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RICCI CURVATURE INEQUALITIES FOR WARPED PRODUCT SKEW
CR-SUBMANIFOLDS IN COSYMPLECTIC SPACE FORMS
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BIN ABDULLAH

ABSTRACT. The main objective of this paper is to achieve the Chen-Ricci inequality for
skew CR-warped product submanifold isometrically immersed in a Cosymplectic space
form in the expressions of the squared norm of mean curvature vector and warping func-
tions. The equality cases is likewise discussed. However, in particular, we also derive
Chen-Ricci inequality for CR-warped product submanifolds.

1. INTRODUCTION

A. Bejancu [1] presented and studied the idea of CR-submanifolds in 1981 as a gener-
alization of holomorphic and totally real submanifolds. Further, Chen [6] investigated the
geometry of CR-submanifolds of almost Hermitian manifolds in greater depth in order to
gain a better understanding of their geometry. In 1990 Chen [7] introduced a generalized
class of submanifolds namely slant submanifolds. Moreover, advances in geometry of CR-
submanifolds and slant submanifolds stimulate various authors to search for the class of
submanifolds which unifies the properties of all previously discussed submanifolds. In this
context, N. Papaghuic [21]introduced the notion of Semi-slant submanifolds in the frame
of almost Hermitian manifolds and showed that submanifolds belonging to this class enjoy
many of the desired properties. Later, the contact variant of Semi-slant submanifolds was
studied by Cabrerizo et al. [17]. Recently, B. Sahin [4] investigated another class of sub-
manifolds in the setting of almost Hermitian manifolds and he called these submanifolds
Hemi-slant submanifold. This class includes the CR-submanifolds and Slant submanifolds.

In 1990, Ronsse [16] started the study of skew CR-submanifolds in the setting of almost
Hermitian manifolds. skew CR-submanifolds contain the class of CR-submanifolds, Semi-
slant submanifolds and Hemi-slant submanifolds.
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The acknowledgment of warped product manifolds appeared after the methodology of
Bishop and O’Neill [22] on the manifolds of negative curvature. Analyzing the way that a
Riemannian product of manifolds can not have negative curvature, they build the model of
warped product manifolds for the class of manifolds of negative (or non positive) curvature
which is characterized as follows:

Let (S1, g1) and (S2, g2) be two Riemannian manifolds with Riemannian metrics g1
and g2 respectively and ψ be a positive differentiable function on S1. If a : S1 × S2 → S1

and b : S1 × S2 → S2 are the projection maps given by a(x, y) = x and b(x, y) = y
for every (x, y) ∈ S1 × S2, then the warped product manifold is the product manifold
M = S1 × S2 endowed with the Riemannian structure such that

g(X,Y ) = g1(x∗X,x∗Y ) + (ψ ◦ x)2g2(y∗X, y∗Y ),

for all X,Y ∈ TM. The function ψ is called the warping function of the warped product
manifold. If the warping function is constant, then the warped product is trivial i.e., simply
Riemannian product. Further, if X ∈ TS1 and Z ∈ TS2, then from Lemma 7.3 of [22],
we have the following well known result

∇XZ = ∇ZX = (
Xψ

ψ
)Z, (1.1)

where ∇ is the Levi-civita connection on M .
Some common properties of warped product manifolds were concentrated in [22]. B.

Y. Chen ([6], [8]) played out an outward investigation of warped product submanifolds in a
Kaehler manifold. From that point forward, numerous geometers have investigated warped
product manifolds in various settings like almost complex and almost contact manifolds
and different existence results have been researched (see the survey article [12]). Recently,
B. Sahin [5] contemplated skew CR-warped product submanifolds in the setting of Kaehler
manifolds and got some essential outcomes. Further, these submanifolds were explored by
Haidar and Thakur in the frame of Cosymplectic manifolds[23].

In 1999, Chen [9] discovered a relationship between Ricci curvature and squared mean
curvature vector for a discretionary Riemannian manifold. On the line of Chen a series
of articles have been appeared to formulate the relationship between Ricci curvature and
squared mean curvature in the setting of some important structures on Riemannian mani-
folds (see [13], [2], [15], [19], [20]).

2. PRELIMINARIES

A (2n+ 1)−dimensional C∞−manifold M̄ is said to have an almost contact structure
if on M̄ there exist a tensor field φ of type (1, 1), a vector field ξ and a 1-form η satisfying
[14]

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1. (2.1)
The manifold M̄ with the structure (φ, ξ, η) is called almost contact metric manifold. There
always exists a Riemannian metric g on an almost contact metric manifold M̄, satisfying
the following conditions

η(X) = g(X, ξ), g(φX, φU) = g(X,U)− η(X)η(U), (2.2)

for all X,U ∈ TM̄ where TM̄ is the tangent bundle of M̄ .
An almost contact metric structure (φ, ξ, η, g) is said to be Cosymplectic manifold if it

satisfies the following tensorial equation [14]

(∇̄Xφ)Y = 0, (2.3)
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for any X,Y ∈ TM̄, where ∇̄ denotes the Riemannian connection of the metric g. More-
over, for a Cosymplectic manifold

∇̄Xξ = 0. (2.4)
A Cosymplectic manifold M̄ is said to be a Cosymplectic space form [14] if it has

constant φ-holomorphic sectional curvature c and is denoted by M̄(c). The curvature
tensor R̄ of Cosymplectic space form M̄(c) is given by

R̄(X,Y )Z =
c

4
[{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )− g(φX,Z)g(φY,W )}

g(φX,W )g(φY,Z) + 2g(φX, Y )g(φZ,W )− η(Z)η(Y )g(X,W )

+ η(Z)η(X)g(Y,W ) + η(Z)η(W )g(Y,Z) + η(Z)η(Y )g(X,Z),

(2.5)

for any vector fields X,Y, Z,W on M̄ .
LetM be an n−dimensional Riemannian manifold isometrically immersed in am−dimensional

Riemannian manifold M̄. Then the Gauss and Weingarten formulas are ∇XY = ∇XY +
h(X,Y ) and ∇Xξ = −AξX + ∇⊥Xξ respectively, for all X,Y ∈ TM and ξ ∈ T⊥M.
Where ∇ is the induced Levi-civita connection on M, ξ is a vector field normal to M , h
is the second fundamental form of M , ∇⊥ is the normal connection in the normal bundle
T⊥M and Aξ is the shape operator of the second fundamental form. The second funda-
mental form h and the shape operator are associated by the following formula

g(h(X,Y ), ξ) = g(AξX,Y ). (2.6)

The equation of Gauss is given by

R(X,Y, Z,W ) = R̄(X,Y, Z,W )+g(h(X,W ), h(Y,Z))−g(h(X,Z), h(Y,W )), (2.7)

for all X,Y, Z,W ∈ TM. Where, R and R̄ are the curvature tensors of M and M̄
respectively.
For any X ∈ TM and N ∈ T⊥M, JX and JN can be decomposed as follows

JX = PX + FX (2.8)
and

JN = tN + fN, (2.9)
where PX (resp. tN ) is the tangential and FX (resp. fN ) is the normal component of
JX ( resp. JN ).

It is evident that g(φX, Y ) = g(PX, Y ) for any X,Y ∈ TxM, this implies that
g(PX, Y ) + g(X,PY ) = 0. Thus, P 2 is a symmetric operator on the tangent space
TxM, for all x ∈ M. The eigenvalues of P 2 are real and diagonalizable. Moreover for
each x ∈M, one can observe

Dλ
x = Ker{P 2 + λ2(x)I}x,

where I denotes the identity transformation on TxM, and λ(x) ∈ [0, 1] such that−λ2(x) is
an eigenvalue of P 2(x). Further, it is easy to observe that KerF = D1

x and KerP = D0
x,

where D1
x is the maximal holomorphic sub space of TxM and D0

x is the maximal totally
real subspace of TxM, these distributions are denoted by DT and D⊥ respectively. If
−λ21(x), . . . ,−λ2k(x) are the eigenvalues of P 2 at x, then TxM can be decomposed as

TxM = Dλ1
x ⊕Dλ2

x ⊕ . . . Dλk
x .

Every Dλi
x , 1 ≤ i ≤ k is a P−invariant subspace of TxM. Moreover, if λi 6= 0, then Dλi

x

is even dimensional the submanifoldM of a Kaehler manifoldM is a generic submanifold
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if there exists an integer k and functions λi 1 ≤ i ≤ k defined on M with λi ∈ (0, 1) such
that

(i) Each −λ2i (x), 1 ≤ i ≤ k, is a distinct eigenvalue of P 2 with

TxM = DT
x ⊕D⊥x ⊕Dλ1

x ⊕ . . . ,⊕Dλk
x

for any x ∈M.
(ii) The distributions of DT

x , D
⊥
x and Dλi

x , 1 ≤ i ≤ k are independent of x ∈M.

If in addition, each λi is constant on M, then M is called a skew CR-submanifolds
[16]. It is significant to account that CR-submanifolds are particular class of skew CR-
submanifold with k = 1, DT = {0}, D⊥ = {0} and λ1 is constant. If D⊥ = {0},
D1
T 6== {0} and k = 1, then M is semi-slant submanifold. Whereas if DT = {0}, D⊥ 6=
{0} and k = 1, then M is a hemi-slant submanifold.

Definition 2.1. A submanifold M of an almost contact metric manifold M̄ is said to be
a skew CR-submanifold of order 1 if M is a skew CR-submanifold with k = 1 and λ1 is
constant.

We have the following result for further use

Theorem 2.1. [17] LetM be a submanifold of an almost contact metric manifold M̄ . Then
M is slant if and only if there exists a constant λ ∈ [0, 1] such that

P 2 = −λ(I + η ⊗ ξ).
Furthermore, if θ is slant angle, then λ = cos2 θ.

For any orthonormal basis {e1, e2, . . . , en} of the tangent space TxM , the mean curva-
ture vector H(x) and its squared norm are defined as follows

H(x) =
1

n

n∑
i=1

h(ei, ei), ‖H‖2 =
1

n2

n∑
i,j=1

g(h(ei, ei), h(ej , ej)), (2.10)

where n is the dimension ofM . If h = 0 then the submanifold is said to be totally geodesic
and minimal if H = 0. If h(X,Y ) = g(X,Y )H for all X,Y ∈ TM, then M is called
totally umbilical.

The scalar curvature of M̄ is denoted by τ̄(M) and is defined as

τ(M) =
∑

1≤p<q≤m

κpq, (2.11)

where κpq = κ̄(ep∧eq) andm is the dimension of the Riemannian manifold M̄ . Through-
out this study, we shall use the equivalent version of the above equation, which is given
by

2τ(M) =
∑

1≤p<q≤m

κpq. (2.12)

In a similar way, the scalar curvature τ(Lx) of a L−plane is given by

τ(Lx) =
∑

1≤p<q≤m

κpq. (2.13)

Let {e1, . . . , en} be an orthonormal basis of the tangent space TxM and if er belongs
to the orthonormal basis {en+1, . . . em} of the normal space T⊥M , then we have

hrpq = g(h(ep, eq), er) (2.14)
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and

‖h‖2 =

n∑
p,q=1

g(h(ep, eq), h(ep, eq)). (2.15)

Let κpq and κpq be the sectional curvatures of the plane sections spanned by ep and eq
at x in the submanifold Mn and in the Riemannian space form M̄m(c), respectively. Thus
by Gauss equation, we have

κpq = κpq +

m∑
r=n+1

(hrpph
r
qq − (hrpq)

2). (2.16)

The global tensor field for orthonormal frame of vector field {e1, . . . , en} on Mn is
defined as

S(X,Y ) =

n∑
i=1

{g(R(ei, Y )Y, ei)}, (2.17)

for all X,Y ∈ TxM
n. The above tensor is called the Ricci tensor. If we fix a distinct

vector eu from {e1, . . . , en} on Mn, which is governed by χ. Then the Ricci curvature is
defined by

Ric(χ) =

n∑
p=1
p 6=u

κ(ep ∧ eu). (2.18)

For a smooth function ψ on a Riemannian manifold M with Riemannian metric g, the
gradient of ψ is denoted by∇ψ and is defined as

g(∇ψ,X) = Xψ, (2.19)

for all X ∈ TM.
Let the dimension of M is n and {e1, e2, . . . , en} be a basis of TM. Then as a result

of (2.19), we get

‖∇ψ‖2 =

n∑
i=1

(ei(ψ))2. (2.20)

The Laplacian of ψ is defined by

∆ψ =

n∑
i=1

{(∇eiei)ψ − eieiψ}. (2.21)

For a warped product submanifoldNn1
1 ×ψN

n2
2 isometrically immersed in a Riemann-

ian manifold M , we observed the well known result, which is described as follows [11]
n1∑
p=1

n2∑
q=1

κ(ep ∧ eq) =
n2∆ψ

ψ
= n2(∆lnψ − ‖∇lnψ‖2). (2.22)

3. WARPED PRODUCT SKEW CR- SUBMANIFOLDS

Recently, Haider and Thakur [23] demonstrated the existence of warped product skew
CR-submanifolds of the type M = N1 ×f N⊥, where N1 is a semi-slant submanifold
as defined by J. L. Cabrerizo [18] and N⊥ is a totally real submanifold. Throughout this
section we consider the warped product skew CR-submanifold M = N1 ×f N⊥ in a
Cosymplectic manifold M. Then it is evident that M is a proper warped product skew CR-
submanifold of order 1. Moreover, the tangent space TM of M can be decompounded as
follows

TM = Dθ ⊕DT ⊕D⊥, (3.1)
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where Dθ
x = Dλ1

x .
Definition 3.1 The warped product M = N1 ×f N2 isometrically immersed in a Rie-
mannian manifold M̄ is called Ni totally geodesic if the partial second fundamental form
hi vanishes identically. It is called Ni-minimal if the partial mean curvature vector Hi

becomes zero for i = 1, 2.
Let {e1, . . . , ep, ep+1 = φe1, . . . , en1=2p = φep, e

1, . . . , eq, eq+1 = sec θPe1, . . . ,

e(n2=2q) = sec θPeq, en2+1, . . . , en3 , ξ} be a local orthonormal frame of vector fields
such that {e1, . . . , ep, ep+1 = φe1, . . . , en1=2p = φep, ξ} is an orthonormal basis of DT ,
{e1, . . . , eq, eq+1 = sec θPe1, . . . , e(n2=2q) = sec θPeq} is an orthonormal basis of Dθ

and {en2+1, . . . , en3} is an orthonormal basis of D⊥.
Throughout this paper we consider that the warped product skew CR-submanifoldM =

N1 ×f N⊥ is D−minimal. Now we have the following lemma for further application

Lemma 3.1. Let Mn = Nn1+n2
1 ×f N⊥ be a D−minimal warped product skew CR-

submanifold isometrically immersed in a Cosymplectic manifold M̄ , then

‖H‖2 =
1

n2

m∑
r=n+1

(hrn1+1n1+1 + · · ·+ hrn2n2
+ · · ·+ hrnn)2, (3.2)

where ‖H‖2 is the squared mean curvature.

4. RICCI CURVATURE FOR WARPED PRODUCT SKEW CR- SUBMANIFOLD

In this section, we compute Ricci curvature in the expressions of squared norm of mean
curvature and the warping functions as follows

Theorem 4.1. Let Mn = Nn1+n2
1 ×f Nn3

⊥ be a D−minimal warped product skew CR-
submanifold isometrically immersed in a Cosymplectic space form M̄(c). If the holomor-
phic and slant distributions D and Dθ are integrable with integrable submanifolds Nn1

T

and Nn2

θ respectively. Then for each orthogonal unit vector field χ ∈ TxM 6= ξ, either
tangent to Nn1

T , Nn2

θ or Nn3

⊥ , we have

(1) The Ricci curvature satisfy the following inequalities
(i) If χ is tangent to Nn1

T , then

1

4
n2‖H‖2 ≥ Ric(χ) +

n3∆f

f
− c

4
(n1 + n1n2 + n2n3 + n1n3 −

1

2
). (4.1)

(ii) χ is tangent to Nn2

θ , then

1

4
n2‖H‖2 ≥ Ric(χ) +

n3∆f

f
− c

4
(n1 + n1n2 + n2n3 + n1n3 − 2 +

3

2
cos2 θ). (4.2)

(iii) If χ is tangent to Nn3

⊥ , then

1

4
n2‖H‖2 ≥ Ric(χ) +

n3∆f

f
− c

4
(n1 + n1n2 + n2n3 + n1n3 − 2). (4.3)

(2) If H(x) = 0 for each point x ∈ Mn, then there is a unit vector field χ which
satisfies the equality case of (1) if and only if Mn is mixed totally geodesic and χ
lies in the relative null space Nx at x.

(3) For the equality case we have
(a) The equality case of (4.1) holds identically for all unit vector fields tangent

to NT at each x ∈ Mn if and only if Mn is mixed totally geodesic and
D−totally geodesic skew CR-warped product submanifold in Mm(c).
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(b) The equality case of (4.3) holds identically for all unit vector fields tangent
to Nθ at each x ∈ Mn if and only if M is mixed totally geodesic and either
Mn is Dθ- totally geodesic skew CR-warped product submanifold or Mn is
a Dθ totally umbilical in Mm(c) with dim Dθ = 2.

(c) The equality case of (4.2) holds identically for all unit vector fields tangent
to Nn2

⊥ at each x ∈Mn if and only if M is mixed totally geodesic and either
Mn is D⊥- totally geodesic skew CR-warped product or Mn is a D⊥ totally
umbilical in Mm(c) with dim D⊥ = 2.

(d) The equality case of (1) holds identically for all unit tangent vectors to Mn

at each x ∈ Mn if and only if either Mn is totally geodesic submanifold
or Mn is a mixed totally geodesic totally umbilical and D− totally geodesic
submanifold with dim Nθ = 2 and dim N⊥ = 2.

Where n1, n2 and n3 are the dimensions of Nn1

T , Nn2

θ and Nn3

⊥ respectively.

Proof. Suppose that Mn = Nn1+n2
1 ×f Nn3

⊥ be a skew CR-warped product submanifold
of a Complex space form. From Gauss equation, we have

n2‖H‖2 = 2τ(Mn) + ‖h‖2 − 2τ(Mn). (4.4)

Let {e1, . . . , en1 , en1+1, . . . , en2 , . . . en} be a local orthonormal frame of vector fields
on Mn such that {e1, . . . , en1

} is tangent to Nn1

T , {en1+1, . . . , en2
} is tangent to Nn2

θ and
{en2+1, . . . , en} is tangent toNn3

⊥ . So, the unit tangent vector χ = eA ∈ {e1, . . . , en} can
be expanded (4.4) as follows

n2‖H‖2 = 2τ(Mn) +
1

2

m∑
r=n+1

{(hr11 + . . . hrn2n2
+ · · ·+ hrnn − hrAA)2 + (hrAA)2}

−
m∑

r=n+1

∑
1≤i 6=j≤n

hriih
r
jj − 2τ(Mn). (4.5)

The above expression can be written as follows

n2‖H‖2 = 2τ(Mn) +
1

2

m∑
r=n+1

{(hr11 + . . . hrn2n2
+ · · ·+ hrnn)2

+ (2hrAA − (hr11 + · · ·+ hrnn))2}+ 2

m∑
r=n+1

∑
1≤i<j≤n

(hrij)
2

− 2

m∑
r=n+1

∑
1≤i<j≤n
i,j 6=A

hriih
r
jj − 2τ(Mn).

In view of the assumption that skew CR-warped product submanifold M = N1 ×f N⊥ is
D−minimal submanifold. Then the preceding expression takes the form,
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n2‖H‖2 = 2τ(Mn) +
1

2

m∑
r=n+1

{(hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)2

+
1

2

m∑
r=n+1

(2hrAA − (hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn))2

+ 2

m∑
r=n+1

∑
1≤i<j≤n

(hrij)
2 − 2

m∑
r=n+1

∑
1≤i<j≤n
i,j 6=A

hriih
r
jj − 2τ(Mn).

(4.6)

Considering unit tangent vector χ = eA, we have three choices χ is either tangent to the
base manifolds Nn1

T , Nn2

θ or to the fiber Nn3

⊥ .
Case 1: If χ is tangent toNn1

T , then we need to choose a unit vector field from {e1, . . . , en1
}.

Let χ = e1, then by (2.17) and the assumption that the submanifolds is D−minimal, we
have

n2‖H‖2 ≥Ric(χ) +
1

2

m∑
r=n+1

(hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)2

+
n3∆f

f
+

1

2

m∑
r=n+1

(2hr11 − (hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn))2

+

m∑
r=n+1

∑
1≤α<β≤n1

(hrααh
r
ββ − (hrαβ)2)

+

m∑
r=n+1

∑
n1+1≤p<q≤n2

(hrpph
r
qq − (hrpq)

2)

+

m∑
r=n+1

∑
n2+1≤s<t≤n

(hrssh
r
tt − (hrst)

2)

+

m∑
r=n+1

∑
1≤i<j≤n

(hrij)
2 −

m∑
r=n+1

∑
2≤i<j≤n

(hriih
r
jj)

− 2τ̄(M) +
∑

2≤i<j≤n

κ̄(ei, ej) + τ̄(Nn1

T ) + τ̄(Nn2

θ ) + τ̄(Nn3

⊥ ).

(4.7)

Putting X = W = ei, Y, Z = ej in the formula (2.2), we have

2τ̄(M̌) =
c

4
(n(n− 1))− c

4
(2(n− 1)− 3(n1 − 1)− 3n2 cos2 θ) (4.8)∑

2≤i<j≤n

κ(ei, ej) =
c

8
((n− 1)(n− 2))− c

8
(2(n− 2)− 3(n1 − 2)− 3n2 cos2 θ)

τ̄(Nn1

T ) =
c

8
(n1(n1 − 1) + 3n1)− c

8
(2(n1 − 1)− 3(n1 − 1))

τ̄(Nn2

θ ) =
c

8
(n2(n2 − 1))− ĉ

8
(−3n2 cos2 θ).

τ̄(Nn3

⊥ ) =
c− 3

8
(n3(n3 − 1))
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Using these values in (4.7), we get

n2‖H‖2 ≥Ric(χ) +
1

2
n2‖H‖2 +

1

2

m∑
r=n+1

(2hr11 − (hrn1+1n1+1 + · · ·+ hrnn))2

+
n3∆f

f
+

m∑
r=n+1

n1∑
i=1

n2∑
j=n1+1

(hrij)
2

+

m∑
r=n+1

n1∑
i=1

n∑
k=n2+1

(hrik)2 +

m∑
r=n+1

n1∑
β=2

hr11h
r
ββ

−
m∑

r=n+1

n1∑
i=2

n2∑
j=n1+1

hriih
r
jj −

m∑
r=n+1

n1∑
i=2

n∑
k=n2+1

hriih
r
kk

− c

4
(n+ n1n2 + n2n3 + n1n3 −

5

2
).

(4.9)

In view of the assumption that the submanifold is D−minimal, then
m∑

r=n+1

n1∑
β=2

hr11h
r
ββ =

m∑
r=n+1

(hr11)2

−
m∑

r=n+1

n1∑
i=2

[ n2∑
j=n1+1

hriih
r
jj +

n∑
k=n2+1

hriih
r
kk

]
=

m∑
r=n+1

n∑
j=n1+1

hr11h
r
jj .

Utilizing in (4.9), we have

n2‖H‖2 ≥Ric(χ) +
1

2
n2‖H‖2 +

1

2

m∑
r=n+1

(2hr11 − (hrn1+1n1+1 + · · ·+ hrnn))2

+
n3∆f

f
+

m∑
r=n+1

n1∑
i=1

n2∑
j=n1+1

(hrij)
2

+

m∑
r=n+1

n1∑
i=1

n∑
k=n2+1

(hrik)2 −
m∑

r=n+1

(hr11)2 +

n1∑
i=1

n∑
j=n1+1

hriih
r
jj

− c

4
(n+ n1n2 + n2n3 + n1n3 −

5

2
).

(4.10)

The third term on the right hand side can be written as

1

2

m∑
r=n+1

(2hr11 − (hrn1+1n1+1 + · · ·+ hrn2n2
+ · · ·+ hrnn))2

= 2

m∑
r=n+1

(hr11)2 +
1

2
n2‖H‖2 − 2

m∑
r=n+1

[ n2∑
j=n1+1

hr11h
r
jj

+

n∑
k=n2+1

hr11h
r
kk

]
.

(4.11)
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Combining above two expressions, we have

1

2
n2‖H‖2 ≥Ric(χ) +

m∑
r=n+1

(hr11)2 −
m∑

r=n+1

n∑
j=n1+1

hr11h
r
jj

+
1

2

m∑
r=n+1

(hrn1+1n1+1 + · · ·+ hrn2n2
+ · · ·+ hrnn)2

+

m∑
r=n+1

n1∑
i=1

n∑
j=n1+1

(hrij)
2 +

n3∆f

f

− c

4
(n+ n1n2 + n2n3 + n1n3 −

5

2
).

(4.12)

Or equivalently

1

4
n2‖H‖2 ≥Ric(χ) +

1

4

m∑
r=n+1

(2hr11 − (hrn1+1n1+1 + · · ·+ hrn2n2
+ · · ·+ hrnn))2

+

m∑
r=n+1

n1∑
i=1

n∑
j=n1+1

(hrij)
2 +

n3∆f

f

− c

4
(n+ n1n2 + n2n3 + n1n3 −

5

2
).

(4.13)

Which gives the inequality (i) of (1).
Case 2. If χ is tangent to Nn2

θ , we choose the unit vector from {en1+1, . . . , en2
}. Suppose

χ = en2
, then from (4.6), we deduce

n2‖H‖2 ≥Ric(χ) +
1

2

m∑
r=n+1

(hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)2

+
n3∆f

f
+

1

2

m∑
r=n+1

((hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)− 2hrn2n2

)2

+

m∑
r=n+1

∑
1≤α<β≤n1

(hrααh
r
ββ − (hrαβ)2) +

m∑
r=n+1

∑
n1+1≤s<t≤n2

(hrssh
r
tt − (hrst)

2)

+

m∑
r=n+1

∑
n2+1≤p<q≤n

(hrpph
r
qq − (hrpq)

2) +

m∑
r=n+1

∑
1≤i<j≤n

(hrij)
2

−
m∑

r=n+1

∑
1≤i<j≤n
i,j 6=n2

(hriih
r
jj)− 2τ̄(M) +

∑
1≤i<j≤n
i,j 6=n2

κ̄(ei, ej)

+ τ̄(Nn1

T ) + τ̄(Nn2

θ + τ̄(Nn3

⊥ )).
(4.14)

From (2.2) by putting X = W = ei,W,Z = ej , one can compute∑
1≤i<j≤n
i,j 6=n2

κ(ei, ej) =
c

8
((n− 1)(n− 2))− c

8
(2(n− 2)− 3(n1 − 1)− 3n2 cos2 θ)

τ̄(Nn1

T ) =
c

8
(n1(n1 − 1))− c

8
(2(n1 − 1)− 3(n1 − 1))
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τ̄(Nn2

θ ) =
c

8
(n2(n2 − 1))− c

8
(−3n2 cos2 θ).

τ̄(Nn3

⊥ ) =
c

8
(n3(n3 − 1))

Using these values together with (4.8) in (4.14) and applying similar techniques as in Case
1, we obtain

n2‖H‖2 ≥Ric(χ) +
1

2

m∑
r=n+1

((hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)− 2hrn2n2

))2

+
1

2
n2‖H‖2 +

n3∆f

f
+

m∑
r=n+1

∑
1≤i<j≤n

(hrij)
2

+

m∑
r=n+1

[ n2−1∑
t=n1+1

hrn2n2
hrtt +

n∑
l=n2+1

hrn2n2
hrll
]

m∑
r=1

n1∑
i=1

[ n2−1∑
j=n1+1

hriih
r
jj +

n∑
k=n2+1

hriih
r
kk

]
− c

4
(n+ n1n2 + n2n3 + n1n3 − 4 +

3

2
cos2 θ).

(4.15)

By the assumption that the submanifold Mn is D−minimal, one can conclude
m∑
r=1

n1∑
i=1

[ n2−1∑
j=n1+1

hriih
r
jj +

n∑
k=n2+1

hriih
r
kk

]
= 0.

The second and seventh terms on right hand side of (4.15) can be solved as follows

1

2

m∑
r=n+1

((hrn1+1n1+1 + · · ·+ hrnn)− 2hrn2n2
))2 +

m∑
r=n+1

[ n2−1∑
t=n1+1

hrn2n2
hrtt +

n∑
l=n2+1

hrn2n2
hrll
]

=
1

2

m∑
r=n+1

(hrn1+1n1+1 + · · ·+ hrnn)2 + 2

m∑
r=n+1

(hrn2n2
)2

− 2

m∑
r=n+1

n∑
j=n1+1

hrn2n2
hrjj +

m∑
r=n+1

n∑
t=n1+1

hrn2n2
hrtt −

m∑
r=n+1

(hrn2n2
)2

=
1

2

m∑
r=n+1

(hrn1+1n1+1 + · · ·+ hrnn)2 +

m∑
r=n+1

(hrn2n2
)2

−
m∑

r=n+1

n∑
j=n1+1

hrnnh
r
jj .

(4.16)



100 AL-RASHIDI ET AL.

Utilizing these two values in (4.15), we arrive

1

2
n2‖H‖2 ≥Ric(χ) +

m∑
r=n+1

(hrn2n2
)2 −

m∑
r=n+1

n∑
i=n1+1

hrnnh
r
jj

+
1

2

m∑
r=n+1

(hrn1+1n1+1 + · · ·+ hrnn)2 +
1

2
n2‖H‖2 +

n3∆f

f

+

m∑
r=n+1

n1∑
i=1

n∑
j=n1+1

(hrij)
2 − c

4
(n+ n1n2 + n2n3 + n1n3 − 4 +

3

2
cos2 θ).

(4.17)

By using similar steps as in Case 1, the above inequality can be written as

1

4
n2‖H‖2 ≥Ric(χ) +

1

4

m∑
r=n+1

(2hrn2n2
− (hrn1+1n1+1 + · · ·+ hrnn))2

+
n3∆f

f
− c

4
(n+ n1n2 + n2n3 + n1n3 − 4 +

3

2
cos2 θ).

(4.18)

The last inequality leads to inequality (ii) of (1).

Case 3. If χ is tangent to Nn3

⊥ , then we choose the unit vector field from {en2+1, . . . , en}.
Suppose the vector χ is en. Then from (4.6)

n2‖H‖2 ≥Ric(χ) +
1

2

m∑
r=n+1

(hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)2

+
n3∆f

f
+

1

2

m∑
r=n+1

((hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)− 2hrnn)2

+

m∑
r=n+1

∑
1≤α<β≤n1

(hrααh
r
ββ − (hrαβ)2) +

m∑
r=n+1

∑
n1+1≤s<t≤n2

(hrssh
r
tt − (hrst)

2)

+

m∑
r=n+1

∑
n2+1≤p<q≤n

(hrpph
r
qq − (hrpq)

2) +

m∑
r=n+1

∑
1≤i<j≤n

(hrij)
2

−
m∑

r=n+1

∑
1≤i<j≤n−1

hriih
r
jj − 2τ̄(M) +

∑
1≤i<j≤n−1

κ̄(ei, ej)

+ τ̄(Nn1

T ) + τ̄(Nn2

θ ) + τ̄(Nn3

⊥ ).
(4.19)

From (2.2), one can compute

∑
1≤i<j≤n−1

κ(ei, ej) =
c

8
((n− 1)(n− 2))− c

8
(2(n− 2)− 3(n1− 1)− 3(n2− 1) cos2 θ)

τ̄(Nn1

T ) =
c

8
(n1(n1 − 1))− c

8
(2(n1 − 1)− 3(n1 − 1))

τ̄(Nn2

θ ) =
c

8
(n2(n2 − 1))− c

8
(−3n2 cos2 θ).

τ̄(Nn3

⊥ ) =
c

8
(n3(n3 − 1))
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By usage of these values together with (4.8) in (4.19) and analogous to Case 1 and Case 2,
we obtain

n2‖H‖2 ≥Ric(χ) +
1

2
n2‖H‖2 +

1

2

m∑
r=n+1

((hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)− 2hrnn)2

+
n3∆f

f
+

m∑
r=n+1

∑
1≤i<j≤n

(hrij)
2

+

m∑
r=n+1

n−1∑
q=n1+1

hrnnh
r
qq −

m∑
r=n+1

n1∑
i=1

n−1∑
j=n1+1

hriih
r
jj

− c

4
(n+ n1n2 + n2n3 + n1n3 + 1− 4).

(4.20)

Again using the assumption that Mn is D −minimal and it is easy to verify
m∑

r=n+1

n1∑
i=1

n−1∑
j=n1+1

hriih
r
jj = 0. (4.21)

Using in (4.20), we obtain

n2‖H‖2 ≥Ric(χ) +
1

2
n2‖H‖2 +

1

2

m∑
r=n+1

((hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)− 2hrnn)2

+
n3∆f

f
+

m∑
r=n+1

∑
1≤i<j≤n

(hrij)
2 +

m∑
r=n+1

n−1∑
q=n1+1

hrnnh
r
qq

− c

4
(n+ n1n2 + n2n3 + n1n3 − 4).

(4.22)

The third and sixth terms on the right hand side of (4.22) in a similar way as in Case 1 and
Case 2 can be simplified as

1

2

m∑
r=n+1

((hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)− 2hrnn)2 +

m∑
r=n+1

n−1∑
q=n1+1

hrnnh
r
qq

=
1

2

m∑
r=n+1

(hrn1+1n1+1 + . . . hrn2n2
+ · · ·+ hrnn)2 +

m∑
r=n+1

(hrnn)2

−
m∑

r=n+1

n∑
j=n1+1

hrnnh
r
jj .

(4.23)

By combining (4.22) and (4.23) and using similar techniques as used in Case 1 and Case
2, we can derive

1

4
n2‖H‖2 ≥ Ric(χ) +

1

4

m∑
r=n+1

(2hrnn − (hrn1+1n1+1 + · · ·+ hrnn))2

+
n3∆f

f
− c

4
(n+ n1n2 + n2n3 + n1n3 − 4).

(4.24)

The last inequality leads to inequality (iii) in (1).
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Next, we explore the equality cases of (1). First, we redefine the notion of the relative
null space Nx of the submanifold Mn in the Complex space form M̄m(c) at any point
x ∈Mn, the relative null space was defined by B. Y. Chen [9], as follows

Nx = {X ∈ TxMn : h(X,Y ) = 0,∀Y ∈ TxMn}.
For A ∈ {1, . . . , n} a unit vector field eA tangent to Mn at x satisfies the equality sign

of (4.1) identically if and only if

(i)

n1∑
p=1

n∑
q=n1+1

hrpq = 0 (ii)

n∑
b=1

n∑
A=1
b6=A

hrbA = 0 (iii) 2hrAA =

n∑
q=n1+1

hrqq, (4.25)

such that r ∈ {n+ 1, . . .m} the condition (i) implies that Mn is mixed totally ge-
odesic skew CR-warped product submanifold. Combining statements (ii) and (iii) with
the fact that Mn is skew CR-warped product submanifold, we get that the unit vector field
χ = eA belongs to the relative null space Nx. The converse is trivial, this proves statement
(2).

For a skew CR-warped product submanifold, the equality sign of (4.1) holds identically
for all unit tangent vector belong to Nn1

T at x if and only if

(i)

n1∑
p=1

n∑
q=n1+1

hrpq = 0 (ii)

n∑
b=1

n1∑
A=1
b6=A

hrbA = 0 (iii) 2hrpp =

n∑
q=n1+1

hrqq, (4.26)

where p ∈ {1, . . . , n1} and r ∈ {n + 1, . . . ,m}. Since Mn is D−minimal skew CR-
warped product submanifold, the third condition implies that hrpp = 0, p ∈ {1, . . . , n1}.
Using this in the condition (ii), we conclude that Mn is D−totally geodesic skew CR-
warped product submanifold in M̄m(c) and mixed totally geodesicness follows from the
condition (i). Which proves (a) in the statement (3).

For a skew CR-warped product submanifold, the equality sign of (4.2) holds identically
for all unit tangent vector fields tangent to Nn2

θ at x if and only if

(i)

n1∑
p=1

n∑
q=n1+1

hrpq = 0 (ii)

n∑
b=1

n2∑
A=n1+1
b6=A

hrbA = 0 (iii) 2hrKK =

n∑
q=n1+1

hrqq, (4.27)

such that K ∈ {n1 + 1, . . . , n2} and r ∈ {n+ 1, . . . ,m}. From the condition (iii) two
cases emerge, that is

hrKK = 0, ∀K ∈ {n1 + 1, . . . , n2} and r ∈ {n+ 1, . . . ,m} or dim Nn2

θ = 2. (4.28)

If the first case of (4.27) satisfies, then by virtue of condition (ii), it is easy to conclude
that Mn is a Dθ− totally geodesic skew CR-warped product submanifold in M̄m(c). This
is the first case of part (b) of statement (3).

For a skew CR-warped product submanifold, the equality sign of (4.3) holds identically
for all unit tangent vector fields tangent to Nn3

⊥ at x if and only if

(i)

n1∑
p=1

n∑
q=n1+1

hrpq = 0 (ii)

n∑
b=1

n3∑
A=n2+1
b 6=A

hrbA = 0 (iii) 2hrLL =

n∑
q=n1+1

hrqq, (4.29)

such that L ∈ {n2 + 1, . . . , n} and r ∈ {n+ 1, . . . ,m}. From the condition (iii) two
cases arise, that is

hrLL = 0, ∀L ∈ {n2 + 1, . . . , n} and r ∈ {n+ 1, . . . ,m} or dim Nn3

⊥ = 2. (4.30)
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If the first case of (4.29) satisfies, then by virtue of condition (ii), it is easy to conclude that
Mn is a D⊥− totally geodesic skew CR-warped product submanifold in M̄m(c). This is
the first case of part (c) of statement (3).

For the other case, assume thatMn is notD⊥−totally geodesic skew CR-warped prod-
uct submanifold and dim Nn3

⊥ = 2. Then condition (ii) of (4.29) implies that Mn is D⊥−
totally umbilical skew CR-warped product submanifold in M̄(c), which is second case of
this part. This verifies part (c) of (3).

To prove (d) using parts (a), (b) and (c) of (3), we combine (4.26),(4.27) and (4.29).
For the first case of this part, assume that dimNn2

θ 6= 2 and dimNn3

⊥ 6= 2. Since from
parts (a), (b) and (c) of statement (3) we conclude that Mn is D−totally geodesic, Dθ−
totally geodesic andD⊥− totally geodesic submanifolds in M̄m(c). HenceMn is a totally
geodesic submanifold in M̄m(c).

For another case, suppose that first case does not satisfy. Then parts (a), (b) and (c)
provide thatMn is mixed totally geodesic andD− totally geodesic submanifold of M̄m(c)
with dimNθ = 2 and dimN⊥ = 2. From the conditions (b) and (c) it follows that Mn is
Dθ− and D⊥−totally umbilical skew CR-warped product submanifolds and from (a) it is
D−totally geodesic, which is part (d). This proves the theorem. �

In view of (2.22) we have the another version of the theorem 2 as follows

Theorem 4.2. Let Mn = Nn1+n2
1 ×f Nn3

⊥ be a D−minimal warped product skew CR-
submanifold isometrically immersed in a Cosymplectic space form M̄(c). If the holomor-
phic and slant distributions D and Dθ are integrable with integral submanifolds Nn1

T and
Nn2

θ respectively. Then for each orthogonal unit vector field χ ∈ TxM , either tangent to
Nn1

T , Nn2

θ or Nn3

⊥ , we have

(1) The Ricci curvature satisfy the following inequalities
(i) If χ is tangent to Nn1

T , then
1

4
n2‖H‖2 ≥ Ric(χ) + n3(∆lnf − ‖∇lnf‖2)− c

4
(n1 + n1n2 + n2n3

+ n1n3 −
1

2
).

(4.31)

(ii) χ is tangent to Nn2

θ , then
1

4
n2‖H‖2 ≥ Ric(χ) + n3(∆lnf − ‖∇lnf‖2)− c

4
(n1 + n1n2 + n2n3

+ n1n3 − 2 +
3

2
cos2 θ).

(4.32)

(iii) If χ is tangent to Nn2

⊥ , then
1

4
n2‖H‖2 ≥ Ric(χ)+n3(∆lnf−‖∇lnf‖2)− c

4
(n+n1n2 +n2n3 +n1n3−2). (4.33)

(2) If H(x) = 0 for each point x ∈ Mn, then there is a unit vector field χ which
satisfies the equality case of (1) if and only if Mn is mixed totally geodesic and χ
lies in the relative null space Nx at x.

(3) For the equality case we have
(a) The equality case of (4.1) holds identically for all unit vector fields tangent

to NT at each x ∈ Mn if and only if Mn is mixed totally geodesic and
D−totally geodesic skew CR-warped product submanifold in M̄m(c).

(b) The equality case of (4.3) holds identically for all unit vector fields tangent
to Nθ at each x ∈ Mn if and only if M is mixed totally geodesic and either
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Mn is Dθ- totally geodesic skew CR-warped product submanifold or Mn is
a Dθ totally umbilical in M̄m(c) with dim Dθ = 2.

(c) The equality case of (4.2) holds identically for all unit vector fields tangent
to Nn2

⊥ at each x ∈Mn if and only if M is mixed totally geodesic and either
Mn is D⊥- totally geodesic skew CR-warped product or Mn is a D⊥ totally
umbilical in M̄m(c) with dim D⊥ = 2.

(d) The equality case of (1) holds identically for all unit tangent vectors to Mn

at each x ∈ Mn if and only if either Mn is totally geodesic submanifold
or Mn is a mixed totally geodesic totally umbilical and D− totally geodesic
submanifold with dim Nθ = 2 and dim N⊥ = 2.

Where n1, n2 and n3 are the dimensions of Nn1

T , Nn2

θ and Nn3

⊥ respectively.
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