
ANNALS OF COMMUNICATIONS IN MATHEMATICS

Volume 4, Number 1 (2021), 1-9
ISSN: 2582-0818
c© http://www.technoskypub.com

EXISTENCE OF SOLUTIONS FOR HADAMARD FRACTIONAL
DIFFERENTIAL EQUATIONS IN BANACH SPACES

ABDELOUAHEB ARDJOUNI

ABSTRACT. In this work, we investigate the existence of solutions for Hadamard frac-
tional differential equations with integral boundary conditions in a Banach space. We will
make use the measure of noncompactness and the Mönch fixed point theorem to prove the
main results. An example is given to illustrate our results.

1. INTRODUCTION

Fractional differential equations are attracting attention of researchers because of the
fact that fractional order derivatives are the better to describe many different natural phe-
nomena compared with classical integer order derivatives. Therefore, initial and boundary
value problems including fractional differential equations are more appropriate for many
mathematical models of various fields of science and engineering. In particular, problems
concerning qualitative analysis of the positivity and stability of such solutions for fractional
differential equations have received the attention of many authors, see [1]-[11], [13]-[33]
and the references therein.

In [21], Lachouri, Ardjouni and Djoudi discussed the existence of solutions for the
following fractional differential equation in a Banach space{

Dαx (t)− f (t, x (t)) = Dα−1g (t, x (t)) , t ∈ (0, 1) ,

x (0) = 0, x (1) =
∫ 1

0
g (s, x (s)) ds,

where Dα is the standard Riemann-Liouville fractional derivative of order 1 < α ≤ 2,
and f, g : [0, 1] × E → E are given continuous functions. By employing the measure
of noncompactness and the Mönch fixed point theorem, the authors obtained existence
results.

In this paper, we extend the results in [21] by proving the existence of solutions for the
following Hadamard fractional differential equation in a Banach space{

Dαx (t)− f (t, x (t)) = Dα−1g (t, x (t)) , t ∈ (1, e) ,
x (1) = 0, x (e) =

∫ e
1
g (s, x (s)) dss ,

(1.1)
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2 A. ARDJOUNI

where Dα is the Hadamard fractional derivative of order 1 < α ≤ 2, f, g : [1, e]×E → E
are given continuous functions satisfying some assumptions that will be specified later, and
E is a Banach space with the norm ‖.‖. To prove the existence of solutions, we transform
(1.1) into an equivalent integral equation and then by the measure of noncompactness and
use the Mönch fixed point theorem.

2. PRELIMINARIES

Let J = [1, e]. By C (J,E) we denote the Banach space of all continuous functions
from J into E with the norm

‖x‖∞ = sup {‖x (t)‖ : t ∈ J} .
Let L1 (J,E) be the Banach space of measurable functions x : J → E that are Lebesgue
integrable with norm

‖x‖L1 =

∫
J

‖x (t)‖ dt.

And AC(J,E) be the space of absolutely continuous valued functions on J , and set

ACn (J,E) =
{
x : J → E : x, x′, x′′, , xn−1 ∈ C(J,E) and xn−1 ∈ AC(J,E)

}
.

Moreover, for a given set V of function v : J → E, let us denote by

V (t) = {v (t) : v ∈ V } , t ∈ J,
and

V (J) = {v (t) : v ∈ V, t ∈ J} .

Definition 2.1 ([20]). The Hadamard fractional integral of order α > 0 of a continuous
function x : J → E is given by

Iαx (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

x (s)
ds

s
,

provided the right side is pointwise defined on J .

Definition 2.2 ([20]). The Hadamard fractional derivative of order α of a continuous func-
tion x : J → E is defined by

Dαx (t) =
1

Γ (n− α)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−α−1

x (s)
ds

s
,

where n = [α] + 1 and [α] denotes the integer part of real number α.

Lemma 2.1 ([20]). The solution of the linear Hadamard fractional differential equation

Dαx (t) = 0,

is given by

x (t) = c1 (log t)
α−1

+ c2 (log t)
α−2

+ c3 (log t)
α−3

+ ...+ cn (log t)
α−n

,

where ci ∈ R, i = 1, 2, ..., n and n = [α] + 1.

Now let us recall some fundamental facts of the notion of Kuratowski measure of non-
compactness.

Definition 2.3 ([5, 12]). Let E be a Banach space and ΩE the bounded subsets of E. The
Kuratowski measure of noncompactness is the map µ : ΩE → [0,∞) defined by

µ (B) = inf {ε > 0 : B ⊆ ∪ni=1Bi and diam (Bi) ≤ ε} , here B ∈ ΩE .
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The measure of noncompactness satisfies some important properties
(a) µ (B) = 0⇔ B is compact (B is relatively compact),
(b) µ (B) = µ

(
B
)
,

(c) A ⊂ B ⇒ µ (A) ≤ µ (B),
(d) µ (A+B) ≤ µ (A) + µ (B),
(e) µ (cB) = |c|µ (B) , c ∈ R,
(f) µ (convB) = µ (B).
Here B and convB denote the closure and the convex hull of the bounded set B, re-

spectively. The details of µ and its properties can be found in [5, 12].

Definition 2.4. A map f : J × E → E is said to be Caratheodory if
(i) t→ f (t, x) is measurable for each x ∈ E.
(ii) x→ f (t, x) is continuous for almost all t ∈ J .

To prove the existence of solutions of (1.1), we need the following results.

Theorem 2.2 ([4]). LetD be a bounded, closed and convex subset of a Banach space such
that 0 ∈ D, and let N be a continuous mapping of D into itself. If the implication

V = convN (V ) or V = N (V ) ∪ {0} ⇒ µ (V ) = 0,

holds for every V of D, then N has a fixed point.

Lemma 2.3 ([27]). Let D be a bounded, closed and convex subset of the Banach space
C (J,E). Let G be a continuous function on J × J and f a function from J × E → E,
which satisfies the Carathéodory conditions, and assume there exists p ∈ L1 (J,R+) such
that, for each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

µ (f (Jt,h ×B)) ≤ p (t)µ (B) , here Jt,h = [t− h, t] ∩ J.

If V is an equicontinuous subset of D, then

µ

({∫
J

G (t, s) f (s, y (s))
ds

s
: y ∈ V

})
≤
∫
J

‖G (t, s)‖ p (s)µ (V (s))
ds

s
.

3. EXISTENCE RESULTS

Let us start by defining what we mean by a solution of the problem (1.1).

Definition 3.1. A function x ∈ AC2 (J,E) is said to be a solution of problem (1.1) if x
satisfies the equation Dαx (t) − f (t, x (t)) = Dα−1g (t, x (t)) on J and the conditions
x (1) = 0, x (e) =

∫ e
1
g (s, x (s)) ds.

For the existence of solutions for the problem (1.1), we need the following auxiliary
lemma.

Lemma 3.1. The function x solves the problem (1.1) if and only if it is a solution of the
integral equation

x (t) =

∫ e

1

G (t, s) f (s, x (s))
ds

s
+

∫ t

1

g (s, x (s))
ds

s
, t ∈ J,

where G is the Green function given by

G (t, s) =


[(log t)(log e

s )]
α−1−(log t

s )
α−1

Γ(α) , 1 ≤ s ≤ t ≤ e,
[(log t)(log e

s )]
α−1

Γ(α) , 1 ≤ t ≤ s ≤ e.
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Proof. From Lemma 2.1, applying the Hadamard fractional integral Iα on both sides of
(1.1), we have

x (t)− c1 (log t)
α−1 − c2 (log t)

α−2
+ Iαf (t, x (t))

= I
(
Iα−1Dα−1g (t, x (t))

)
= I

(
g (t, x (t))− c3 (log t)

α−2
)
.

That is,

x (t) = c1 (log t)
α−1

+ c2 (log t)
α−2 − 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+

∫ t

1

g (s, x (s))
ds

s
− c3
α− 1

(log t)
α−1

.

By the boundary conditions x (1) = 0, x (e) =
∫ e

1
g (s, x (s)) ds, one has c2 = 0 and

c1 =
1

Γ (α)

∫ e

1

(
log

e

s

)α−1

f (s, x (s))
ds

s
+

c3
α− 1

.

Therefore

x (t) =
1

Γ (α)

∫ e

1

(log t)
α−1

(
log

e

s

)α−1

f (s, x (s))
ds

s

− 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s
+

∫ t

1

g (s, x (s))
ds

s

=

∫ e

1

G (t, s) f (s, x (s))
ds

s
+

∫ t

1

g (s, x (s))
ds

s
.

This process is reversible. The proof is complete. �

In the following, we prove existence results for the boundary value problem (1.1) by
using the Mönch fixed point theorem.

The following assumptions will be used in our main results
(H1) The functions f, g : J × E → E satisfy the Caratheodory conditions.
(H2) There exist pf , pg ∈ L1 (J,R+) ∩ C (J,R+) such that

‖f (t, x)‖ ≤ pf (t) ‖x‖ , for t ∈ J and each x ∈ E,
‖g (t, x)‖ ≤ pg (t) ‖x‖ , for t ∈ J and each x ∈ E.

(H3) For each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

µ (f (Jt,h ×B)) ≤ pf (t)µ (B) , here Jt,h = [t− h, t] ∩ J,

lim
h→0+

µ (g (Jt,h ×B)) ≤ pg (t)µ (B) , here Jt,h = [t− h, t] ∩ J.

Theorem 3.2. Assume that the assumptions (H1)-(H3) hold. If
2

Γ (α+ 1)
‖pf‖∞ + ‖pg‖∞ < 1, (3.1)

then the boundary value problem (1.1) has at least one solution.
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Proof. We transform the problem (1.1) into a fixed point problem by defining an operator
N : C (J,E)→ C (J,E) as

(Nx) (t) =
1

Γ (α)

∫ e

1

(log t)
α−1

(
log

e

s

)α−1

f (s, x (s))
ds

s

− 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s
+

∫ t

1

g (s, x (s))
ds

s
,

Clearly, the fixed points of operator N are solutions of the problem (1.1). Let R > 0 and
consider the set

DR = {x ∈ C (J,E) : ‖x‖∞ ≤ R} .
Clearly, the subset DR is closed, bounded, and convex. We will show that N satisfies the
assumptions of Theorem 2.2. The proof will be given in three steps.

Step 1. N maps DR into itself.
For each x ∈ DR, by (H2) and (3.1) we have for each t ∈ J

‖(Nx) (t)‖ ≤ 1

Γ (α)

∫ e

1

(log t)
α−1

(
log

e

s

)α−1

‖f (s, x (s))‖ ds
s

+
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖f (s, x (s))‖ ds
s

+

∫ t

1

‖g (s, x (s))‖ ds
s

≤ R
(

2

Γ (α+ 1)
‖pf‖∞ + ‖pg‖∞

)
≤ R.

Step 2. N (DR) is bounded and equicontinuous.
By Step 1, we have N (DR) = {Nx : x ∈ DR} ⊂ DR. Thus, for each x ∈ DR,

we have ‖Nx‖∞ ≤ R, which means that NDR is bounded. For the equicontinuity of
N (DR). Let t1, t2 ∈ J , t1 < t2 and x ∈ DR. Then

‖(Nx) (t2)− (Nx) (t1)‖

≤ (log t2)
α−1 − (log t1)

α−1

Γ (α)

∫ e

1

(
log

e

s

)α−1

‖f (s, x (s))‖ ds
s

+
1

Γ (α)

∫ t1

1

∣∣∣∣∣
(

log
t1
s

)α−1

−
(

log
t2
s

)α−1
∣∣∣∣∣ ‖f (s, x (s))‖ ds

s

+
1

Γ (α)

∫ t2

t1

(
log

t2
s

)α−1

‖f (s, x (s))‖ ds+

∫ t2

t1

‖g (s, x (s))‖ ds
s

≤ (log t2)
α−1 − (log t1)

α−1

Γ (α)

∫ e

1

(
log

e

s

)α−1

pf (s) ‖x (s)‖ ds
s

+
1

Γ (α)

∫ t1

1

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
pf (s) ‖x (s)‖ ds

s

+
1

Γ (α)

∫ t2

t1

(
log

t2
s

)α−1

pf (s) ‖x (s)‖ ds+

∫ t2

t1

pg (s) ‖x (s)‖ ds
s

≤
‖pf‖∞R

Γ (α+ 1)

(
(log t2)

α−1 − (log t1)
α−1

+ (log t2)
α − (log t1)

α
)

+ ‖pg‖∞R (log t2 − log t1) .
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As t1 → t2, the right-hand side of the above inequality tends to zero.
Step 3. N is continuous.
Let {xn} be sequence such that xn → x in C (J,E). Then, for each t ∈ J

‖(Nxn) (t)− (Nx) (t)‖

≤ 1

Γ (α)

∫ e

1

(log t)
α−1

(
log

e

s

)α−1

‖f (s, xn (s))− f (s, x (s))‖ ds
s

+
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖f (s, xn (s))− f (s, x (s))‖ ds
s

+

∫ t

1

‖g (s, xn (s))− g (s, x (s))‖ ds
s
.

Since f and g are Caratheodory functions, the Lebesgue dominated convergence theorem
implies that

‖(Nxn) (t)− (Nx) (t)‖ → 0 as n→∞.
This shows that (Nxn) converges pointwise to Nx on J . Moreover, the sequence (Nxn)
is equicontinuous by a similar proof of Step 2. Therefore (Nxn) converges uniformly to
Nx and hence N is continuous.

Now let V be a subset of DR such that V ⊂ conv ((NV ) ∪ {0}). V is bounded and
equicontinuous, and therefore the function v → v (t) = µ (V (t)) is continuous on J . By
assumption (H3), Lemma 2.3 and the properties of the measure µ we have for each t ∈ J

v (t) ≤ µ ((NV ) (t) ∪ {0}) ≤ µ ((NV ) (t))

≤ 1

Γ (α)

∫ e

1

(log t)
α−1

(
log

e

s

)α−1

pf (s)µ (V (s))
ds

s

+
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

pf (s)µ (V (s))
ds

s
+

∫ t

1

pg (s)µ (V (s))
ds

s

≤ ‖v‖∞

(
2

Γ (α+ 1)
‖pf‖∞ + ‖pg‖∞

)
.

This means that

‖v‖∞

(
1−

[
2

Γ (α+ 1)
‖pf‖∞ + ‖pg‖∞

])
≤ 0.

By (3.1), it follows that ‖v‖∞ = 0, that is v (t) = 0 for each t ∈ J , and then V (t) is
relatively compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in
DR. Applying now Theorem 2.2, we conclude thatN has a fixed point, which is a solution
of the problem (1.1). �

4. EXAMPLE

We consider the following Hadamard fractional differential equation{
D

5
4x (t)− 1

1+3 exp(t)x (t) = D
1
4

1
3+2 exp(t2)x (t) , t ∈ J = [1, e] ,

x (1) = 0, x (e) =
∫ e

1
1

3+2 exp(s2)x (s) ds.
(4.1)

Let

E = l1 =

{
x = (x1, x2, ..., xn, ...) :

∞∑
n=1

|xn| <∞

}
,



HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS 7

equipped with the norm

‖x‖E =

∞∑
n=1

|xn| .

Set

x = (x1, x2, ..., xn, ...) , f = (f1, f2, ..., fn, ...) , g = (g1, g2, ..., gn, ...) ,

and

fn (t, xn) =
1

1 + 3 exp (t)
xn, t ∈ J,

gn (t, xn) =
1

3 + 2 exp (t2)
xn, t ∈ J.

For each xn and t ∈ J , we have

|fn (t, xn)| ≤ 1

1 + 3 exp (t)
|xn| , (4.2)

and
|gn (t, xn)| ≤ 1

3 + 2 exp (t2)
|xn| . (4.3)

Hence conditions (H1) and (H2) are satisfied with pf (t) = 1
1+3 exp(t) and pg (t) =

1
3+2 exp(t2) . By (4.2) and (4.3), for any bounded set B ⊂ l1, we have

µ (f (t, B)) ≤ 1

1 + 3 exp (t)
µ (B) for each t ∈ J,

µ (g (t, B)) ≤ 1

3 + 2 exp (t2)
µ (B) for each t ∈ J.

Hence (H3) is satisfied. The condition
2

Γ (α+ 1)
‖pf‖∞ + ‖pg‖∞ ' 0.64 < 1,

is satisfied. Consequently, Theorem 3.2 implies that the problem (4.1) has a solution de-
fined on J .

5. CONCLUSION

In this paper, we provided the existence of solutions of Hadamard fractional differential
equations in a Banach space. The main tool of this work is the measure of noncompactness
and the Mönch fixed point theorem. However, by introducing a new fixed mapping, we get
new existence conditions. The obtained results have a contribution to the related literature,
and they extend the results in [21].
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