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BEHAVIOR AND FORMULA OF THE SOLUTIONS OF RATIONAL
DIFFERENCE EQUATIONS OF ORDER SIX

J. G. AL-JUAID∗, E. M. ELSAYED AND H. MALAIKAH

ABSTRACT. This paper is devoted to find the form of the solution of the following rational
difference equations :

xn+1 =
xn−3xn−5

xn−1(±1± xn−3xn−5)
,

where the initial conditions x−5, x−4, x−3, x−2, x−1, x0 are arbitrary non zero real
numbers. Also, we study the behavior of the solutions.

1. INTRODUCTION

In this paper, we obtain the solution of the following difference equations :

xn+1 =
xn−3xn−5

xn−1(±1± xn−3xn−5)
, (1.1)

where the inital conditions x−5, x−4, x−3, x−2, x−1, x0 are arbitrary non zero real
numbers. Also, we study the solution of some special equations. Many researchers have
investigated the behavior of the solution of rational difference equations for instance:

Cinar [4] discussed the solutions of the following difference equation

xn+1 =
axn−1

1 + bxnxn−1
.

Ibrahim [16] gave the solutions of the following difference equation

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)
.

Karatas et al [17] supplied the solution to the difference equation below

xn+1 =
xn−5

(1 + xn−2xn−5)
.
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Zayed [26] discussed the dynamics of the difference equation

xn+1 = Axn +Bn−k +
pxn + xn−k

q + xn−k
.

Saleh [24] analyzed the stability and periodicity of the difference equation

xn+1 =
α+ βxn + γxn−k

Bxn + Cxn−k
.

Elsayed [5] discussed the stability of the rational difference equation

xn+1 =
a+ bxn−1 + cxn−k

dxn−1 + exn−k
.

For some results about difference equations can be see the references [1-27].

Definition: let I be some interval of real numbers and let

F : Ik+1 → I,

be a continuously differentiable function.Then, for every set of initial condition
x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = F (xn, xn−1, xn−2, ..., xn−k), n = 0, 1, ..., (1.2)

has a unique solation {xn}∞n=−k [15].

The linearized equation of Eq.(1.2) about the equilibrium x̄ is the linear difference
equation

yn+1 =

k∑
i=0

∂f(x̄, x̄, ..., x̄)

∂xn−i
yn−i.

Theorem A [15]: Assume that pi ∈ R, i = 1, 2, ..., k and k ∈ 0, 1, 2, ... . Then
k∑

i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ... .

2. THE FIRST EQUATION xn+1 = xn−3xn−5

xn−1(1+xn−3xn−5)

In this section, we give a specific form of the solution of the first difference equation in
the form

xn+1 =
xn−3xn−5

xn−1(1 + xn−3xn−5)
, (2.1)

where the initial values are arbitrary non zero real numbers.

Theorem 2.1. Let {xn}∞n=−5 be a solution of Eq. (2.1). Then for n = 0, 1, ...,

x4n−3 =
dfn

bn

n−1∏
i=0

(1 + ibd)

(1 + (i+ 1)df)
,
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x4n−2 =
cen

an

n−1∏
i=0

(1 + iac)

(1 + (i+ 1)ce)
,

x4n−1 =
bn+1

fn

n−1∏
i=0

(1 + (i+ 1)df)

(1 + (i+ 1)bd)
,

x4n =
an+1

en

n−1∏
i=0

(1 + (i+ 1)ce)

(1 + (i+ 1)ac)
,

where x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Proof: For n=0, the result holds. Now, suppose that n > 0 and that our assumption
holds for n− 1. That is

x4n−7 =
dfn−1

bn−1

n−2∏
i=0

(1 + ibd)

(1 + (i+ 1)df)
,

x4n−6 =
cen−1

an−1

n−2∏
i=0

(1 + iac)

(1 + (i+ 1)ce)
,

x4n−5 =
bn

fn−1

n−2∏
i=0

(1 + (i+ 1)df)

(1 + (i+ 1)bd)
,

x4n−4 =
an

en−1

n−2∏
i=0

(1 + (i+ 1)ce)

(1 + (i+ 1)ac)
.

Now, it follows from Eq. (2.1) that

x4n =
x4n−4x4n−6

x4n−2(1 + x4n−4x4n−6)

=

an

en−1

∏n−2
i=0

(1+(i+1)ce)
(1+(i+1)ac)

cen−1

an−1

∏n−2
i=0

(1+iac)
(1+(i+1)ce)

cen

an

∏n−1
i=0

(1+iac)
(1+(i+1)ce) (1 +

an

en−1

∏n−2
i=0

(1+(i+1)ce)
(1+(i+1)ac)

cen−1

an−1

∏n−2
i=0

(1+iac)
(1+(i+1)ce) )

=
ac

∏n−2
i=0

(1+iac)
(1+(i+1)ac)

cen

an

∏n−1
i=0

(1+iac)
(1+(i+1)ce) (1 + ac

∏n−2
i=0

(1+iac)
(1+(i+1)ac) )

=
an+1c

cen(1 + nac)
∏n−1

i=0
(1+iac)

(1+(i+1)ce)
(1+nac+ac)

(1+nac)

=
an+1

en

n−1∏
i=0

(1 + (i+ 1)ce)

(1 + iac)

1

(1 + (n+ 1)ac)
.
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Hence,we have

x4n =
an+1

en

n−1∏
i=0

(1 + (i+ 1)ce)

(1 + (i+ 1)ac)
.

Similarly, we see that

x4n−1 =
x4n−5x4n−7

x4n−3(1 + x4n−5x4n−7)

=

bn

fn−1

∏n−2
i=0

(1+(i+1)df)
(1+(i+1)bd)

dfn−1

bn−1

∏n−2
i=0

(1+ibd)
(1+(i+1)df)

dfn

bn

∏n−1
i=0

(1+ibd)
(1+(i+1)df) (1 +

bn

fn−1

∏n−2
i=0

(1+(i+1)df)
(1+(i+1)bd)

dfn−1

bn−1

∏n−2
i=0

(1+ibd)
(1+(i+1)df) )

=
bd

∏n−2
i=0

(1+ibd)
(1+(i+1)bd)

dfn

bn

∏n−1
i=0

(1+ibd)
(1+(i+1)df) (1 + bd

∏n−2
i=0

(1+ibd)
(1+(i+1)bd) )

=
bn+1d

dfn(1 + nbd)
∏n−1

i=0
(1+ibd)

(1+(i+1)df)
(1+nbd+bd)
(1+nbd)

=
bn+1

fn

n−1∏
i=0

(1 + (i+ 1)df)

(1 + ibd)

1

(1 + (n+ 1)bd)
.

Hence,we have

x4n−1 =
bn+1

fn

n−1∏
i=0

(1 + (i+ 1)df)

(1 + (i+ 1)bd)
.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 2.2. Eq. (2.1) has a unique equilibrium point which is x̄ = 0, and is not locally
asympotoically stable.
Proof: From Eq. (2.1), we see that

x̄ =
x̄2

x̄(1 + x̄2)
,

or

x̄2(1 + x̄2 − 1) = 0, ⇒ x̄4 = 0.

Thus the equilibrium point of Eq. (2.1) is x̄ = 0.
Let f : (0,∞)3 → (0,∞) be a continuously differentiable function defined by

f(u, v, w) =
vw

u(1 + vw)
.

Therefore it follows that

fu(u, v, w) =
−vw

u2(1 + vw)
, fv(u, v, w) =

w

u(1 + vw)2
, fw(u, v, w) =

v

u(1 + vw)2
,

we obtain fu(x̄, x̄, x̄) = −1, fv(x̄, x̄, x̄) = 1, fw(x̄, x̄, x̄) = 1.
The proof follows by using Theorem A.
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Example 2.1. This Fig.1 Shwo the solution when x−5 = 2, x−4 = 20, x−3 = 4, x−2 =
−3, x−1 = 1, x0 = 1 .
Example 2.2. See Fig.2 where we put the initials x−5 = 1, x−4 = 3, x−3 = 5, x−2 =
11, x−1 = 0.5, x0 = −1.

FIGURE 1. The behavior of the solution of Eq. (2.1).

FIGURE 2. The stability of the solution of Eq. (2.1).

3. THE SECOND EQUATION xn+1 = xn−3xn−5

xn−1(−1+xn−3xn−5)

In this section is devoted to obtain the solution of the second difference equation which
is

xn+1 =
xn−3xn−5

xn−1(−1 + xn−3xn−5)
, (3.1)

where x−3x−5, x−2x−4, x−1x−3, x0x−2 ̸= 1.
Theorem 3.1. Let {xn}∞n=−5 be a solution of Eq. (3.1). Then for n = 0, 1, ...,

x8n−5 =
b2n(−1 + df)n

f2n−1(−1 + bd)n
,

x8n−4 =
a2n(−1 + ce)n

e2n−1(−1 + ac)n
,
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x8n−3 =
df2n(−1 + bd)n

b2n(−1 + df)n
,

x8n−2 =
ce2n(−1 + ac)n

a2n(−1 + ce)n
,

x8n−1 =
b2n+1(−1 + df)n

f2n(−1 + bd)n
,

x8n =
a2n+1(−1 + ce)n

e2n(−1 + ac)n
,

x8n+1 =
df2n+1(−1 + bd)n

b2n+1(−1 + df)n+1
,

x8n+2 =
ce2n+1(−1 + ac)n

a2n+1(−1 + ce)n+1
.

Proof: For n=0, the result holds. Now, suppose that n > 0 and that our assumption holds
for n− 1. That is

x8n−13 =
b2n−2(−1 + df)n−1

f2n−3(−1 + bd)n−1
,

x8n−12 =
a2n−2(−1 + ce)n−1

e2n−3(−1 + ac)n−1
,

x8n−11 =
df2n−2(−1 + bd)n−1

b2n−2(−1 + df)n−1
,

x8n−10 =
ce2n−2(−1 + ac)n−1

a2n−2(−1 + ce)n−1
,

x8n−9 =
b2n−1(−1 + df)n−1

f2n−2(−1 + bd)n−1
,

x8n−8 =
b2n−1(−1 + ce)n−1

e2n−2(−1 + ac)n−1
,

x8n−7 =
df2n−1(−1 + bd)n−1

b2n−1(−1 + df)n
,

x8n−6 =
ce2n−1(−1 + ac)n−1

a2n−1(−1 + ce)n
.

it follows from Eq. (3.1) that

x8n−1 =
x8n−5x8n−7

x8n−3(−1 + x8n−5x8n−7)

=

b2n(−1+df)n

f2n−1(−1+bd)n
df2n−1(−1+bd)n−1

b2n−1(−1+df)n

df2n(−1+bd)n

b2n(−1+df)n (−1 + b2n(−1+df)n

f2n−1(−1+bd)n
df2n−1(−1+bd)n−1

b2n−1(−1+df)n )
.

Hence, we have

x8n−1 =
b2n+1(−1 + df)n

f2n(−1 + bd)n
.
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Similarly, we see that

x8n−2 =
x8n−6x8n−8

x8n−4(−1 + x8n−6x8n−8)

=

ce2n−1(−1+ac)n−1

a2n−1(−1+ce)n
a2n−1(−1+ce)n−1

e2n−2(−1+ac)n−1

a2n(−1+ce)n

e2n−1(−1+ac)n (−1 + ce2n−1(−1+ac)n−1

a2n−1(−1+ce)n
a2n−1(−1+ce)n−1

e2n−2(−1+ac)n−1 )
.

Then

x8n−2 =
ce2n(−1 + ac)n

a2n(−1 + ce)n
.

Similarly, one can simply prove the other relations. Thus, the proof is completed.

Theorem 3.2. Eq. (3.1) has three equilibrium point which are 0,±
√
2, and are not locally

asympotoically stable.
Proof: From Eq. (3.1), we see that

x̄ =
x̄2

x̄(−1 + x̄2)
.

Then
x̄2(x̄2 − 2) = 0.

Thus the equilibrium point of Eq. (3.1) are x̄ = 0,±
√
2.

Let f : (0,∞)3 → (0,∞) be a continuously differentiable function defined by

f(u, v, w) =
vw

u(−1 + vw)
.

Therefore it follows that
fu(u, v, w) =

−vw

u2(−1 + vw)
,

fv(u, v, w) =
−w

u(−1 + vw)2
,

fw(u, v, w) =
−v

u(−1 + vw)2
,

we see that fu(x̄, x̄, x̄) = ±1, fv(x̄, x̄, x̄) = −1, fw(x̄, x̄, x̄) = −1.
The proof follows by using Theorem A.
Example 3.1. We assume x−5 = −5, x−4 = 3, x−3 = 1, x−2 = 0.1, x−1 = 15, x0 =
1. See Fig.3.
Example 3.2. See Fig.4 when we take the initials x−5 = 10, x−4 = 5, x−3 = 2, x−2 =
−1, x−1 = 4, x0 = 8.

Lemma 3.1. Eq. (3.1) has a periodic solutions of period four iff
x−3x−5 = x−2x−4 = x−1x−3 = x0x−2 = 2 and x−1 = x−5, x0 = x−4, and will be
take the form {x−1, x0, x−3, x−2, ...} .
Proof: Suppose that there exists a prime period four solution of Eq. (3.1) of the form

x−1, x0, x−3, x−2, x−1, x0, x−3, x−2, ... .

Then we see from the form of solution of Eq. (3.1) that
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FIGURE 3. The behaviour of the solution of Eq. (3.1).

FIGURE 4. The stability of the solution of Eq. (3.1).

x8n−5 =
b2n

f2n−1
, x8n−4 =

a2n

e2n−1
, x8n−3 =

df2n

b2n
, x8n−2 =

ce2n

a2n
,

x8n−1 =
b2n+1

f2n
, x8n =

a2n+1

e2n
, x8n+1 =

df2n+1

b2n+1
, x8n+2 =

ce2n+1

a2n+1
.

Then
b = f, a = e.

Hence, we have
x8n−5 = b, x8n−4 = a, x8n−3 = d, x8n−2 = c,

x8n−1 = b, x8n = a, x8n+1 = d, x8n+2 = c.

Thus we have a period four solution and the proof is complete.
For confirming the result of this lemma, we consider numerical example for
x−5 = 5, x−4 = 2

5 , x−3 = 2
5 , x−2 = 5, x−1 = 5, x0 = 2

5 . See Fig.5.

Lemma 3.2. Eq. (3.1) has a periodic solutions of period eight iff x−1 = x−5, x0 = x−4,
and will be take the form {x−1, x0, x−3, x−2, x−1, x0,

x−3

(−1+x−1x−3)
, x−2

(−1+x−2x−4)
, ...}.

Proof: Suppose that there exists a prime period eight solution of Eq. (3.1) of the form

x−1, x0, x−3, x−2, x−1, x0,
x−3

(−1 + x−1x−3)
,

x−2

(−1 + x−2x−4)
,
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FIGURE 5. Eq. (3.1) has period four solutions.

x−1, x0, x−3, x−2, x−1, x0,
x−3

(−1 + x−1x−3)
,

x−2

(−1 + x−2x−4)
, ... .

Then we see from the form of solution of Eq. (3.1) that

x8n−5 =
b2n(−1 + df)n

f2n−1(−1 + bd)n
= b, x8n−4 =

a2n(−1 + ce)n

e2n−1(−1 + ac)n
= a,

x8n−3 =
df2n(−1 + bd)n

b2n(−1 + df)n
= d, x8n−2 =

ce2n(−1 + ac)n

a2n(−1 + ce)n
= c,

x8n−1 =
b2n+1(−1 + df)n

f2n(−1 + bd)n
= b, x8n =

a2n+1(−1 + ce)n

e2n(−1 + ac)n
= a,

x8n+1 =
df2n+1(−1 + bd)n

b2n+1(−1 + df)n+1
=

d

(−1 + bd)
, x8n+2 =

ce2n+1(−1 + ac)n

a2n+1(−1 + ce)n+1
=

c

(−1 + ce)
.

Thus we have a period eight solution and the proof is complete.
Now, we take a numerical example for proving the result of this lemma. We assume x−5 =
5, x−4 = 1, x−3 = 3, x−2 = 0.1, x−1 = 5, x0 = 1. See Fig.6.

FIGURE 6. Eq. (3.1) has period eight solutions.

The following sections proofs of the theorems and lemmas are similar to those required
in the previous sections, thus they will be omitted.
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4. THE THIRD EQUATION xn+1 = xn−3xn−5

xn−1(1−xn−3xn−5)

In this section, we will obtain form of the solution of the third difference equation is
which is

xn+1 =
xn−3xn−5

xn−1(1− xn−3xn−5)
. (4.1)

Theorem 4.1. Let {xn}∞n=−5 be a solution of Eq. (4.1). Then for n = 0, 1, ...,

x4n−3 =
dfn

bn

n−1∏
i=0

(1− ibd)

(1− (i+ 1)df)
, x4n−2 =

cen

an

n−1∏
i=0

(1− iac)

(1− (i+ 1)ce)
,

x4n−1 =
bn+1

fn

n−1∏
i=0

(1− (i+ 1)df)

(1− (i+ 1)bd)
, x4n =

an+1

en

n−1∏
i=0

(1− (i+ 1)ce)

(1− (i+ 1)ac)
.

Theorem 4.2. Eq. (4.1) has a unique equilibrium point which is x̄ = 0, and is not locally
asympotoically stable.
Example 4.1. We consider x−5 = 19, x−4 = 9, x−3 = 2, x−2 = −3, x−1 = 0.7,
x0 = 9. See Fig.7.
Example 4.2. See Fig.8 when we take the initials x−5 = 3, x−4 = 5, x−3 = −1,
x−2 = 9, x−1 = 2, x0 = 11.

FIGURE 7. Draw the numerical solution of Eq. (4.1).

5. THE FOURTH EQUATION xn+1 = xn−3xn−5

xn−1(−1−xn−3xn−5)

Now, we get the solution form of the fourth difference equation as follows

xn+1 =
xn−3xn−5

xn−1(−1− xn−3xn−5)
, (5.1)

where x−3x−5, x−2x−4, x−1x−3, x0x−2 ̸= −1.
Theorem 5.1. Let {xn}∞n=−5 be a solution of Eq. (5.1). Then for n = 0, 1, ...,

x8n−5 =
b2n(−1− df)n

f2n−1(−1− bd)n
, x8n−4 =

a2n(−1− ce)n

e2n−1(−1− ac)n
,

x8n−3 =
df2n(−1− bd)n

b2n(−1− df)n
, x8n−2 =

ce2n(−1− ac)n

a2n(−1− ce)n
,
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FIGURE 8. The stability of the solution of Eq. (4.1).

x8n−1 =
b2n+1(−1− df)n

f2n(−1− bd)n
, x8n =

a2n+1(−1− ce)n

e2n(−1− ac)n
,

x8n+1 =
df2n+1(−1− bd)n

b2n+1(−1− df)n+1
, x8n+2 =

ce2n+1(−1− ac)n

a2n+1(−1− ce)n+1
.

Theorem 5.2. Eq. (5.1) has a unique equilibrium point which is x̄ = 0, and is not locally
asympotoically stable.
Example 5.1. Suppose that x−5 = 9, x−4 = 2, x−3 = −1, x−2 = 3, x−1 = 13,
x0 = 1. See Fig.9.
Example 5.2. See Fig.10 when we take x−5 = 7, x−4 = 5, x−3 = −2, x−2 = 3,
x−1 = 9, x0 = 4.

FIGURE 9. The stability of the solution of Eq. (5.1).

Lemma 5.1. Eq. (5.1) has a periodic solutions of period four iff x−3x−5 = x−2x−4 =
x−1x−3 = x0x−2 = −2 and x−1 = x−5, x0 = x−4, and will be take the form
{x−1, x0, x−3, x−2, ...}.
We give a numerical example for verifying the result of this lemma. Suppose that x−5 =
8, x−4 = −2

8 , x−3 = −2
8 , x−2 = 8, x−1 = 8, x0 = −2

8 . See Fig.11.
Lemma 5.2. Eq. (5.1) has a periodic solutions of period eight iff x−1 = x−5, x0 =

x−4, and will be take the form {x−1, x0, x−3, x−2, x−1, x0,
x−3

(−1−x−1x−3)
, x−2

(−1−x−2x−4)
, ...}.
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FIGURE 10. The numerical solution of Eq. (5.1).

FIGURE 11. Eq. (5.1) has period four solutions.

Now, we take a numerical example for proving the result of this lemma. We assume
x−5 = 1, x−4 = 4, x−3 = 2, x−2 = 8, x−1 = 1, x0 = 4. See Fig.12.

FIGURE 12. Eq. (5.1) has period eight solutions.



84 J. G. AL-JUAID, E. M. ELSAYED AND H. MALAIKAH

6. CONCLUSION

We found solutions for four difference equations in theorem 2.1, theorem 3.1, and theo-
rem 4.1. and theorem 5.1, respectively. On the four difference equations, the dynamics of
its behavior were studied. theorem 2.2, theorem 3.2, theorem 4.2 and theorem 5.2 stated
the condition of the fixed point to be not locally asymptotic stable. Hence, we analyzed the
behavior of the solutions of the difference equations Eq. (3.1) in Lemma 3.1, lemma 3.2
has periodic solutions of periods four and eight, respectively. Also, Eq. (5.1) in lemma 5.1
and lemma 5.2 has periodic solutions of period four and eight, respectively. For verifica-
tion, numerical simulation was used and figures 1,2,3,4,5,6,7,8,9,10,11,12 confirmed our
results. In future, we will to study these equations with periodic coefficients.
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