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ON e?-REGULARITY AND e?-NORMALITY IN INTUITIONISTIC FUZZY
TOPOLOGICAL SPACES

S. SIVASANGARI AND G. SARAVANAKUMAR∗

ABSTRACT. In this paper, the concept of intuitionistic fuzzy e∗-open and e∗-closed sets
to introduce some new types of intuitionistic fuzzy e∗-separation axioms, intuitionistic
fuzzy e∗-Ti space (for i = 3, 4) and intuitionistic fuzzy e∗-regular and e∗-normal spaces
are introduced, some theorems about them are investigated. Stronger forms of intuitionistic
fuzzy e∗-regular and intuitionistic fuzzy e∗-normal spaces are introduced. Moreover, the
relationships between these separation axioms and others are investigated.

1. INTRODUCTION

Ever since the introduction of fuzzy sets by Zadeh [32], the fuzzy concept has invaded
almost all branches of mathematics. The concept of fuzzy topological spaces was intro-
duced and developed by Change [6]. Atanassov [1] introduced the notion of intuitionistic
fuzzy sets, Coker [7] introduced the intuitionistic fuzzy topological spaces. Several au-
thors [2, 15, 20, 26] introduced the concepts of fuzzy separaion axioms using the notion of
fuzzy open set and Othman and Latha [20] by using the notions fo fuzzy regular open sets,
fuzzy β-open sets, fuzzy α-open sets and fuzzy semi α-open sets respectively. Singal and
Prakash [25] have introduced the concept of fuzzy pre-separation axioms. Qahtani and Al-
Qubati [21] have introduced and studied new kinds of fuzzy pre-separation axioms. Several
notions based on fuzzy pre-separation axioms have been studied. Some authors studied the
concept of separation axioms in intuitionistic fuzzy topological spaces. In 2001, Bayhan
and Coker [3] gave some characterizations of T1 and T2 separation axioms in intuitionistic
topological spaces, they gave interrelations between several types of separationn axioms
and some counter examples. In 2003, Lupianez [17] defined new notions of Hausdorff-
ness in the intuitionistic fuzzy topological spaces. In 2005, Bayhan and Coker [5] studied
pairwise separation axioms in double intuitionistic topological spaces. For more studies,
we can find them in [4, 9, 18, 24]. The initiations of e?-open sets, e?-continuity and
e?-compactness in topological spaces are due to Ekici [10, 11, 12, 13, 14]. Sobana et.al
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[29] were introduced the concept of fuzzy e?-open sets, fuzzy e?-continuity and fuzzy e?-
compactness in intuitionistic fuzzy topological spaces (briefly., IFTS’s). The main purpose
of this paper is to introduce and study some new types of intuitionistic fuzzy e∗-separation
axioms, which is intuitionistic fuzzy e∗-Ti space (for, i = 3, 4) and intuitionistic fuzzy
e∗-regular and intuitionistic fuzzy e∗-normal spaces by using the concept of intuitionistic
fuzzy e∗-open (resp. closed) sets. Also, we will introduce stronger forms of intuitionis-
tic fuzzy e∗-regular and intuitionistic fuzzy e∗-normal spaces with relationships between
these separation axioms and others

2. PRELIMINARIES

Definition 2.1. [1] LetX be a nonempty fixed set and I be the closed interval in [0, 1]. An
intuitionistic fuzzy set (IFS)A is an object of the following formA = {< x, µA(x), νA(x)
>;x ∈ X} where the mappings µA(x) : X → I and νA(x) : X → I denote the degree of
membership (namely) µA(x) and the degree of non membership (namely) νA(x) for each
element x ∈ X to the set A respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X .

Definition 2.2. [1] LetA andB are intuitionistic fuzzy sets of the formA = {< x, µA(x),
νA(x) >: x ∈ X} and B = {< x, µB(x), νB(x) >: x ∈ X}. Then

(i) A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x);
(ii) A (orAc) = {< x, νA(x), µA(x) >: x ∈ X};

(iii) A ∩B = {< x, µA(x) ∧ µB(x), νA(x) ∨ νB(x) >: x ∈ X};
(iv) A ∪B = {< x, µA(x) ∨ µB(x), νA(x) ∧ νB(x) >: x ∈ X};
(v) [ ]A = {< x, µA(x), 1− µA(x) >: x ∈ X};

(vi) 〈 〉A = {< x, 1− νA(x), νA(x) >: x ∈ X};
We will use the notation A = {< x, µA, νA >: x ∈ X} instead of A = {< x, µA(x),
νA(x) >: x ∈ X}.

Definition 2.3. [7] 0∼ = {< x, 0, 1 >;x ∈ X} and 1∼ = {< x, 1, 0 >;x ∈ X}.
Let α, β ∈ [0, 1] such that α + β ≤ 1. An intuitionistic fuzzy point (IFP )p(α, β) is

intuitionistic fuzzy set defined by p(α, β)(x)=

{
(α, β) if x=p
(0, 1) otherwise

Definition 2.4. [7] An intuitionistic fuzzy topology (IFT) in Coker’s sense on a nonempty
set X is a family T of intuitionistic fuzzy sets in X satisfying the following axioms:

(i) 0∼, 1∼ ∈ T ;
(ii) G1 ∩G2 ∈ T , for any G1, G2 ∈ T ;

(iii) ∪Gi ∈ T for any arbitrary family {Gi; i ∈ J} ⊆ T .

In this paper by (X, T ) or simply by X we will denote the intuitionistic fuzzy topo-
logical space(IFTS). Each IFS which belongs to T is called an intuitionistic fuzzy open set
(IFOS) inX . The complementA of an IFOSA inX is called an intuitionistic fuzzy closed
set (IFCS) in X .

Definition 2.5. [16] Let p(α, β) be an IFP in IFTS X . An IFS A in X is called an intu-
itionistic fuzzy neighborhood (IFN) of p(α, β) if there exists an IFOS B in X such that
p(α, β) ∈ B ⊆ A.

Let X and Y are two non-empty sets and f : (X, T ) → (Y, σ) be a function [7]. If
B = {< y, µB(y), νB(y) >; y ∈ Y } is an IFS in Y , then the pre-image of B under f is
denoted and defined by f−1(B) = {< x, f−1(µB(x)), f

−1(νB(x)) >;x ∈ X}. Since



174 S. SIVASANGARI AND G. SARAVANAKUMAR

µB(x), νB(x) are fuzzy sets, we explain that f−1(µB(x)) = µB(x)(f(x)), f
−1(νB(x)) =

νB(x)(f(x)).

Definition 2.6. [7] Let (X, T ) be an IFTS and A = {< x, µA, νA >;x ∈ X} be an IFS
inX . Then the intuitionistic fuzzy closure and intuitionistic fuzzy interior ofA are defined
by

(i) cl(A) =
⋂
{C : C is an IFCS in Xand C ⊇ A};

(ii) int(A) =
⋃
{D : D is an IFOS in Xand D ⊆ A};

It can be also shown that cl(A) is an IFCS, int(A) is an IFOS in X and A is and IFCS in
X if and only if cl(A) = A; A is an IFOS in X if and only if int(A) = A

Proposition 2.1. [7] Let (X, T ) be an IFTS and A, B be intuitionistic fuzzy sets in X .
Then the following properties hold:

(i) cl(A) = (int(A)), int(A) = (cl(A));
(ii) int(A) ⊆ A ⊆ cl(A).

Definition 2.7. Let A be IFS in an IFTS (X,T ). A is called an intuitionistic fuzzy regular
open set [30] (briefly IFROS) if A = intcl(A) and intuitionistic fuzzy regular closed set
(briefly IFRCS) if A = clint(A)

Definition 2.8. [30] Let (X,T ) be an IFTS and A =< x, µA(x), νA(x) > be a IFS in X .
Then the fuzzy δ closure of A are denoted and defined by clδ(A) = ∩{K : K is an IFRCS
in X and A ⊆ K} and intδ(A) = ∪{G : G is an IFROS in X and G ⊆ A}.

Definition 2.9. [29] Let A be an IFS in an IFTS(X,T ). A is called an intuitionistic fuzzy
e?-open set (IFe?OS, for short) in X if A ⊆ clintclδ(A)

Definition 2.10. [27] Let (X,T ) be an IFTS and A =< x, µA, νA > be an IFS in X .
Then the intuitionistic fuzzy e∗-interior and intuitionistic fuzzy e∗-closure are defined and
denoted by:

cle∗(A) = ∩{K : K is an IFe∗CS in X and A ⊆ K}
and

inte∗(A) = ∪{G : G is an IFe∗OS in X and G ⊆ A}.
It is clear that A is an IFe∗CS (IFe∗OS) in X iff A = cle∗(A)(A = inte∗(A)).

Definition 2.11. [7] Let (X,T ) and (Y, S) be IFTS’s. A function f : (X,T )→ (Y, S) is
called intuitionistic fuzzy continuous(resp., e?-continuous [29]) if f−1(B) is an IFOS(resp.,
IFe?OS)in X for every B ∈ S.

Definition 2.12. [28] A IFTS (X,T ) is said to be a intuitionistic fuzzy stronger- e?-T1
(briefly, IFe?-T1s) if every IFP is an IFe?CS.

3. e?-REGULARITY IN INTUITIONISTIC FUZZY TOPOLOGI-CAL SPACES

Definition 3.1. An IFTS (X,T ) is said to be intuitionistic fuzzy e∗-Uryshon (briefly, IFe∗

- T2 1
2 ) if for every pair of IFP’s p = x(α,β), q = y(γ,η) with different supports, there

exists an IFe∗OS′s M and N such that (p ⊆ M, q * M) and (q ⊆ N, p * N) and
IFe∗cl(M) * IFe∗cl(N).

Definition 3.2. An IFTS (X,T ) is said to be intuitionistic fuzzy e∗-regular space (briefly,
IFe∗Rs) if for every pair of IFP p and IFe∗CS N such that p * N there exists an
IFe∗OS′s M1 and M2 such that (p ⊆M1, N ⊆M2 and M1 *M2).
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Theorem 3.1. If (X,T ) be an IFe∗Rs, then for any IFP p = x(α,β) and an IFOS N such
that p ⊆ N , there exists an IFe∗OS M1 such that p ⊆M1 ⊆ IFe∗cl(M1) ⊆ N.

Proof. Suppose that X be an IFe∗Rs. Let N = 〈x, µN (x), γN (x)〉 be an IFOS of X
and p be an IFP in X such that p ⊆ N. Then N c = 〈x, γN (x), µN (x)〉 is an IFe∗CS
in X . Since X is an IFe∗Rs, therefore there exist two IFe∗OS’s M1 and M2 such that
p ∈ M1, N

c ⊆ M2 and M1 * M2. Now M c
2 is an IFe∗CS such that M1 ⊆ M c

2 ⊆ N ,
thus, p ∈M1 ⊆ IFe∗cl(M1) and IFe∗cl(M1) ⊆M c

2 ⊆ N, so IFe∗cl(M1) ⊆ N. Hence
p ⊆M1 ⊆ IFe∗cl(M1) ⊆ N. �

Definition 3.3. A IFTS (X,T ) is said to be an intuitionistic fuzzy e∗T3 space (briefly,
IFe∗T3) if it is an IFe∗Rs as well as IFe∗ - T1s space.

Proposition 3.2. Every subspace of IFe∗Rs is IFe∗Rs.

Proof. Let (X,T ) be a IFe∗Rs and Y be subspace of X . To prove that Y is an IFe∗-
regular, where TY = {GY = 〈x, µG|Y (x), νG|Y (x)〉, x ∈ Y,G ∈ T} and G = 〈x, µG(x),
νG(x)〉. Let p = x(α,β) be an IFP in Y , and NY be an IFe∗CS in Y such that p * NY .
Since Y is a subspace of X , so p ∈ X and there exist an IFe∗CS F in X such
that the closed set generated by it for Y is FY . Since X is IFe∗Rs such that p *
F, there exist two IFe∗OS′s M1,M2 such that p ⊆ M1 = 〈x, µM1

(x), νM1
(x)〉 and

N ⊆ M1 = 〈x, µM2
(x), νM2

(x)〉 and M1 * M2,M1Y = 〈x, µM1|Y (x), νM1|Y (x)〉 and
M2Y = 〈x, µM2|Y (x), νM2|Y (x)〉 are IFe∗OS in Y such that that p ⊆ M1Y , N ⊆ M2Y

and M1Y *M2Y .Hence Y is an IFe∗Rs �

Theorem 3.3. An IFTS (X,T ) is said to be an IFe∗Rs if and only if for an IFP p =
x(α,β) and an IFCS N such that p * N, there exist two IFe∗OS′s M1,M2 such that
p ⊆M1, N ⊆M2, and IFe∗cl(M1) * (IFe∗cl(M2)).

Proof. Since p * N and (X,T ) is IFe∗Rs, there exist two IFe∗OS′s M1,M2 such that
p ⊆ N,N ⊆ M2 and M1 * M2 and by Theorem 3.1 p ⊆ M2 ⊆ IFe∗cl(M2) ⊆ M1.
Hence IFe∗cl(M2) ⊆ M1. Also, N ⊆ M2 ⊆ IFe∗cl(M2). But since IFe∗cl(M1) *
IFe∗cl(M2), then N ⊆ M2 ⊆ IFe∗cl(M2) ⊆ IFe∗cl(M1) ⊆ M c

1 and hence p ⊆
M1, N ⊆M2 and IFe∗cl(M1) * (IFe∗cl(M2)).

The converse is clear. �

Theorem 3.4. Let (X,T ) be an IFe∗Rs which is also IFT0. Then (X,T ) is IFe∗-T2 1
2

.

Proof. Let p = x(α,β) and q = x(γ,η) are IFP’s with different supports. Since (X,T ) is
an IFT0 space, then there exists an IFOS N such that p ⊆ N, q * N or q ⊆ N, p * N.
Consider the part p ⊆ N, q * N. This implies that p * N c where N c is an IFCS. Since
(X,T ) is an IFe∗Rs, so by Theorem 3.3, there exist an IFe∗OS′s M1 and M2 such
that p ⊆ M1and N c ⊆ M2 and IFe∗cl(M1) * (IFe∗cl(M2)) or p ⊆ M1, q ⊆ M2and
IFe∗cl(M1) * (IFe∗cl(M2)). Hence (X,T ) is IFe∗T2 1

2
. �

Theorem 3.5. If f : (X,T )→ (Y, S) is a closed injective intuitionistic fuzzy e∗-continuous
mapping and (Y, S) is an IFRS, then (X,T ) is an IFe∗Rs.

Proof. Let p be an IFP and N be an IFCS in X . Then f(p) is an IFP and f(N) is
an IFCS in Y . Since (Y, S) is an intuitionistic fuzzy regular space then there exist two
IFOS’s M1 and M2 such that f(N) ⊆ M2, f(p) ⊆ M1 and M1 * M2. It follows that
N ⊆ f−1(M2), p ⊆ f−1(M1) and f−1(M1) ⊆ f−1(M2) where f−1(M1) and f−1(M2)
are IFe∗OS′s in X . Hence (X,T ) is an IFe∗Rs. �
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Theorem 3.6. Let f : (X,T ) → (Y, S) be an intuitionistic fuzzy e∗-open mapping. If X
is an intuitionistic fuzzy regular space then Y is IFe∗Rs.

Theorem 3.7. Every IFe∗Rs and IFT2 space is an IFe?T2 1
2

space.

Proof. Let (X,T ) be an IFTS which is IFe∗Rs and IFT2. Let p and q be two IFP’s with
different supports in X . Since X is an IFT2, there exist two IFOS’s M and N such that
p ⊆ M, q * M, q ⊆ N, p * N and M * N or IFe∗cl(M) * N. So that q * M.
Since IFe∗cl(M) is an IFCS and (X,T ) is an IFe∗Rs. So by Proposition 3.2, there exist
an IFe∗OS′s M1 and M2 such that IFe∗cl(M) ⊆ M2, q ⊆ M1 and IFe∗cl(M1) *
IFe∗cl(M2). Since p ⊆ IFe∗cl(M), we have p ⊆ M2, q ⊆ M1, and IFe∗cl(M1) *
IFe∗cl(M2). Hence the space (X,T ) is IFe∗T2 1

2
space. �

Definition 3.4. An IFTS(X,T ) is said to be
(i) intuitionistic fuzzy e∗-regular space (i) (briefly, IFe∗Rs(i)) if for an IFP p and an

IFe∗CS N such that p * N, there exist two IFe∗OS′s M1 and M2 such that
N ⊆M2, p ⊆M1 and M1 *M2.

(ii) intuitionistic fuzzy e∗-regular space (ii) (briefly, IFe∗Rs(ii) ) if for an IFP p and
an IFe∗CS N such that p * N, there exist two IFOS’s M1 and M2 such that
N ⊆M2, p ⊆M1 and M1 *M2.

Theorem 3.8. An IFTS (X,T ) is said to be
(i) IFe∗Rs(i) if for an IFP p and an IFe∗OS M1 such that p ⊆ M1, there exist an

IFe∗OS M2 such that p ⊆M2 ⊆ IFe∗cl(M2) ⊆M1.
(ii) IFe∗Rs(ii) if for an IFP p and an IFe∗OS M1 such that p ⊆ M1, there exist an

IFOS M2 such that p ⊆M2 ⊆ IFe∗cl(M2) ⊆M1.

Proof. (i) LetM1 be an IFe∗OS such that p ⊆M1, then p *M c
1 andM c

1 is an IFe∗CS.
Therefore, there exist two IFOS’s N and K such that p ⊆ N,M c

1 ⊆ K and N * K.
Now, we can get IFe∗cl(N)c ⊆ (M c

1 )
c = M1 and P ⊆ N ⊆ IFe∗cl(N) ⊆ M1. It is

clear that p ⊆ N ⊆ IFe∗int(IFe∗cl(N) ⊆ IFe∗cl(N) ⊆ M1). Therefore, if we put
IFe∗int(IFe∗cl(N) = M2, then p ⊆ N ⊆ M2 ⊆ IFe∗cl(M2) ⊆ M1, where M2 is an
IFOS. The converse is clear.

(ii) The proof is similar to (i). �

Theorem 3.9. An IFTS (X,T ) is said to be
(i) IFe∗Rs(i) if for an IFP p and an IFe∗CS N such that p * N c, there exist

two IFe∗OS′s M1 and M2 such that p ⊆ M1, N ⊆ M2, and IFe∗cl(M1) *
IFe∗cl(M2).

(ii) IFe∗Rs(ii) if for an IFP p and an IFe∗CS N such that p * N , there exist two
IFOS’s M1 and M2 such that p ⊆M1, N ⊆M2, and IFe∗cl(M1) * IFe∗cl(M2).

Proof. Similar to that of Theorem 3.8. �

Theorem 3.10. Let f be an injective, intuitionistic fuzzy e∗-irresolute mapping from an
IFTS (X,T ) into an IFTS (Y, S). Then X is e∗Rs if Y is e∗Rs.

Theorem 3.11. Let (X,T ) be an IFe∗Rs(i) which is also IFe∗T0. Then (X,T ) is
IFe∗T2 1

2
.

Proof. Let p and q are IFP’s with different supports. Since (X,T ) is a IFe∗T0 space, then
there exists an IFe∗OS M such that p *M, q *M or q ⊆M,p *M. Consider the part
p * M, q * M. This implies that p ⊆ (M c)c, where M c is an IFe∗CS. Since (X,T ) is
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IFe∗Rs(i), so by Theorem 3.9, there exist IFe∗OS′s N and K such that p ⊆ N,M c ⊆
K and IFe∗cl(N) * IFe∗cl(K), or p ⊆ N, q ⊆ K and IFe∗cl(N) * IFe∗cl(K).
Hence (X,T ) is an IFe∗T2 1

2
. �

Theorem 3.12. Let (X,T ) be an IFe∗Rs(ii) which is also IFe∗T0. Then (X,T ) is
IFe∗T2 1

2
.

Theorem 3.13. Let (X,T ) be an IFe∗Rs(ii) which is also IFe∗T2. Then (X,T ) is
IFe∗T2 1

2
.

Definition 3.5. An IFTS (X,T ) is said to be
(i) intuitionistic Fuzzy e∗T3 space (i) (briefly, IFe∗T3s(i)) if it is IFe∗Rs(i) as well as

IFe?-T1s space.
(ii) intuitionistic Fuzzy e∗T3 space (i) (briefly, IFe∗T3s(ii)) if it is IFe∗Rs(ii) as well

as IFe?-T1s space.

4. e?-NORMALITY IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

Definition 4.1. An IFTS (X,T ) is said to be
(i) intuitionistic fuzzy e∗-normal space (briefly, IFe∗Ns) if for every pair of IFCS’s

N1 and N2 such that N1 * N2, there exist two IFe∗OS′s M1 and M2 such that
N1 ⊆M1, N2 ⊆M2 and M1 *M2.

(ii) intuitionistic fuzzy e∗T4 spac (briefly, IFe∗T4s)e if it is an IFe∗Ns as well as IFe?-
T1s space.

Theorem 4.1. An IFTS (X,T ) is an IFe∗Ns if and only if for every IFCS N1 and ev-
ery IFOS N2 such that N1 ⊆ N2 there exists an IFe∗OS M such that N1 ⊆ M ⊆
IFe∗cl(M) ⊆ N2.

Proof. Let (X,T ) be an IFe∗Ns and let N1 ⊆ N2, where N1 is a IFCS and N2 is an
IFOS, then (N2)

c is an IFCS but (X,T ) be an IFe∗Ns hence there exist two IFe∗OS′s
M1 and M2 such that N1 ⊆ M1, (N2)

c ⊆ M2 and M1 * M2, therefore N1 ⊆ M ⊆
(M2)

c ⊆ N2 that implies IFe∗cl(N1) ⊆ IFe∗cl(M) ⊆ IFe∗cl(M2)
c ⊆ IFe∗cl(N2),

thenN1 ⊆ IFe∗cl(N1) ⊆ IFe∗cl(M1) ⊆ (M2)
c ⊆ N2.HenceN1 ⊆M1 ⊆ IFe∗cl(M1)

⊆ N2.The converse is clear. �

Theorem 4.2. If f : (X,T )→ (Y, S) is closed injective, intuitionistic fuzzy e∗-continuous
mapping and (Y, S) is a intuitionistic fuzzy normal space, then (X,T ) is an IFe∗Ns.

Theorem 4.3. If f : (X,T ) → (Y, S) be an intuitionistic fuzzy e∗-open mapping. Then
(X,T ) is a intuitionistic fuzzy normal space, if (Y, S) is an IFe∗Ns.

Theorem 4.4. Every IFe∗Ns and IFTs space is IFe∗Rs.

Proof. Let (X,T ) be an IFe∗Ns and IFTs space. Let p and N be respectively, an IFP
and IFe∗CS in X and p * N. Since (X,T ) is IFTS, then p is an IFe∗CS and since
(X,T ) is an IFe∗Ns, there exist IFe∗OS′s M1 and M2 such that p ⊆M1, N ⊆M2 and
M1 *M2. Hence (X,T ) is an IFe∗Rs. �

Definition 4.2. An IFTS (X,T ) is said to be
(i) intuitionistic fuzzy e∗-normal space (i) (briefly, IFe∗Ns(i)) if for every pair of

IFe∗CS′s N1 and N2 such that N1 * N2, there exist two IFe∗OS′s M1 and M2

such that N1 ⊆M1, N2 ⊆M2 and M1 *M2.
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(ii) intuitionistic fuzzy e∗-normal space (ii) (briefly, IFe∗Ns(ii)) if for every pair of
IFe∗CS′s N1 and N2 such that N1 * N2, there exist two IFOS’s M1 and M2 such
that N1 ⊆M1, N2 ⊆M2 and M1 *M2.

Theorem 4.5. (1) Every IFe∗Ns(i) and IFe∗Ts space is IFe∗Rs(i).
(2) Every IFe∗Ns(ii) and IFe∗Ts space is IFe∗Rs(ii).

Proof. (1) Let (X,T ) be an IFe∗Ns(i) and IFe∗Ts space. Let p and N be respectively,
an IFP and an IFe∗CS in X and p * N. Since (X,T ) is IFe∗Ts, then p is an IFe∗CS
and since (X,T ) is IFe∗Ns(i), there exist an IFe∗OS′s M1 and M2 such that p ⊆
M1, N ⊆M2 and M1 *M2. Hence (X,T ) is an IFe∗Rs(i).

Proof for case (2) is similarly follow. �

Definition 4.3. An IFTS (X,T ) is said to be
(i) intuitionistic fuzzy e∗T4 space (i) (briefly, IFeT4 s(i)) if it is IFe∗Ns(i) as well as

IFe?-T1s space.
(ii) intuitionistic fuzzy e∗T4 space (ii) (briefly, IFeT4 s(ii)) if it is IFe∗Ns(ii) as well as

IFe?-T1s space.

Theorem 4.6. (1) Every IFe∗T4s(i) is IFe∗T3s(i)
(2) Every IFe∗T4s(ii) is IFe∗T3s(ii)

Proof. Strictly follow from Theorem 4.5 �

5. CONCLUSION

In this paper, we have introduced and studied the concepts of intuitionistic fuzzy e∗-
open and e∗-closed sets to some new types of intuitionistic fuzzy e∗-separation axioms,
intuitionistic fuzzy e∗-Ti space (for i = 3, 4) and intuitionistic fuzzy e∗-regular and e∗-
normal spaces are introduced, some theorems about them are investigated. Stronger forms
of intuitionistic fuzzy e∗-regular and intuitionistic fuzzy e∗-normal spaces are introduced.
Moreover, the relationships between these separation axioms and others are investigated.
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