ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 5, Number 2 (2022), 74-79 ISSN: 2582-0818 © http://www.technoskypub.com

PROPERTIES OF STRONGLY PRE-OPEN SETS IN IDEAL NANO TOPOLOGICAL SPACES

N. SEKAR, R. ASOKAN AND I. RAJASEKARAN,*

ABSTRACT. Aim of this article, Rajasekaran [11] introduced strongly pre-I-open sets and in nano topological spaces. The relationships of strongly pre-nI-open sets with various other nano \mathcal{R}_I -set and nano I-locally closed sets are investigated.

1. INTRODUCTION

An ideal I [13] on a space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions.

- (1) $A \in I$ and $B \subset A$ imply $B \in I$ and
- (2) $A \in I$ and $B \in I$ imply $A \cup B \in I$.

Given a space (X, τ) with an ideal I on X if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every} U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$ [1]. The closure operator defined by $cl^*(A) = A \cup A^*(I, \tau)$ [12] is a Kuratowski closure operator which generates a topology $\tau^*(I, \tau)$ called the *-topology which is finer then τ . We will simply write A^* for $A^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal topological space or an ideal space.

Rajasekaran et.al [8] introduced pre-nI-open sets and α -nI-open sets in the concept of ideal nano topological spaces.

In this paper, Rajasekaran [11] introduced strongly pre-*I*-open sets and in nano topological spaces. The relationships of strongly pre-*nI*-open sets with various other nano \mathcal{R}_I -set and nano *I*-locally closed sets are investigated.

2. PRELIMINARIES

Definition 2.1. [7] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Elements belonging to

²⁰¹⁰ Mathematics Subject Classification. 54C60, 54E55.

Key words and phrases. strongly pre-nI-open sets, nano \mathcal{R}_I -set and nano I-locally closed sets.

Received: July 06, 2022. Accepted: October 10, 2022. Published: November 30, 2022.

^{*}Corresponding author.

the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$.

- (1) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by $L_R(X)$. That is, $L_R(X) = \bigcup_{x \in U} \{R(x) : R(x) \subseteq X\}$, where R(x) denotes the equivalence class determined by x.
- (2) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by U_R(X). That is, U_R(X) = ⋃_{x∈U}{R(x) : R(x) ∩ X ≠ φ}.
- (3) The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not X with respect to R and it is denoted by B_R(X). That is, B_R(X) = U_R(X) L_R(X).

Definition 2.2. [2] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. Then R(X) satisfies the following axioms:

(1) U and $\phi \in \tau_R(X)$,

- (2) The union of the elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$,
- (3) The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

Thus $\tau_R(X)$ is a topology on U called the nano topology with respect to X and $(U, \tau_R(X))$ is called the nano topological space. The elements of $\tau_R(X)$ are called nano-open sets (briefly n-open sets). The complement of a n-open set is called n-closed.

In the rest of the paper, we denote a nano topological space by (U, \mathcal{N}) , where $\mathcal{N} = \tau_R(X)$. The nano-interior and nano-closure of a subset O of U are denoted by $I_n(O)$ and $C_n(O)$, respectively.

A nano topological space (U, \mathcal{N}) with an ideal I on U is called [4] an ideal nano topological space and is denoted by (U, \mathcal{N}, I) . $G_n(x) = \{G_n | x \in G_n, G_n \in \mathcal{N}\}$, denotes [4] the family of nano open sets containing x.

In future an ideal nano topological spaces (U, \mathcal{N}, I) is referred as a space.

Definition 2.3. [4] Let (U, \mathcal{N}, I) be a space with an ideal I on U. Let $(.)_n^*$ be a set operator from $\wp(U)$ to $\wp(U)$ ($\wp(U)$ is the set of all subsets of U).

For a subset $O \subseteq U$, $O_n^*(I, \mathcal{N}) = \{x \in U : G_n \cap O \notin I$, for every $G_n \in G_n(x)\}$ is called the nano local function (briefly, n-local function) of A with respect to I and \mathcal{N} . We will simply write O_n^* for $O_n^*(I, \mathcal{N})$.

Theorem 2.1. [4] Let (U, \mathcal{N}, I) be a space and O and B be subsets of U. Then

 $\begin{array}{ll} (1) & O \subseteq B \Rightarrow O_n^{\star} \subseteq B_n^{\star}, \\ (2) & O_n^{\star} = C_n(O_n^{\star}) \subseteq C_n(O) \; (O_n^{\star} \text{ is a } n \text{-closed subset of } C_n(O)), \\ (3) & (O_n^{\star})_n^{\star} \subseteq O_n^{\star}, \\ (4) & (O \cup B)_n^{\star} = O_n^{\star} \cup B_n^{\star}, \\ (5) & V \in \mathcal{N} \Rightarrow V \cap O_n^{\star} = V \cap (V \cap O)_n^{\star} \subseteq (V \cap O)_n^{\star}, \\ (6) & J \in I \Rightarrow (O \cup J)_n^{\star} = O_n^{\star} = (O - J)_n^{\star}. \end{array}$

Theorem 2.2. [4] Let (U, \mathcal{N}, I) be a space with an ideal I and $O \subseteq O_n^*$, then $O_n^* = C_n(O_n^*) = C_n(O)$.

Definition 2.4. [6] A subset A of a space (U, \mathcal{N}, I) is $n\star$ -dense in itself (resp. $n\star$ -perfect and $n\star$ -closed) if $O \subseteq O_n^{\star}$ (resp. $O = O_n^{\star}, O_n^{\star} \subseteq O$).

The complement of a $n\star$ -closed set is said to be $n\star$ -open.

Definition 2.5. [3] A subset O of U in a nano topological space (U, \mathcal{N}) is called nanocodense (briefly *n*-codense) if U - O is *n*-dense.

Theorem 2.3. [4] Let (U, \mathcal{N}, I) be an ideal nano space. Then is \mathcal{I} is *n*-codense if and only if $O \subseteq O^*$ for every *n*-open set O.

Definition 2.6. [4] Let (U, \mathcal{N}, I) be a space. The set operator C_n^* called a nano \star -closure is defined by $C_n^*(O) = O \cup O_n^*$ for $O \subseteq U$.

It can be easily observed that $C_n^{\star}(O) \subseteq C_n(O)$.

Theorem 2.4. [5] In a space (U, \mathcal{N}, I) , if O and B are subsets of U, then the following results are true for the set operator $n \cdot cl^*$.

- (1) $O \subseteq C_n^{\star}(O)$,
- (2) $C_n^{\star}(\phi) = \phi \text{ and } C_n^{\star}(U) = U,$
- (3) If $O \subset B$, then $C_n^{\star}(O) \subseteq C_n^{\star}(B)$,
- (4) $C_n^{\star}(O) \cup C_n^{\star}(B) = C_n^{\star}(O \cup B).$
- (5) $C_n^{\star}(C_n^{\star}(O)) = C_n^{\star}(O).$

Definition 2.7. A subset O of a space (U, \mathcal{N}) , is called a

- (1) nano α -*I*-open (resp. α -*nI*-open) [8] if $O \subseteq I_n(C_n^{\star}(I_n(O)))$.
- (2) nano pre-*I*-open (resp. *pre-nI*-open) [8] if $O \subseteq I_n(C_n^{\star}(O))$.
- (3) nano t_{α} -*I*-set (resp. t_{α} -*nI*-set) [10] if $I_n(O) = I_n(C_n^{\star}(O))$.
- (4) nano \mathcal{R}_{α} -*I*-set (resp. \mathcal{R}_{α} -*nI*-set) [10] if $O = S \cap K$, where S is n-open and K is t_{α} -*nI*-set.
- (5) nano δ -*I*-open (resp. δ -*nI*-open) [9] if $I_n(C_n^{\star}(O)) \subseteq C_n^{\star}(I_n(O))$.
- (6) nano \mathcal{R}_I -set (or) nano \mathcal{O}_I -set (resp. $n\mathcal{R}_I$ -set) [11] if $O = S \cap K$ where S is *n*-open and K is $(I_n(K))_n^*$.
- (7) nano *I*-locally closed (resp. nI-locally closed) [11] if $O = S \cap K$ where S is *n*-open and K is $n\star$ -perfect.

Note : The largest pre-nI-open (α -nI-open) set contained in O, denoted by $p\Im I_n(O)$ ($\alpha\Im I_n(O)$), is called the pre-nI-interior (α -nI-interior).

3. PROPERTIES OF STRONGLY PRE-OPEN SETS IN IDEAL NANO SPACES

Definition 3.1. A subset O of an ideal nano space (U, \mathcal{N}, I) , is called a strongly nano pre-I-open (resp. $S\mathcal{P}$ -nI-set) [11] if O is pre-nI-open and \mathcal{R}_{α} -nI-set

Example 3.1. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{d\}, \{b, c\}\}$ and $X = \{a, c\}$. Then $\mathcal{N} = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, U\}$. Let the ideal be $I = \{\phi, \{c\}\}$.

Theorem 3.2. If O is any subset of an ideal nano space, then the next conditions are holds.

(1) $p\Im I_n(O) = O \cap I_n(C_n^{\star}(O)).$

(2) $\alpha \Im I_n(O) = O \cap I_n(C_n^{\star}(I_n(O))).$

Proof.

(1) Since $O \cap I_n(C_n^{\star}(O)) \subseteq I_n(C^{\star}(O))$

 $= I_n(I_n(C_n^{\star}(O)))$ = $I_n(C_n^{\star}(O) \cap I_n(C_n^{\star}(O)))$ $\subseteq I_n(C_n^{\star}(O \cap I_n(C_n^{\star}(O)))),$

 $O \cap I_n(C^{\star}(O))$ is a pre-*nI*-open set contained in O and so $O \cap I_n(C_n^{\star}(O)) \subseteq p\Im I_n(O)$.

Since $p\Im I_n(O)$ is pre-nI-open, $p\Im I_n(O) \subseteq I_n(C_n^*(p\Im I_n(O))) \subseteq I_n(C_n^*(O))$ and so $p\Im I_n(O) \subseteq O \cap I_n(C_n^*(O))$. Hence $p\Im I_n(O) = O \cap I_n(C_n^*(O))$. (2) Since $O \cap I_n(C_n^*(I_n(O))) \subseteq I_n(C_n^*(I_n(O))) = I_n(I_n(C_n^*(I_n(O))))$ $= I_n(C_n^*(I_n(O) \cap I_n(C_n^*(I_n(O)))))$ $\subseteq I_n(C_n^*(I_n(O) \cap I_n(C_n^*(I_n(O)))))$ $= I_n(C_n^*(I_n(O)))$ is an α -nI-open set contained in O and so $O \cap I_n(C_n^*(I_n(O))) \subseteq \alpha\Im I_n(O)$. Since $\alpha\Im I_n(O)$ is α -nI-open, $\alpha\Im I_n(O) \subseteq I_n(C_n^*(I_n(\alpha\Im I_n(O)))) \subseteq I_n(C_n^*(I_n(O)))$ and so $\alpha\Im I_n(O) \subseteq O \cap I_n(C_n^*(I_n(O)))$.

Hence $\alpha \Im I_n(O) = O \cap I_n(C_n^{\star}(I_n(O))).$

Theorem 3.3. If O is a \mathcal{R}_{α} -nI-set of an ideal nano space, then $\alpha \Im I_n(O) = I_n(O)$.

Proof.

Forever, $\alpha \Im I_n(O) \supseteq I_n(O)$. Since O is a \mathcal{R}_{α} -nI-set, $O = S \cap K$ where S is n-open and $I_n(C_n^{\star}(I_n(K))) = I_n(K)$. Now

 $O \subseteq K$ implies $I_n(C_n^{\star}(I_n(O))) \subseteq I_n(C_n^{\star}(I_n(K))) = I_n(K).$

Therefore, by Theorem 3.2(1), $\alpha \Im I_n(O) = O \cap I_n(C_n^{\star}(I_n(O))) \subseteq O \cap I_n(K) = S \cap I_n(K) = I_n(S \cap K) = I_n(O)$. Therefore, $\alpha \Im I_n(O) \subseteq I_n(O)$, and so $\alpha \Im I_n(O) = I_n(O)$.

Theorem 3.4. If O is a δ -nI-open set of an ideal nano space, then $\alpha \Im I_n(O) = p\Im I_n(O)$.

Proof.

Since every α -nI-open set is a pre-nI-open set,

 $\alpha \Im I_n(O) \subseteq p \Im I_n(O). \text{ By Theorem 3.2(1), } \alpha \Im I_n(O) = O \cap I_n(C_n^{\star}(I_n(O))).$ Since O is δ -nI-open, $\alpha \Im I_n(O) \supseteq O \cap I_n(I_n(C_n^{\star}(O))) = O \cap I_n(C_n^{\star}(O)) = p \Im I_n(O)$ and so $\alpha \Im I_n(O) \supseteq p \Im I_n(O).$ Therefore, $\alpha \Im I_n(O) = p \Im I_n(O).$

Theorem 3.5. If (U, \mathcal{N}, I) is any ideal nano space, then the following conditions are holds.

(1) If O is $n\mathcal{R}_I$ -set, then O is a semi-nI-open.

(2) If O is semi-nI-open set, then O is a δ -nI-open.

Proof.

- (1) If O is $n\mathcal{R}_I$ -set, then $O = S \cap K$ where S is n-open and $K = (I_n(K))_n^*$. Therefore, $O = S \cap K = S \cap (I_n(K))_n^* \subseteq (S \cap I_n(K))_n^* = (I_n(S \cap K))_n^* = (I_n(O))_n^* \subseteq C_n^*(I_n(O))$ and so O is semi-nI-open.
- (2) If O is semi-nI-open, then $O \subseteq C_n^*(I_n(O))$. Now $I_n(C_n^*(O) \subseteq I_n(C_n^*(C_n^*(I_n(O)))) = I_n(C_n^*(I_n(O))) \subseteq C_n^*(I_n(O)) \Longrightarrow O$ is a δ -nI-open set.

Remark. If an ideal nano space,

(1) pre-nI-open set and $n\mathcal{R}_I$ -set.

(2) every n-open set is SP-nI-set.

(3) every \mathcal{R}_{α} -nI-set is pre-nI-open.

Example 3.6. The Example 3.1,

(1) the set $\{a, d\}$ is $n\mathcal{R}_I$ -set but not pre-nI-open

- (2) the set $\{c\}$ is SP-nI-set is not n-open.
- (3) the set $\{b\}$ is pre-nI-open but not \mathcal{R}_{α} -nI-set.

Remark. If an ideal nano space,

- (1) pre-nI-open sets and \mathcal{R}_{α} -nI-sets are independent.
- (2) pre-nI-open sets and δ -nI-open sets are independent.

Example 3.7. The Example 3.1,

- (1) the set $\{b\}$ is pre-nI-open but not \mathcal{R}_{α} -nI-set.
- (2) the set $\{d\}$ is \mathcal{R}_{α} -nI-set but not pre-nI-open.
- (3) the set {c is δ -nI-open but not -nI-open.
- (4) the set $\{b\}$ is pre-nI-open but not δ -nI-open.

Theorem 3.8. *If* (U, N, I) *is any ideal nano space and* $O \subseteq U$ *, then the following conditions are equivalent.*

(1) O is n-open.

(2) *O* is both SP-n*I*-open and δ -n*I*-open.

Proof.

 $(1) \Longrightarrow (2)$ is clear.

(2) \implies (1) Suppose *O* is $S\mathcal{P}$ -*nI*-open and also a δ -*nI*-open set. By Theorem 3.4, since *O* is pre-*nI*-open, $\alpha \Im I_n(O) = p\Im I_n(O) = O$. By Theorem 3.3, $\alpha \Im I_n(O) = I_n(O)$. Therefore, $O = I_n(O) \Longrightarrow O$ is *n*-open.

Theorem 3.9. If (U, \mathcal{N}, I) is any ideal nano space where I is n-codense and $O \subseteq U$, then the following conditions are equivalent.

(1) O is n-open.

(2) *O* is α -n*I*-open and n*I*-locally closed set.

(3) O is pre-nI-open and nI-locally closed set.

- (4) O is pre-nI-open set and $n\mathcal{R}_I$ -set.
- (5) *O* is SP-n*I*-open and nR_I -set.
- (6) O is SP-nI-open and semi-nI-open set.

(7) *O* is SP-n*I*-open and δ -n*I*-open set.

Proof.

(1) \implies (2) If O is n-open, then O is α -nI-open. Since I is n-codense, by Theorem 2.3, $O \subseteq O_n^*$, and so $O = O \cap O_n^*$. Therefore, O is nI-locally closed.

 $(2) \Longrightarrow (3)$ Follows from the fact that every α -nI-open set is pre-nI-open.

(3) \Longrightarrow (4) If O is nI-locally closed, then $O = S \cap O_n^*$ for some n-open set S. Since $O \subseteq O_n^*$, by Theorem 2.2, $O_n^* = C_n^*(O)$. Since O is pre-nI-open, $O \subseteq I_n(C_n^*(O) = I_n(O_n^*)$ and so $O_n^* \subseteq I_n(O_n^*)_n^* \subseteq (O_n^*)_n^* \subseteq O_n^*$. Therefore, $O_n^* = I_n(O_n^*)_n^*$ which implies that O is an $n\mathcal{R}_I$ -set.

(4) \Longrightarrow (5) If A is an $n\mathcal{R}_I$ -set, then $O = S \cap K$ where S is n-open and $K = (I_n(K))_n^*$. Now $I_n(C_n^*(I_n(K))) = I_n(I_n(K) \cup (I_n(K))_n^*) = I_n(I_n(K) \cup K) = I_n(K)$. It follows that O is $S\mathcal{P}$ -nI-open.

 $(5) \Longrightarrow (6)$ Follows from Theorem 3.5(1).

78

 $(6) \Longrightarrow (7)$ Follows from Theorem 3.5(2).

 $(7) \Longrightarrow (1)$ Follows from Theorem 3.8.

4. ACKNOWLEDGEMENT

The authors thank the referees for their valuable comments and suggestions for improvement of this paper

REFERENCES

- [1] K. Kuratowski, Topology, Vol I. Academic Press (New York) 1966.
- [2] M. Lellis Thivagar and Carmel Richard, On nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1)(2013), 31-37.
- [3] O. Nethaji, R. Asokan and I. Rajasekaran, New generalized classes of an ideal nano topological spaces, Bull. Int. Math. Virtual Inst., 9(3)(2019), 543-552.
- [4] M. Parimala, T. Noiri and S. Jafari, New types of nano topological spaces via nano ideals (to appear).
- [5] M. Parimala and S. Jafari, On some new notions in nano ideal topological spaces, International Balkan Journal of Mathematics(IBJM), 1(3)(2018), 85-92.
- [6] M. Parimala, S. Jafari and S. Murali, Nano ideal generalized closed sets in nano ideal topological spaces, Annales Univ. Sci. Budapest., 60(2017), 3-11.
- [7] Z. Pawlak, Rough sets, International journal of computer and Information Sciences, 11(5)(1982), 341-356.
- [8] I. Rajasekaran and O. Nethaji, Simple forms of nano open sets in an ideal nano topological spaces, Journal of New Theory, 24(2018), 35-43.
- [9] N. Sekar, R. Asokan and I. Rajasekaran, On δ -open sets in ideal nano topological spaces, communicated.
- [10] I. Rajasekaran, O. Nethaji and R. Prem Kumar, Perceptions of several sets in an ideal nano topological spaces, Journal of New Theory, 23(2018), 78-84.
- [11] I. Rajasekaran, Weak forms of strongly nano open sets in ideal nano topological spaces, Asia Mathematika, 5(2)(2021), 96-102.
- [12] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [13] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1946.

N. SEKAR

RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS,, MADURAI KAMARAJ UNIVERSITY, MADURAI, TAMIL NADU, INDIA.

Email address: sekar.skrss@gmail.com

R. Asokan

DEPARTMENT OF MATHEMATICS, SCHOOL OF MATHEMATICS, MADURAI KAMARAJ UNIVERSITY, MADURAI, TAMIL NADU, INDIA.

Email address: rasoka_mku@yahoo.co.in.

I. RAJASEKARAN

DEPARTMENT OF MATHEMATICS, TIRUNELVELI DAKSHINA MARA NADAR SANGAM COLLEGE,

T. KALLIKULAM-627 113, TIRUNELVELI DISTRICT, TAMIL NADU, INDIA

Email address: sekarmelakkal@gmail.com.