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A NOTE ON A COUPLED SYSTEM OF CAPUTO-FABRIZIO FRACTIONAL
DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

ABSTRACT. A coupled system of Caputo-Fabrizio fractional differential inclusions is
studied and the existence of solutions is obtained when the set-valued maps that define
the problem have nonconvex values, but there are Lipschitz in the state variables.

1. INTRODUCTION

This note is concerned with the following Cauchy problem associated to a coupled
system of Caputo-Fabrizio fractional differential inclusions{

Dσ1

CF y(t) ∈ G(t, y(t), z(t)) a.e. t ∈ [0, T ], y(0) = y0, y
′(0) = y1,

Dσ2

CF z(t) ∈ H(t, y(t), z(t)) a.e. t ∈ [0, T ], z(0) = z0, z
′(0) = z1,

(1.1)

where σ1, σ2 ∈ (1, 2), G : [0, T ]×R2 → P(R), H : [0, T ]×R2 → P(R) are set-valued
maps, y0, z0, y1, z1 ∈ R, Dσ

CF denotes Caputo-Fabrizio’s fractional derivative of order σ
and P(R) is the family of all nonempty subsets of R.

A rather new fractional order derivative was introduced by Caputo and Fabrizio in
[8]. Even if it has a regular kernel this fractional derivative turned out to be very use-
ful in applied problems [4, 5, 18] etc.. Several qualitative results for fractional differential
equations and inclusions defined by Caputo-Fabrizio fractional operator may be found in
[10, 11, 17, 19, 20] etc.. For more general considerations concerning the analysis of frac-
tional differential equations we refer to [7, 13, 15].

In the last years an increasing number of papers devoted to the study of the existence of
solutions for different classes of coupled systems of fractional differential equations with
several boundary conditions may be found in the literature [1, 2, 3, 16] etc.. It is worth
to mention that the first paper which deals with a coupled system of Caputo-Fabrizio frac-
tional differential equations is [2]. All the results in the papers quoted above are obtained
by using several fixed point techniques.

Our goal is to study problem (1.1) in the situation when the set-valued maps are not
convex valued and to deduce an existence result for this problem using Filippov’s technique
[14]. Our main hypothsis is that the set-valued maps G and H are Lipschitz in the state
variables.
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On one hand, our main result extends Theorem 3.2 in [10] obtained for a simple frac-
tional differential inclusion of Caputo-Fabrizio type to a coupled system of such fractional
differential inclusions and, on the other hand, the present paper extends the study in [2]
from fractional differential equations framework to fractional differential inclusions frame-
work.

We underline that from our main result, in a particular case, we obtain, as a corollary,
an existence result which has a less complicated statement. Such a consequence may
also be obtained using Covitz-Nadler set-valued contraction principle but this approach
is weaker than Filippov’s type approach: stronger hypotheses and without a priori bounds
for solutions (e.g., [9]).

We mention that these type of results may be found in the literature [9, 12], but their
account for coupled systems of Caputo-Fabrizio fractional differential inclusions is new.

2. PRELIMINARIES

Let denote by I the interval [0, T ], T > 0 and, as usual, we denote by C(I,R) the
Banach space of all continuous functions x(.) : I → R endowed with the norm |x(.)|C =
supt∈I |x(t)| and by L1(I,R) the Banach space of all integrable functions x(.) : I → R

endowed with the norm |x(.)|1 =
∫ T
0
|x(t)|dt. The Pompeiu-Hausdorff distance of the

closed subsets A,B ⊂ R is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)}, where
d∗(A,B) = sup{d(a,B); a ∈ A} and d(x,B) = infy∈B d(x, y).

The next definitions were introduced in [8].

Definition 2.1. a) The Caputo-Fabrizio integral of order σ ∈ (0, 1) of a function h ∈
ACloc([0,∞),R) (which means that h′(.) is integrable on [0, T ] for any T > 0) is defined
by

IσCFh(t) = (1− σ)h(t) + σ

∫ t

0

h(s)ds.

b) The Caputo-Fabrizio fractional derivative of order σ ∈ (0, 1) of h is defined for t ≥ 0
by

Dσ
CF f(t) =

1

1− σ

∫ t

0

e−
σ

1−σ (t−s)h′(s)ds.

c) The Caputo-Fabrizio fractional derivative of order α = σ + n, σ ∈ (0, 1) n ∈ N of
h is defined by

Dα
CFh(t) = Dσ

CF (D
n
CFh(t)).

In particular, if α = σ + 1, σ ∈ (0, 1) Dα
CFh(t) =

1
1−σ

∫ t
0
e−

σ
1−σ (t−s)h′′(s)ds.

Lemma 2.1. ([19]) For α = σ + 1, σ ∈ (0, 1) and h(.) ∈ L1(I,R) the initial value
problem

Dσ
CF y(t) = h(t), y(0) = y0, y

′(0) = y1,

has a unique solution given by

y(t) = y0 + y1t+ (1− σ)
∫ t

0

h(s)ds+ σ

∫ t

0

(t− s)h(s)ds. (2.1)

Remark. If we define K(t, s) = (1 − σ) + σ(t − s) then the solution in (2.1) may be
written as y(t) = y0 + y1t +

∫ t
0
K(t, s)h(s)ds. Moreover, for any s, t ∈ I , |K(t, s)| ≤

(1− σ) + σT =: k.

Definition 2.2. (y(.), z(.)) ∈ AC(I,R) × AC(I,R) is said to be a solution of problem
(1.1) if there exist (g(.), h(.)) ∈ L1(I,R)×L1(I,R) such that g(t) ∈ G(t, y(t), z(t)) a.e.
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(I), h(t) ∈ H(t, y(t), z(t)) a.e. (I) and Dσ1

CF y(t) = g(t), t ∈ I , y(0) = y0, y
′(0) = y1

Dσ2

CF z(t) = h(t), t ∈ I , z(0) = z0, z
′(0) = z1.

In the proof of our main result we need the following classical selection result for set-
valued maps (e.g., [6]).

Lemma 2.2. Let B be the closed unit ball in R, F : I → P(R) is a set-valued map
with nonempty closed values and a : I → R, b : I → R+ are measurable functions. If
F (t)∩ (a(t) + b(t)B) 6= ∅ a.e. (I), then the set-valued map t→ F (t)∩ (a(t) + b(t)B)
admits a measurable selection.

3. MAIN RESULT

In what follows we are working under the next assumptions.

Hypothesis 3.1. i) G : I ×R2 → P(R) and H : I ×R2 → P(R) have nonempty closed
values and the set-valued maps t → G(t, u, v), t → H(t, u, v) are measurable for any
u, v ∈ R.

ii) There exist p(.), q(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I , G(t, ., .) is
p(t)-Lipschitz and H(t, ., .) is q(t)-Lipschitz in the sense that

dH(G(t, x1, y1), G(t, x2, y2)) ≤ p(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R.

dH(H(t, x1, y1), H(t, x2, y2)) ≤ q(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R.

Also, we use, next, the notations

K1(t, s) = (1− σ1) + σ1(t− s), t, s ∈ I, k1 = (1− σ1) + σ1T,

K2(t, s) = (1− σ2) + σ2(t− s), t, s ∈ I, k2 = (1− σ2) + σ2T,

l(t) = k1p(t) + k2q(t), t ∈ I.

Theorem 3.1. Assume that Hypothesis 3.1 is satisfied, |l(.)|1 < 1, consider (u(.), v(.))
∈ AC(I,R)×AC(I,R) such that there exists m(.), n(.) ∈ L1(I,R) with d(Dσ1

CFu(t),
G(t, u(t), v(t))) ≤ m(t) a.e. t ∈ I , u(0) = u0, u′(0) = u1 and d(Dσ2

CF v(t), H(t, u(t),
v(t))) ≤ n(t) a.e. t ∈ I , v(0) = v0, v′(0) = v1.

Then there exists (y(.), z(.)) ∈ AC(I,R) × AC(I,R) a solution of problem (1.1)
satisfying for all t ∈ I
|y(t)− u(t)|+ |z(t)− v(t)| ≤ (|y0 − u0|+ T |y1 − u1|+ |z0 − v0|+ T |z1−
v1|+ k1|m(.)|1 + k2|n(.)|1)(1− |l(.)|1)−1.

(3.1)

Proof. We apply Lemma 2.2 with F (t) = G(t, u(t), v(t)), a(t) = Dσ1

CFu(t) and b(t) =
m(t), t ∈ I to deduce the existence of a mesurable selection g1(t) ∈ G(t, u(t), v(t)) a.e.
t ∈ I such that

|g1(t)−Dσ1

CFu(t)| ≤ m(t) a.e. (I).

Similarly, there exists h1(t) ∈ H(t, u(t), v(t)) a.e. t ∈ I such that |h1(t) −Dσ2

CF v(t)| ≤
n(t) a.e. (I).

Put y1(t) = y0 + y1t +
∫ t
0
K1(t, s)g1(s)ds, z1(t) = z0 + z1t +

∫ t
0
K2(t, s)h1(s)ds.

One has

|y1(t)− u(t)| = |y0 + y1t− u0 − u1t+
∫ t
0
K1(t, s)(g1(s)−Dσ1

CFu(s))ds|
≤ |y0 − u0|+ T |y1 − u1|+ k1|m(.)|1.

Similarly, |z1(t)− v(t)| ≤ |z0 − v0|+ T |z1 − v1|+ k2|n(.)|1 and therefore,

|y1(t)− u(t)|+ |z1(t)− v(t)| ≤ |y0 − u0|+ T |y1 − u1|+ k1|m(.)|1+
|z0 − v0|+ T |z1 − v1|+ k2|n(.)|1 =: K
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Next, we will define, by induction the sequences yn(.), zn(.) ∈ AC(I,R) and gn(.),
hn(.) ∈ L1(I,R), n ≥ 1 such that

yn(t) = y0 + y1t+
∫ t
0
K1(t, s)gn(s)ds

zn(t) = z0 + z1t+
∫ t
0
K2(t, s)hn(s)ds

(3.2)

gn(t) ∈ G(t, un−1(t), vn−1(t)), hn(t) ∈ H(t, un−1(t), vn−1(t)) a.e. (I), (3.3)

|gn+1(t)− gn(t)| ≤ p(t)(|yn(t)− yn−1(t)|+ |zn(t)− zn−1(t)|) a.e. (I),
|hn+1(t)− hn(t)| ≤ q(t)(|yn(t)− yn−1(t)|+ |zn(t)− zn−1(t)|) a.e. (I).

(3.4)

We show, first, that from (3.2)-(3.4) it follows that

|yn+1(t)− yn(t)|+ |zn+1(t)− zn(t)| ≤ K(|l(.)|1)n a.e. (I) ∀n ∈ N. (3.5)

For n = 0 the inequality above was already proved. Assume that the last inequality is
true for n− 1. For almost all t ∈ I ,

|yn+1(t)− yn(t)| ≤
∫ T
0
|K1(t, s)|.|gn+1(s)− gn(s)|ds ≤ k1

∫ T
0
|gn+1(s)− gn(s)|ds

≤ k1
∫ T
0
p(s)(|yn(s)− yn−1(s)|+ |zn(s)− zn−1(s)|)ds ≤ k1K(|l|1)n−1

∫ T
0
p(s)ds.

Similarly, for almost all t ∈ I ,

|zn+1(t)− zn(t)| ≤ k2K(|l(.)|1)n−1
∫ T

0

q(s)ds

and, therefore, for almost all t ∈ I and for all n ∈ N

|yn+1(t)− yn(t)|+ |zn+1(t)− zn(t)| ≤ K(k1|p(.)|1 + k2|q(.)|1)(|l(.)|1)n−1 =
K(|l(.)|1)n.

From (3.5) it follows that the sequences {yn(.)}, {zn(.)} are Cauchy in the space C(I,R).
Consider y(.) ∈ C(I,R) and z(.) ∈ C(I,R) their uniform limits in C(I,R). In particu-
lar, (3.4) gives that, for almost all t ∈ I , the sequences {gn(t)}, {hn(t)} are Cauchy in R.
Set g(.), h(.) their pointwise limit.

Taking into account Hypothesis 3.1 and relations (3.5) we obtain the estimates

|yn(t)− u(t)|+ |zn(t)− v(t)| ≤ |y1(t)− u(t)|+ |z1(t)− v(t)|+∑n−1
i=1 (|yi+1(t)− yi(t)|+ |zi+1(t)− zi(t)|) ≤ K +

∑n
i=1K(|l(.)|1)i ≤ K

1−|l(.)|1 .

(3.6)
|gn(t)−Dσ1

CFu(t)|+ |hn(t)−D
σ2

CF v(t)| ≤ |g1(t)−D
σ1

CFu(t)|+ |h1(t)−
Dσ2

CF v(t)|+
∑n−1
i=1 (|gi+1(t)− gi(t)|+ |hi+1(t)− hi(t)|) ≤ |g1(t)−Dσ1

CFu(t)|
+|h1(t)−Dσ2

CF v(t)|+
∑n−1
i=1 (p(t) + q(t))(|yi(t)− yi−1(t)|+ |zi(t)− zi−1(t)|)

≤ m(t) + n(t) + (p(t) + q(t)) K
1−|l(.)|1

for almost all t ∈ I .
The last inequality shows that the sequences gn(.), hn(.) are integrably bounded and

therefore, their limits g(.), h(.) belong to L1(I,R).
If we let n→∞ in (3.2) we obtain that (y(.), z(.)) is a solution of problem (1.1). Also,

if n→∞ in (3.6) we get (3.1).
The proof is finished if the construction in (3.2)-(3.4) is provided. This will be done,

again, by induction. Assume that for J ≥ 1, yj(.), zj(.) ∈ C(I,R) and gj(.), hj(.) ∈
L1(I,R), j = 1, 2, ...J with (3.2) and (3.4) for n = 1, 2, ...J and (3.3) for j = 1, 2, ...J−1
are defined.

The set-valued maps t → G(t, yJ(t), zJ(t)), t → H(t, yJ(t), zJ(t)) are measurable;
also the maps t → p(t)|yJ(t) − yJ−1(t)| + p(t)|zJ(t) − zJ−1(t)|, t → q(t)|yJ(t) −
yJ−1(t)| + q(t)|zJ(t) − zJ−1(t)| are measurable. By the lipschitzianity of G(t, ., .) and
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H(t, ., .) we find

G(t, yJ(t), zJ(t)) ∩ {gJ(t) + (p(t)|yJ(t)− yJ−1(t)|+ p(t)|zJ(t)− zJ−1(t)|)[−1, 1]}
6= ∅,
H(t, yJ(t), zJ(t)) ∩ {hJ(t) + (q(t)|yJ(t)− yJ−1(t)|+ q(t)|zJ(t)− zJ−1(t)|)[−1, 1]}
6= ∅

for almost all t ∈ I .
So, we are able to apply Lemma 2.2 with F (t) = G(t, yJ(t), zJ(t)) (resp., F (t) =

H(t, yJ(t), zJ(t))) a(t) = gJ(t) (resp., a(t) = hJ(t)) and b(t) = p(t)(|yJ(t)−yJ−1(t)|+
|zJ(t)− zJ−1(t)|) (resp., b(t) = q(t)(|yJ(t)− yJ−1(t)|+ |zJ(t)− zJ−1(t)|)) in order to
deduce the existence of measurable selections gJ+1(.) of G(., yJ(.), zJ(.)) and hJ+1(.) of
H(., uJ(.), vJ(.)) that satisfy

|gJ+1(t)− gJ(t)| ≤ p(t)(|yJ(t)− yJ−1(t)|+ |zJ(t)− zJ−1(t)|) a.e. (I),
|hJ+1(t)− hJ(t)| ≤ q(t)(|yJ(t)− yJ−1(t)|+ |zJ(t)− zJ−1(t)|) a.e. (I).

It remains to put (yJ+1(.), zJ+1(.)) as in (3.2) with n = J + 1. �

Corollary 3.2. Assume that Hypothesis 3.1 is satisfied, d(0, G(t, 0, 0)) ≤ p(t), d(0, H(t,
0, 0)) ≤ q(t) a.e. t ∈ I and |l(.)|1 < 1.

Then there exists (y(.), z(.)) ∈ AC(I,R)×AC(I,R) a solution of problem (1.1) such
that, for all t ∈ I ,

|y(t)|+ |z(t)| ≤ |y0|+ T |y1|+ |z0|+ T |z1|+ k1|p(.)|1 + k2|q(.)|1
(1− k1|p(.)|1 − k2|q(.)|1

.

Proof. It is enough to apply Theorem 3.1 with u(.) = v(.) = 0, m(.) = p(.) and n(.) =
q(.). �

4. CONCLUSIONS AND DISCUSSIONS

In the present paper we extended existence results of Filippov type obtained for a frac-
tional differential inclusion of Caputo-Fabrizio type to the more general problem of cou-
pled system of such fractional differential inclusions. At the same time, the present paper
may be regarded as a continuation of the study in [2] to the more general framework of
fractional differential inclusions.

Existence results as in Corollary 3.2 above may be obtained, also, via a fixed point
approach, namely; Covitz and Nadler set-valued contraction principle. We avoided these
fixed point techniques because this approach requires that the values of G(., .) and H(., .)
are compact and does not provides a priori bounds as in Corollary 3.2.

As potential directions for future works we note that Theorem 3.1 is an essential tool
in order to obtain qualitative results concerning the solutions of the problems considered:
controllability along a given solution and differentiability of trajectories with respect to the
initial conditions.
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