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SOME INEQUALITIES FOR STATISTICAL (C,1)(H,1)-SUMMABILITY

M. MURSALEEN

ABSTRACT. The concept of statistical summability C, 1)(H, 1) has recently been intro-
duced by [8]. In this paper we establish some inequalities related to concept of statistical
summability (C, 1)(H, 1).

1. INTRODUCTION

There are several generalizations of usual convergence and the notion of statistical con-
vergence is one of them which was introduced by Fast [5] (see also [6]).
The natural density § of E C N is defined by 6(E) = lim L |{k < n : k € E}|, where

N is the set of all natural numbers, and the vertical bars indicate the number of elements in
the enclosed set. The sequence x = (zy,) is said to be statistically convergent to L if for
every € > 0,0({k : |z, — L| > €}) = 0.

Recently, Acar and Mohiuddine [8] has defined the concept of statistical summability
(C,1)(E, 1) as follows:

Definition 1.1. Let us write 7,, := n%_l > ko 3% Zf:o (’:)xr for a sequence x = ().
We say that a sequence © = (x) is said to be statistically summable (C,1)(E,1) to the
number L if the sequence 7 = (7,,) is statistically convergent to L, i.e. st — lim7 = L =
(CE)(st)-limx. We denote by (CE);(st) the set of all sequences which are statisti-
cally summable (C, 1)(F, 1) and we also call such sequences as statistically (C,1)(E, 1)-
summable sequences. Further, we write (CE);(st)so for (CE)1(st) Nls.

Let [, and c be the Banach spaces of bounded and convergent sequences of real num-
bers with the usual supremum norm. Let A = (anx),n, &k € N, be an infinite matrix of
real numbers, and let z = (x1) be a sequence of real numbers. We write Az = (A,,(z))
if A, = Y anpxi converges for each n. Let X and Y be any two sequence spaces. If

re X im’;)hes Ax € Y, then we say that the matrix A maps X into Y. We denote the
class of all matrices A which map X into Y by (X,Y). If X and Y are equipped with
X-lim and Y-lim, A € (X,Y) and Y-lim Az = X-limz for all z € X, then we write
A€ (X,Y)req.
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In this paper we define (C'E);(st)-conservative matrices and prove some inequalities
related to the concepts of (C'E);(st)-conservative matrices which are natural analogues
of (¢, st Nl )-matrices (see Kolk [7]). Such type of inequalities are also considered by
Coskun and [3]], Cakan and Altay [1], and Cakan et al [2].

2. LEMMAS

We shall need the following lemmas in establishing our results.
Lemma 2.1. A € (c,c), that is, A is conservative if and only if

(@) [|All = sngk) |ank| < oo,

(i) ar, = 1i7rln Gk, for each k,

(i4i) a = lirrlnz k-

If Ais conserv];tive, the number x = x(A) = a — Y _ ay, is called the characteristic of
A. Ais said to be regular if and only if (i), (ii) with ay, k: 0 for all k; and (iii) witha = 1
hold.

The following lemma is an analogue of the above lemma and a consequence of Theorem
1 of Kolk [7].

Lemma 2.2. A € (¢,(CE)(st)s) if and only if
(2) sup Y |ank| < o0,
n K
(7) (CE)1(st)-lim anr = oy, for every k, and
(ZZZ) (C’E)l(st)—limZank = .
"ok

We call such matrices as (C'E); (st)-conservative matrices, and in this case
X(CE)i(st) = & — Zak
k

is defined which is known as the (CE); (st)-characteristic of A. This number is analogous
to the number y; defined by Coskun and Cakan [3].

The following lemma is (C'E)1 (st)-analogue of a result of Cogkun and Cakan [3].

Lemma 2.3. Let ||A|| < oo and (CE)q(st)-lim|ank| = 0. Then there exists a y € l
such that ||y|| < 1 and
(CE)1(st)-limsup Z ankyr = (CE)(st)-limsup Z |ank]-
k k

The following lemma is derived from Lemma 2.3 of Coskun and Cakan [3]] by replacing
stby (CE)q(st).
Lemma 2.4. Let A be st-conservative and A > 0. Then (CE)1(st)-limsup Y |ank —

no K

ag| < XNif and only if (CE)i(st)-limsup Y (anx — o)™ < ’\JF?X and (CE);(st)-
n k
limsup 3 (ans — ag)” < 25X

no &
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3. MAIN RESULTS

In this section we establish some inequalities involving the numbers x (¢ gy, (st), (CE)1(st)-
limsup z, a(x) = (CE);(st)-liminf z, limsup z, and lim inf .

Theorem 3.1. Let A be conservative and x € l,,. Then

A + s A= s
(B.1.1)  limsup > (ank — ag)ay, < RGN gy | 27 XOBRED oy
n k 2 2

for some constant X\ > |x(c ), (st)|, if and only if
(3.1.2) limsupz |ank — ak| < A,

" k
(3.1.3) lim Y " |an, — ax| =0

" kem

for every E C N with §(E) = 0, where f(z) = (CE)(st)-limsupz and o(r) =
(CE)1(st)-liminf z.

Proof. Necessity. Let L(z) = limsup z and {(x) = liminf z. Since 8(z) < L(x) and
a(—z) < —l(zx) forall x € I, we have

lim sup Z(ank —ag)xg <
" k
and the necessity of (3.1.2) follows from Theorem 1 of Das [4]]. Define the matrix B =
(bnk) by

AFXCEN) p oy - AT XCEREH
2 2 ’

b — d Gnk =k fork € F,
nk 0 otherwise.
Since A is conservative, using Lemma 2.1, the matrix B satisfies the conditions of Corol-

lary 12 of Simons [9]. Hence there exists a y € o such that ||y|| < 1 and

(3.1.4) lim sup Z |bpni| = lim sup Z bk Y-
n k n k'

Now, let y = (yi) be defined by

| 1forke E,
Y = Ofork ¢ E.

So that, (CE);(st)-limy = B(y) = a(y) = 0; and by (3.1.1) and (3.1.4) we have
A— s
X(CE)( t)a(_y) _ 0

2

+ X(CE).(st)
— By +

A
lim sup Z lank — ak| <
" keE

and we get (3.1.3).

Sufficiency. Let x € lo. Write By = {k : x; > f(z) + €} and By = {k : 7 <
a(x) —€}. Then we have §(E7) = §(E2) = 0; and hence 6(E) = 0 for E = E1 N Ey. We
can write

Z(ank —ag)Tk = Z(ank —ap)Tp + Z(ank —ay) Ty, — Z(ank —ar)” Tk,

k kEE k¢E k¢E
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where AT = max{0, \}, \™ = max{—\, 0}. Hence
lim sup Z(ank — ag)zy < limsup Z |ank — ag||ze| + lim sup Z(ank —ap) Ty,

n

k " keE kZE
+limsup[— Y~ (ank — ax) "2k
" kZE

= I(z) + I(x) + I3(x).
From condition (3.1.3), we have I1(z) = 0. Let € > 0, then there is a set F as defined
above such that for k ¢ FE,

(3.1.5) afr) —e<zp < B(x)+e B(—z) —e < —zp < a(—z) + €
Therefore from conditions (3.1.2) and (3.1.5) and Lemma 1 of Das [4]], we get
A+ s
I(w) < ZHEED (5() ¢
A— s
Lz) < %(a(—@ +e).
Hence we get
A+ A— s
lim sup Z(a”k —ag)zg < wmx) + Wa(—x) + Ae,
" k
A+ s A— s
< X(CE)y( t)ﬂ(m) n X(CE):( t)a(_x)’

- 2 2

since € was arbitrary. This completes the proof of the theorem.

Theorem 3.2. Let A be (C'E)1(st)-conservative. Then, for some constant X > | (c gy, (st)|
and forall x € |,
(3.2.1)

(CE)1(st)-limsup Z(ank —ag)zg <
" k

AT XCEN) p oy - AT XCEREH
2 2

if and only if

(3.2.2) (CE)i(st)-limsup ¥ _[ank — ax| < A.
" k

Proof. Necessity. If we define the matrix B = () by bpr = ank — oy, for all n, k,

then, since A is (C'E);(st)-conservative, the matrix B satisfies the hypothesis of Lemma
2.3. Hence we have

CE)(st)-limsu bnk| = (CE)1(st)-limsu by,
(CE)(st)-lim s pzk:\ k| = (CE)1(st)-lims sz: kYK
)‘+XCE15 >‘7XCE s
< (2 )(t)L(y)f (2 )1( t)l(y)
)‘+XCE s )‘_XCE s
< ( )1(t)_|_ (CE)1(st) ||yH
2 2
<A

since ||y|| < 1.
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Sufficiency. As in Theorem 3.1, for some kg € N(k > kg), we can write
Z(ank —ag)zy = Z (ank — ag)zk + Z (Gnk — ar)Top — Z (ank — ag)” .
k k<ko k> ko k> ko

Since for any € > 0, l(z) — e <z, < L(x) + €; and A is (CE);(st)-conservative, we get
by Lemma 2.4 that

)\ s )\ - S
v(st)-limsup Z(ank—ak)xk < (L(x)+e) (W)—(l(m)—e) (MgE)l(t))
" k

A+ s A—
= 2B p gy ATXOERG)
which gives (3.2.1), since € was arbitrary.

I(x) + e,

Theorem 3.3. Let A be (C'E)y(st)-conservative. Then, for some constant X > |X(c k), (st)]
and forall x € |,

(3.3.1) H(st)-limsup Z(ank —ap) <
" k
if and only if (3.2.2) holds and

(3.3.2) (CE)l(st)—li};n Z(a"k —a)=0
keE

A+ X(CE):(st)

A— s
’ X(CE):( t)a(_x)

Bl) + 2

forevery E C Nwith6(E) = 0.

Proof. Necessity. Let (3.3.1) hold. Since f(z) < L(z) and —a(z) < —Ii(z), (3.2.2)
follows from Theorem 3.2. Now let us show the necessity of (3.3.2). For any £ C N with
J(E) = 0, let us define a matrix B = (b,;) by the following

b ang — oy fork € E,
" =\ 0 otherwise.

Then, it is clear that B satisfies the conditions of Lemma 2.3 and hence there exists a
Y € loo such that ||y|| < 1 and

(CE)(st)-limsup Z bniyr = (CE)1(st)-limsup Z |brk]-
" k " k
Let us define the sequence y = (y) by

| 1forkeE,
Y=\ Ofork ¢ E.

Using the fact that (CE);(st)-limy = (y) = a(y) = 0 and (2.3.1), we get

A = X(CE)1(st)
2

A+ X(CE)(st) By

(CE):(st)-limsup Z |ank—ag|zr < 5

n keE
and hence we get (3.3.2).

)+ a(-y) =0,

Sufficiency. Let (3.2.2) and (3.3.2) hold and = € [,. As in Theorem 3.1, we can write

Z(ank —ag)Tk = Z(ank — ag)zg + Z(ank —ag)twg — Z(ank —ag)” T

k kEE k¢E k¢E
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Using Lemma 2.4 and Lemma 2.2 for (C'E); (st)-conservativeness of A, we have

< At XEeBney 5

; A—x X
(CE)s(st)-lim sup zk:(ank —ay) < : AT X@BEL G

() + —XC

(—x) 4+ Ae.

But € was arbitrary, so (3.3.1) holds.
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