ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 3, Number 1 (2020), 1-6 ISSN: 2582-0818 © http://www.technoskypub.com

SOME INEQUALITIES FOR STATISTICAL (C,1)(H,1)-SUMMABILITY

M. MURSALEEN

ABSTRACT. The concept of statistical summability C, 1)(H, 1) has recently been introduced by [8]. In this paper we establish some inequalities related to concept of statistical summability (C, 1)(H, 1).

1. INTRODUCTION

There are several generalizations of usual convergence and the notion of statistical convergence is one of them which was introduced by Fast [5] (see also [6]).

The *natural density* δ of $E \subseteq \mathbb{N}$ is defined by $\delta(E) = \lim_{n \to \infty} \frac{1}{n} |\{k \leq n : k \in E\}|$, where \mathbb{N} is the set of all natural numbers, and the vertical bars indicate the number of elements in the enclosed set. The sequence $x = (x_k)$ is said to be *statistically convergent* to L if for every $\epsilon > 0$, $\delta(\{k : |x_k - L| \ge \epsilon\}) = 0$.

Recently, Acar and Mohiuddine [8] has defined the concept of statistical summability (C, 1)(E, 1) as follows:

Definition 1.1. Let us write $\tau_n := \frac{1}{n+1} \sum_{k=0}^n \frac{1}{2^k} \sum_{r=0}^k \binom{k}{r} x_r$ for a sequence $x = (x_k)$. We say that a sequence $x = (x_k)$ is said to be *statistically summable* (C, 1)(E, 1) to the number L if the sequence $\tau = (\tau_n)$ is statistically convergent to L, i.e. $st - \lim \tau = L = (CE)_1(st)$ -lim x. We denote by $(CE)_1(st)$ the set of all sequences which are statistically summable (C, 1)(E, 1) and we also call such sequences as statistically (C, 1)(E, 1)-summable sequences. Further, we write $(CE)_1(st)_{\infty}$ for $(CE)_1(st) \cap l_{\infty}$.

Let l_{∞} and c be the Banach spaces of bounded and convergent sequences of real numbers with the usual supremum norm. Let $A = (a_{nk}), n, k \in \mathbb{N}$, be an infinite matrix of real numbers, and let $x = (x_k)$ be a sequence of real numbers. We write $Ax = (A_n(x))$ if $A_n = \sum_k a_{nk} x_k$ converges for each n. Let X and Y be any two sequence spaces. If $x \in X$ implies $Ax \in Y$, then we say that the matrix A maps X into Y. We denote the class of all matrices A which map X into Y by (X, Y). If X and Y are equipped with X-lim and Y-lim, $A \in (X, Y)$ and Y-lim Ax = X-lim x for all $x \in X$, then we write $A \in (X, Y)_{reg}$.

²⁰¹⁰ Mathematics Subject Classification. 41A10, 41A25, 41A36, 40A05, 40A30.

Key words and phrases. Natural density; statistical convergence; statistical summability (C,1)(H,1). Received: November 16, 2019. Accepted: March 16, 2020.

M. MURSALEEN

In this paper we define $(CE)_1(st)$ -conservative matrices and prove some inequalities related to the concepts of $(CE)_1(st)$ -conservative matrices which are natural analogues of $(c, st \cap l_{\infty})$ -matrices (see Kolk [7]). Such type of inequalities are also considered by Çoşkun and [3], Çakan and Altay [1], and Çakan et al [2].

2. Lemmas

We shall need the following lemmas in establishing our results.

Lemma 2.1. $A \in (c, c)$, that is, A is conservative if and only if (i) $||A|| = \sup_{n} \sum_{k} |a_{nk}| < \infty$, (ii) $a_k = \lim_{n} a_{nk}$, for each k, (iii) $a = \lim_{n} \sum_{k} a_{nk}$. If A is conservative, the number $\chi = \chi(A) = a - \sum_{k} a_k$ is called the characteristic of A. A is said to be regular if and only if (i), (ii) with $a_k = 0$ for all k; and (iii) with a = 1

hold.

The following lemma is an analogue of the above lemma and a consequence of Theorem 1 of Kolk [7].

Lemma 2.2. $A \in (c, (CE)_1(st)_\infty)$ if and only if (i) $\sup_{n} \sum_{k} |a_{nk}| < \infty$, (ii) $(CE)_1(st)$ -lim $a_{nk} = \alpha_k$ for every k, and (iii) $(CE)_1(st)$ -lim $\sum_{k} a_{nk} = \alpha$.

We call such matrices as $(CE)_1(st)$ -conservative matrices, and in this case

$$\chi_{(CE)_1(st)} = \alpha - \sum_k \alpha_k$$

is defined which is known as the $(CE)_1(st)$ -characteristic of A. This number is analogous to the number χ_{st} defined by Çoşkun and Çakan [3].

The following lemma is $(CE)_1(st)$ -analogue of a result of Çoşkun and Çakan [3].

Lemma 2.3. Let $||A|| < \infty$ and $(CE)_1(st) - \lim_n |a_{nk}| = 0$. Then there exists a $y \in l_\infty$ such that $||y|| \leq 1$ and

$$(CE)_1(st)$$
- $\limsup \sum_k a_{nk}y_k = (CE)_1(st)$ - $\limsup \sum_k |a_{nk}|$.

The following lemma is derived from Lemma 2.3 of Çoşkun and Çakan [3] by replacing st by $(CE)_1(st)$.

Lemma 2.4. Let A be st-conservative and $\lambda > 0$. Then $(CE)_1(st) - \limsup_n \sum_k |a_{nk} - \alpha_k| \le \lambda$ if and only if $(CE)_1(st) - \limsup_n \sum_k (a_{nk} - \alpha_k)^+ \le \frac{\lambda + \chi}{2}$ and $(CE)_1(st) - \limsup_n \sum_k (a_{nk} - \alpha_k)^- \le \frac{\lambda - \chi}{2}$.

3. MAIN RESULTS

In this section we establish some inequalities involving the numbers $\chi_{(CE)_1(st)}$, $(CE)_1(st)$ lim sup x, $\alpha(x) = (CE)_1(st)$ -lim inf x, lim sup x, and lim inf x.

Theorem 3.1. Let A be conservative and $x \in l_{\infty}$. Then

(3.1.1)
$$\limsup_{n} \sum_{k} (a_{nk} - a_k) x_k \le \frac{\lambda + \chi_{(CE)_1(st)}}{2} \beta(x) + \frac{\lambda - \chi_{(CE)_1(st)}}{2} \alpha(-x)$$

for some constant $\lambda \geq |\chi_{(CE)_1(st)}|$, if and only if

(3.1.2)
$$\limsup_{n} \sum_{k} |a_{nk} - a_{k}| \le \lambda,$$

(3.1.3)
$$\lim_{n} \sum_{k \in E} |a_{nk} - a_k| = 0$$

for every $E \subseteq \mathbb{N}$ with $\delta(E) = 0$, where $\beta(x) = (CE)_1(st)$ -lim sup x and $\alpha(x) = (CE)_1(st)$ -lim inf x.

Proof. Necessity. Let $L(x) = \limsup x$ and $l(x) = \liminf x$. Since $\beta(x) \le L(x)$ and $\alpha(-x) \le \overline{-l(x)}$ for all $x \in l_{\infty}$, we have

$$\limsup_{n} \sum_{k} (a_{nk} - a_k) x_k \le \frac{\lambda + \chi_{(CE)_1(st)}}{2} L(x) - \frac{\lambda - \chi_{(CE)_1(st)}}{2} l(x),$$

and the necessity of (3.1.2) follows from Theorem 1 of Das [4]. Define the matrix $B = (b_{nk})$ by

$$b_{nk} = \begin{cases} a_{nk} - a_k \text{ for } k \in E, \\ 0 \text{ otherwise.} \end{cases}$$

Since A is conservative, using Lemma 2.1, the matrix B satisfies the conditions of Corollary 12 of Simons [9]. Hence there exists a $y \in l_{\infty}$ such that $||y|| \leq 1$ and

(3.1.4)
$$\limsup_{n} \sum_{k} |b_{nk}| = \limsup_{n} \sum_{k} b_{nk} y_k.$$

Now, let $y = (y_k)$ be defined by

$$y_k = \begin{cases} 1 \text{ for } k \in E, \\ 0 \text{ for } k \notin E. \end{cases}$$

So that, $(CE)_1(st)$ -lim $y = \beta(y) = \alpha(y) = 0$; and by (3.1.1) and (3.1.4) we have

$$\limsup_{n} \sum_{k \in E} |a_{nk} - a_k| \le \frac{\lambda + \chi_{(CE)_1(st)}}{2} \beta(y) + \frac{\lambda - \chi_{(CE)_1(st)}}{2} \alpha(-y) = 0$$

and we get (3.1.3).

Sufficiency. Let $x \in l_{\infty}$. Write $E_1 = \{k : x_k > \beta(x) + \epsilon\}$ and $E_2 = \{k : x_k < \alpha(\overline{x) - \epsilon}\}$. Then we have $\delta(E_1) = \delta(E_2) = 0$; and hence $\delta(E) = 0$ for $E = E_1 \cap E_2$. We can write

$$\sum_{k} (a_{nk} - a_k) x_k = \sum_{k \in E} (a_{nk} - a_k) x_k + \sum_{k \notin E} (a_{nk} - a_k)^+ x_k - \sum_{k \notin E} (a_{nk} - a_k)^- x_k,$$

where $\lambda^+ = \max\{0, \lambda\}, \lambda^- = \max\{-\lambda, 0\}$. Hence

$$\limsup_{n} \sum_{k} (a_{nk} - a_{k}) x_{k} \leq \limsup_{n} \sum_{k \in E} |a_{nk} - a_{k}| |x_{k}| + \limsup_{n} \sum_{k \notin E} (a_{nk} - a_{k})^{+} x_{k}$$
$$+ \limsup_{n} [-\sum_{k \notin E} (a_{nk} - a_{k})^{-} x_{k}]$$
$$= I_{1}(x) + I_{2}(x) + I_{3}(x).$$

From condition (3.1.3), we have $I_1(x) = 0$. Let $\epsilon > 0$, then there is a set E as defined above such that for $k \notin E$,

(3.1.5)
$$\alpha(x) - \epsilon < x_k < \beta(x) + \epsilon, \ \beta(-x) - \epsilon < -x_k < \alpha(-x) + \epsilon.$$

Therefore from conditions (3.1.2) and (3.1.5) and Lemma 1 of Das [4], we get

$$I_2(x) \le \frac{\lambda + \chi_{(CE)_1(st)}}{2} (\beta(x) + \epsilon)$$

$$I_3(x) \le \frac{\lambda - \chi_{(CE)_1(st)}}{2} (\alpha(-x) + \epsilon).$$

Hence we get

$$\limsup_{n} \sum_{k} (a_{nk} - a_k) x_k \leq \frac{\lambda + \chi_{(CE)_1(st)}}{2} \beta(x) + \frac{\lambda - \chi_{(CE)_1(st)}}{2} \alpha(-x) + \lambda \epsilon,$$
$$\leq \frac{\lambda + \chi_{(CE)_1(st)}}{2} \beta(x) + \frac{\lambda - \chi_{(CE)_1(st)}}{2} \alpha(-x),$$

since ϵ was arbitrary. This completes the proof of the theorem.

Theorem 3.2. Let A be $(CE)_1(st)$ -conservative. Then, for some constant $\lambda \ge |\chi_{(CE)_1(st)}|$ and for all $x \in l_{\infty}$, (3.2.1)

$$(CE)_1(st) - \limsup_n \sum_k (a_{nk} - \alpha_k) x_k \le \frac{\lambda + \chi_{(CE)_1(st)}}{2} L(x) - \frac{\lambda - \chi_{(CE)_1(st)}}{2} l(x)$$

if and only if

(3.2.2)
$$(CE)_1(st) - \limsup_n \sum_k |a_{nk} - \alpha_k| \le \lambda.$$

Proof. Necessity. If we define the matrix $B = (b_{nk})$ by $b_{nk} = a_{nk} - \alpha_k$ for all n, k, then, since \overline{A} is $(\overline{CE})_1(st)$ -conservative, the matrix B satisfies the hypothesis of Lemma 2.3. Hence we have

$$(CE)_{1}(st) - \limsup_{n} \sum_{k} |b_{nk}| = (CE)_{1}(st) - \limsup_{n} \sum_{k} b_{nk}y_{k}$$

$$\leq \frac{\lambda + \chi_{(CE)_{1}(st)}}{2}L(y) - \frac{\lambda - \chi_{(CE)_{1}(st)}}{2}l(y)$$

$$\leq \left(\frac{\lambda + \chi_{(CE)_{1}(st)}}{2} + \frac{\lambda - \chi_{(CE)_{1}(st)}}{2}\right)||y||$$

$$\leq \lambda,$$

since $||y|| \leq 1$.

Sufficiency. As in Theorem 3.1, for some $k_0 \in \mathbb{N}(k > k_0)$, we can write

$$\sum_{k} (a_{nk} - a_k) x_k = \sum_{k \le k_0} (a_{nk} - a_k) x_k + \sum_{k > k_0} (a_{nk} - a_k)^+ x_k - \sum_{k > k_0} (a_{nk} - a_k)^- x_k.$$

Since for any $\epsilon > 0$, $l(x) - \epsilon < x_k < L(x) + \epsilon$; and A is $(CE)_1(st)$ -conservative, we get by Lemma 2.4 that

$$v(st)-\limsup_{n} \sum_{k} (a_{nk}-\alpha_k) x_k \le (L(x)+\epsilon) \left(\frac{\lambda+\chi_{(CE)_1(st)}}{2}\right) - (l(x)-\epsilon) \left(\frac{\lambda-\chi_{(CE)_1(st)}}{2}\right)$$
$$= \frac{\lambda+\chi_{(CE)_1(st)}}{2} L(x) - \frac{\lambda-\chi_{(CE)_1(st)}}{2} l(x) + \lambda\epsilon,$$

which gives (3.2.1), since ϵ was arbitrary.

Theorem 3.3. Let A be $(CE)_1(st)$ -conservative. Then, for some constant $\lambda \ge |\chi_{(CE)_1(st)}|$ and for all $x \in l_{\infty}$,

(3.3.1)
$$H(st) - \limsup_{n} \sum_{k} (a_{nk} - \alpha_k) \le \frac{\lambda + \chi_{(CE)_1(st)}}{2} \beta(x) + \frac{\lambda - \chi_{(CE)_1(st)}}{2} \alpha(-x)$$

if and only if (3.2.2) holds and

(3.3.2)
$$(CE)_1(st) - \lim_n \sum_{k \in E} (a_{nk} - \alpha_k) = 0$$

for every $E \subseteq \mathbb{N}$ with $\delta(E) = 0$.

Proof. Necessity. Let (3.3.1) hold. Since $\beta(x) \leq L(x)$ and $-\alpha(x) \leq -l(x)$, (3.2.2) follows from Theorem 3.2. Now let us show the necessity of (3.3.2). For any $E \subseteq \mathbb{N}$ with $\delta(E) = 0$, let us define a matrix $B = (b_{nk})$ by the following

$$b_{nk} = \begin{cases} a_{nk} - \alpha_k \text{ for } k \in E, \\ 0 \text{ otherwise.} \end{cases}$$

Then, it is clear that B satisfies the conditions of Lemma 2.3 and hence there exists a $y \in l_{\infty}$ such that $||y|| \le 1$ and

$$(CE)_1(st)-\limsup_n \sum_k b_{nk} y_k = (CE)_1(st)-\limsup_n \sum_k |b_{nk}|$$

Let us define the sequence $y = (y_k)$ by

$$y_k = \begin{cases} 1 \text{ for } k \in E, \\ 0 \text{ for } k \notin E. \end{cases}$$

Using the fact that $(CE)_1(st)$ -lim $y = \beta(y) = \alpha(y) = 0$ and (2.3.1), we get

$$(CE)_1(st)-\limsup_n \sum_{k \in E} |a_{nk} - \alpha_k| x_k \le \frac{\lambda + \chi_{(CE)_1(st)}}{2} \beta(y) + \frac{\lambda - \chi_{(CE)_1(st)}}{2} \alpha(-y) = 0,$$
 and hence we get (3.3.2).

Sufficiency. Let (3.2.2) and (3.3.2) hold and $x \in l_{\infty}$. As in Theorem 3.1, we can write

$$\sum_{k} (a_{nk} - \alpha_k) x_k = \sum_{k \in E} (a_{nk} - \alpha_k) x_k + \sum_{k \notin E} (a_{nk} - \alpha_k)^+ x_k - \sum_{k \notin E} (a_{nk} - \alpha_k)^- x_k.$$

M. MURSALEEN

Using Lemma 2.4 and Lemma 2.2 for $(CE)_1(st)$ -conservativeness of A, we have

$$(CE)_1(st) - \limsup_n \sum_k (a_{nk} - \alpha_k) \le \frac{\lambda + \chi_{(CE)_1(st)}}{2} \beta(x) + \frac{\lambda - \chi_{(CE)_1(st)}}{2} \alpha(-x) + \lambda \epsilon.$$

But ϵ was arbitrary, so (3.3.1) holds.

REFERENCES

- C. Çakan and B. Altay, A class of conservative four dimentional matrices, J. Ineq. Appl., 2006, Article ID 14721, pages 1-8.
- [2] C. Çakan, B. Altay and H. Çoşkun, Double lacunary density and lacunary statistical convergence of double sequences, Studia Sci. Math. Hung., doi: 10.1556/SScMath.2009.1110.
- [3] Çoşkun and C.Çakan, A class of statistical and σ-conservative matrices, Czech. Math. J., 55(103),(2005) 791-801.
- [4] G. Das, Sublinear functional and a class of conservative matrices, Bull. Inst. Math. Acad. Sinica, 15(1987) 89-106.
- [5] H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951) 241-244.
- [6] J. A. Fridy, On statistical convergence, Analysis, 5(1985) 301-313.
- [7] E. Kolk., Matrix maps into the space of statistically convergent bounded sequences, Proc. Estonian Acad. Sci. Phys. Math., 45(1996) 187–192.
- [8] T. Acar and S.A. Mohiuddine, Statistical (C, 1)(E, 1) summability and Korovkin's theorem, Filomat, 30(2) (2016), 387–393.
- [9] S. Simons, Banach limits infinite matrices and sublinear functionals, J. Math. Anal. Appl., 26(1969) 640-655.

M. MURSALEEN

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH, 202002, INDIA *Email address*: mursaleenm@gmail.com