{0,0} = 0and Py (wiwows) >
min {Ppy  (W1), Ypyn (ws)} > min{l, 1} = 1. Which implies that ww, € N.

Hence N is a bi- ideal of S. U

Theorem 3.5. If { P;},_; is a family of Pythagorean cubic interior ideal of a semigroup S.

Then NP; is a Pythagorean cubic interior ideal of S. Where NP; = ((ﬂ(gpi, Uzzpi) s (Uop, s ﬂwpi)).
N (0p) =inf {(%.) (w)/i € Lws €5},

U ({/;pi> = sup { (in> (wy)/i € I,bwy € S},

U(¢p,) = sup{(¢p,) (w1)/i € I,wy € S},

N (Yp,) = inf {(Yp,) (w1)/i € I,wy € S} and i € I is any index set.

Theorem 3.6. Let N be any non-empty subset of a semigroup S. Then N is a interior ideal

of S, iff the characteristic Pythagorean cubic set xn = < [(EPXN , JPXN] s (Dpxen s Uoxw )>
is PCII of S.

4. HOMOMORPHISM OF PYTHAGOREAN CUBIC IDEAL IN SEMIGROUP

Let R and T be two non-empty sets of semigroup S. A mapping f : R — T is called a
homomorphism if f(rt) = f(r)f(t) Vr,t € R.

Definition 4.1. Let f be a mapping from a set R to asetl’ and P¢ = < {QNSW zzp} s (D, ¢p)>

be a Pythagorean cubic set R the the image of R (i.e.,) f(P¢) = (f(¢p), [ (Up), f(bp), (1))
is a Pythagorean cubic set of 1" is defined by

tef'(r)
[0,0] - otherwise
~ inf (Gp)(8), if [Nr) =0
F@p)r) = {1 0)
[1,1] otherwise
inf (¢p)(t), if f7H(r)=0
F(ép)(r) = { 1=r

N { sup (¢p)(t), if f7H(r)=0

[1,1] otherwise
sup (yp)(t), if f71(r) =0
f(p)(r) = § ')
[0,0] otherwise

Let f be a mapping from a set R to 7" and P° = < [251,, {/;p] s (&, wp)> be a Pythagorean
cubic set of 7' then the pre image of T (i.e.,) f~1(P¢) = {(f’l(%g)7 f’l({/;p)), (fH(op), ffl(wp))}

is an Pythagorean cubic set of R is defined as

F7HGp) (1) = dp(f(r))
ey V) = B (0)
PPN =3 516,00 = 607(r)
F 1)) = G (£()
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Theorem 4.1. Let R, T be a semigroups, f : R — T be a homomorphism of semigroups.
(a) If P¢ = <{q~5p, {/;p} ,(¢p,wp)> is a Pythagorean cubic sub-semigroup of T’ the the

preimagef~1(P¢) = (f~! (&Fp), ft ({/;p), Ft (¢p), Ft (vp)) is a Pythagorean cubic sub-
semigroup of R.

(b) If P¢ = < [ap, ”LZP:| s (&, z,ZJp)> is a Pythagorean cubic left (resp.right) ideal of T the

the preimage f~1(P°) = (£~ (), f (), F~1(8p), f 7" (¥p)) is @ Pythagorean cubic
left ideal (resp. right ideal) of R.

Proof. Assume that P¢ = < [gp, {/;p} , (¢p, 7/’p)> is a Pythagorean cubic sub-semigroup of

T and r,t € R. Then

@) S (6,)(rt) = 3, (F(r1))
r

(if) £ 71 (p) (rt) = Wy (f (1))

(i) £~1(6,)(r) = Gy (F(r1))
<
(i) 11 (4)(rt) =
>

), .
Hence, f~1(P¢) = (f’l(ggp),f’l({/;p),f Y¢p), f1 (1)) is a Pythagorean cubic sub-
semigroup of R.

O fH(p)(rt) = dp(f
~ f7

(i) £~ () (1t) = Dy (f(r rt))
¥

(iii) fﬁl(@))(ﬁ) bp(

(V) fH(¥p) (1) = 9y (
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= Up(£(1))
= 1 W) (F (1))
Hence, f~1(P¢) = (f =X (p), F 2 (¥p), f~*(p), F () is a Pythagorean cubic left(resp.right)
ideal of R. g

Theorem 4.2. Let R,T be a semigroups, f : R — T be a homomorphism of semi-
groups. If P¢ = <[ } (Dps Up) > is a Pythagorean cubic bi-ideal of T the the

preimagef~1(P°) = (f~Y(¢p), f ~1(y, o), F (), fH(Wyp)) is a Pythagorean cubic bi-
ideal of R.

Proof. Assume that P¢ = < {(Ep, Jp} s (6p, wp)> is a Pythagorean cubic sub-semigroup of
Tand a,r,t € R. Then
@@) f~ (¢p)(rat) = ¢p(f(

(i) £~ (5, (rat) = dy(f(rat)

= bp(£(r)F(a)F ().

< maz {(£(r), & (F() }

= maz {71 (p) (1), (@) (F(0) }
(i) 1 (ép) (rat) = 6,/ (rat))

(iv) [~ (p)(rat) = %(f(mt))

Hence f~1(P%) = (f~Y(¢p), =2 (¥p), f 1 (0p), f~1(1p)) is a Pythagorean cubic bi-
ideal of R. ([

Theorem 4.3. Let R, T be a semigroups, f : R — T be a homomorphism of semigroups.
If P¢ = <[$p, QZZJVP} s (&, wp)> is a Pythagorean cubic interior ideal of T the preimage
fFYPe) = (71 (qu), ft (Jp), I Hdp), f1(p)) is a Pythagorean cubic interior ideal
of R.

5. CONCLUSIONS

In this paper we have obtained the union, intersection of PCI. The properties of Pythagorean
cubic left(right) ideals, bi-ideals, interior ideals and sub-semigroup of semigroup.
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