

SOME INEQUALITIES FOR STATISTICAL (C,1)(H,1)-SUMMABILITY

M. MURSALEEN

Abstract

The concept of statistical summability $C, 1)(H, 1)$ has recently been introduced by [8]. In this paper we establish some inequalities related to concept of statistical summability $(C, 1)(H, 1)$.

1. Introduction

There are several generalizations of usual convergence and the notion of statistical convergence is one of them which was introduced by Fast [5] (see also [6]).

The natural density δ of $E \subseteq \mathbb{N}$ is defined by $\delta(E)=\lim _{n} \frac{1}{n}|\{k \leq n: k \in E\}|$, where \mathbb{N} is the set of all natural numbers, and the vertical bars indicate the number of elements in the enclosed set. The sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to L if for every $\epsilon>0, \delta\left(\left\{k:\left|x_{k}-L\right| \geq \epsilon\right\}\right)=0$.

Recently, Acar and Mohiuddine [8] has defined the concept of statistical summability $(C, 1)(E, 1)$ as follows:

Definition 1.1. Let us write $\tau_{n}:=\frac{1}{n+1} \sum_{k=0}^{n} \frac{1}{2^{k}} \sum_{r=0}^{k}\binom{k}{r} x_{r}$ for a sequence $x=\left(x_{k}\right)$. We say that a sequence $x=\left(x_{k}\right)$ is said to be statistically summable $(C, 1)(E, 1)$ to the number L if the sequence $\tau=\left(\tau_{n}\right)$ is statistically convergent to L, i.e. st $-\lim \tau=L=$ $(C E)_{1}(s t)-\lim x$. We denote by $(C E)_{1}(s t)$ the set of all sequences which are statistically summable $(C, 1)(E, 1)$ and we also call such sequences as statistically $(C, 1)(E, 1)$ summable sequences. Further, we write $(C E)_{1}(s t)_{\infty}$ for $(C E)_{1}(s t) \cap l_{\infty}$.

Let l_{∞} and c be the Banach spaces of bounded and convergent sequences of real numbers with the usual supremum norm. Let $A=\left(a_{n k}\right), n, k \in \mathbb{N}$, be an infinite matrix of real numbers, and let $x=\left(x_{k}\right)$ be a sequence of real numbers. We write $A x=\left(A_{n}(x)\right)$ if $A_{n}=\sum_{k} a_{n k} x_{k}$ converges for each n. Let X and Y be any two sequence spaces. If $x \in X$ implies $A x \in Y$, then we say that the matrix A maps X into Y. We denote the class of all matrices A which map X into Y by (X, Y). If X and Y are equipped with $X-\lim$ and $Y-\lim , A \in(X, Y)$ and $Y-\lim A x=X-\lim x$ for all $x \in X$, then we write $A \in(X, Y)_{\text {reg }}$.

[^0]In this paper we define $(C E)_{1}(s t)$-conservative matrices and prove some inequalities related to the concepts of $(C E)_{1}(s t)$-conservative matrices which are natural analogues of $\left(c, s t \cap l_{\infty}\right)$-matrices (see Kolk [7]). Such type of inequalities are also considered by Çoşkun and [3], Çakan and Altay [1], and Çakan et al [2].

2. LEMMAS

We shall need the following lemmas in establishing our results.
Lemma 2.1. $A \in(c, c)$, that is, A is conservative if and only if
(i) $\|A\|=\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty$,
(ii) $a_{k}=\lim _{n} a_{n k}$, for each k,
(iii) $a=\lim _{n} \sum_{k} a_{n k}$.

If A is conservative, the number $\chi=\chi(A)=a-\sum_{k} a_{k}$ is called the characteristic of
A. A is said to be regular if and only if $(i),(i i)$ with $a_{k}=0$ for all k; and ($(i i i)$ with $a=1$ hold.

The following lemma is an analogue of the above lemma and a consequence of Theorem 1 of Kolk [7].

Lemma 2.2. $A \in\left(c,(C E)_{1}(s t)_{\infty}\right)$ if and only if
(i) $\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty$,
(ii) $(C E)_{1}(s t)-\lim _{n} a_{n k}=\alpha_{k}$ for every k, and
(iii) $(C E)_{1}(s t)-\lim _{n}^{n} \sum_{k} a_{n k}=\alpha$.

We call such matrices as $(C E)_{1}(s t)$-conservative matrices, and in this case

$$
\chi_{(C E)_{1}(s t)}=\alpha-\sum_{k} \alpha_{k}
$$

is defined which is known as the $(C E)_{1}(s t)$-characteristic of A. This number is analogous to the number $\chi_{s t}$ defined by Çoşkun and Çakan [3].

The following lemma is $(C E)_{1}(s t)$-analogue of a result of Çoşkun and Çakan [3].
Lemma 2.3. Let $\|A\|<\infty$ and $(C E)_{1}(s t)-\lim _{n}\left|a_{n k}\right|=0$. Then there exists a $y \in l_{\infty}$ such that $\|y\| \leq 1$ and

$$
(C E)_{1}(s t)-\lim \sup \sum_{k} a_{n k} y_{k}=(C E)_{1}(s t)-\lim \sup \sum_{k}\left|a_{n k}\right|
$$

The following lemma is derived from Lemma 2.3 of Çoşkun and Çakan [3] by replacing st by $(C E)_{1}(s t)$.

Lemma 2.4. Let A be st-conservative and $\lambda>0$. Then $(C E)_{1}(s t)-\limsup \sum_{n} \mid a_{n k}-$ $\alpha_{k} \mid \leq \lambda$ if and only if $(C E)_{1}(s t)-\lim \sup _{n} \sum_{k}\left(a_{n k}-\alpha_{k}\right)^{+} \leq \frac{\lambda+\chi}{2}$ and $(C E)_{1}(s t)-$ $\limsup \sum_{k}\left(a_{n k}-\alpha_{k}\right)^{-} \leq \frac{\lambda-\chi}{2}$.

3. Main results

In this section we establish some inequalities involving the numbers $\chi_{(C E)_{1}(s t)},(C E)_{1}(s t)-$ $\limsup x, \alpha(x)=(C E)_{1}(s t)-\lim \inf x, \lim \sup x$, and $\liminf x$.

Theorem 3.1. Let A be conservative and $x \in l_{\infty}$. Then

$$
\begin{equation*}
\limsup _{n} \sum_{k}\left(a_{n k}-a_{k}\right) x_{k} \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} \beta(x)+\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} \alpha(-x) \tag{3.1.1}
\end{equation*}
$$

for some constant $\lambda \geq\left|\chi_{(C E)_{1}(s t)}\right|$, if and only if

$$
\begin{align*}
\limsup _{n} \sum_{k}\left|a_{n k}-a_{k}\right| & \leq \lambda, \tag{3.1.2}\\
\lim _{n} \sum_{k \in E}\left|a_{n k}-a_{k}\right| & =0 \tag{3.1.3}
\end{align*}
$$

for every $E \subseteq \mathbb{N}$ with $\delta(E)=0$, where $\beta(x)=(C E)_{1}(s t)-\lim \sup x$ and $\alpha(x)=$ $(C E)_{1}(s t)-\lim \inf x$.

Proof. Necessity. Let $L(x)=\lim \sup x$ and $l(x)=\lim \inf x$. Since $\beta(x) \leq L(x)$ and $\alpha(-x) \leq \overline{-l(x) \text { for all } x \in l_{\infty} \text {, we have }}$

$$
\limsup _{n} \sum_{k}\left(a_{n k}-a_{k}\right) x_{k} \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} L(x)-\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} l(x)
$$

and the necessity of (3.1.2) follows from Theorem 1 of Das [4]. Define the matrix $B=$ $\left(b_{n k}\right)$ by

$$
b_{n k}=\left\{\begin{array}{l}
a_{n k}-a_{k} \text { for } k \in E \\
0 \text { otherwise }
\end{array}\right.
$$

Since A is conservative, using Lemma 2.1, the matrix B satisfies the conditions of Corollary 12 of Simons [9]. Hence there exists a $y \in l_{\infty}$ such that $\|y\| \leq 1$ and

$$
\begin{equation*}
\limsup _{n} \sum_{k}\left|b_{n k}\right|=\limsup \sum_{n} b_{n k} y_{k} \tag{3.1.4}
\end{equation*}
$$

Now, let $y=\left(y_{k}\right)$ be defined by

$$
y_{k}=\left\{\begin{array}{l}
1 \text { for } k \in E \\
0 \text { for } k \notin E
\end{array}\right.
$$

So that, $(C E)_{1}(s t)-\lim y=\beta(y)=\alpha(y)=0$; and by (3.1.1) and (3.1.4) we have

$$
\limsup _{n} \sum_{k \in E}\left|a_{n k}-a_{k}\right| \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} \beta(y)+\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} \alpha(-y)=0
$$

and we get (3.1.3).
Sufficiency. Let $x \in l_{\infty}$. Write $E_{1}=\left\{k: x_{k}>\beta(x)+\epsilon\right\}$ and $E_{2}=\left\{k: x_{k}<\right.$ $\alpha\left(\overline{x)-\epsilon\}}\right.$. Then we have $\delta\left(E_{1}\right)=\delta\left(E_{2}\right)=0$; and hence $\delta(E)=0$ for $E=E_{1} \cap E_{2}$. We can write

$$
\sum_{k}\left(a_{n k}-a_{k}\right) x_{k}=\sum_{k \in E}\left(a_{n k}-a_{k}\right) x_{k}+\sum_{k \notin E}\left(a_{n k}-a_{k}\right)^{+} x_{k}-\sum_{k \notin E}\left(a_{n k}-a_{k}\right)^{-} x_{k},
$$

where $\lambda^{+}=\max \{0, \lambda\}, \lambda^{-}=\max \{-\lambda, 0\}$. Hence

$$
\begin{gathered}
\limsup _{n} \sum_{k}\left(a_{n k}-a_{k}\right) x_{k} \leq \limsup _{n} \sum_{k \in E}\left|a_{n k}-a_{k}\right|\left|x_{k}\right|+\limsup _{n} \sum_{k \notin E}\left(a_{n k}-a_{k}\right)^{+} x_{k} \\
+\limsup _{n}\left[-\sum_{k \notin E}\left(a_{n k}-a_{k}\right)^{-} x_{k}\right] \\
=I_{1}(x)+I_{2}(x)+I_{3}(x)
\end{gathered}
$$

From condition (3.1.3), we have $I_{1}(x)=0$. Let $\epsilon>0$, then there is a set E as defined above such that for $k \notin E$,

$$
\begin{equation*}
\alpha(x)-\epsilon<x_{k}<\beta(x)+\epsilon, \beta(-x)-\epsilon<-x_{k}<\alpha(-x)+\epsilon . \tag{3.1.5}
\end{equation*}
$$

Therefore from conditions (3.1.2) and (3.1.5) and Lemma 1 of Das [4], we get

$$
\begin{gathered}
I_{2}(x) \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2}(\beta(x)+\epsilon) \\
I_{3}(x) \leq \frac{\lambda-\chi_{(C E)_{1}(s t)}}{2}(\alpha(-x)+\epsilon)
\end{gathered}
$$

Hence we get

$$
\begin{gathered}
\limsup _{n} \sum_{k}\left(a_{n k}-a_{k}\right) x_{k} \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} \beta(x)+\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} \alpha(-x)+\lambda \epsilon, \\
\leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} \beta(x)+\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} \alpha(-x)
\end{gathered}
$$

since ϵ was arbitrary. This completes the proof of the theorem.

Theorem 3.2. Let A be $(C E)_{1}(s t)$-conservative. Then, for some constant $\lambda \geq\left|\chi_{(C E)_{1}(s t)}\right|$ and for all $x \in l_{\infty}$,

$$
\begin{equation*}
(C E)_{1}(s t)-\limsup _{n} \sum_{k}\left(a_{n k}-\alpha_{k}\right) x_{k} \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} L(x)-\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} l(x) \tag{3.2.1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
(C E)_{1}(s t)-\limsup _{n} \sum_{k}\left|a_{n k}-\alpha_{k}\right| \leq \lambda \tag{3.2.2}
\end{equation*}
$$

Proof. Necessity. If we define the matrix $B=\left(b_{n k}\right)$ by $b_{n k}=a_{n k}-\alpha_{k}$ for all n, k, then, since \bar{A} is $(C E)_{1}(s t)$-conservative, the matrix B satisfies the hypothesis of Lemma 2.3. Hence we have

$$
\begin{gathered}
(C E)_{1}(s t)-\limsup _{n} \sum_{k}\left|b_{n k}\right|=(C E)_{1}(s t)-\limsup _{n} \sum_{k} b_{n k} y_{k} \\
\leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} L(y)-\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} l(y) \\
\leq\left(\frac{\lambda+\chi_{(C E)_{1}(s t)}}{2}+\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2}\right)\|y\| \\
\leq \lambda
\end{gathered}
$$

since $\|y\| \leq 1$.

Sufficiency. As in Theorem 3.1, for some $k_{0} \in \mathbb{N}\left(k>k_{0}\right)$, we can write

$$
\sum_{k}\left(a_{n k}-a_{k}\right) x_{k}=\sum_{k \leq k_{0}}\left(a_{n k}-a_{k}\right) x_{k}+\sum_{k>k_{0}}\left(a_{n k}-a_{k}\right)^{+} x_{k}-\sum_{k>k_{0}}\left(a_{n k}-a_{k}\right)^{-} x_{k} .
$$

Since for any $\epsilon>0, l(x)-\epsilon<x_{k}<L(x)+\epsilon$; and A is $(C E)_{1}(s t)$-conservative, we get by Lemma 2.4 that

$$
\begin{gathered}
v(s t)-\lim \sup _{n} \sum_{k}\left(a_{n k}-\alpha_{k}\right) x_{k} \leq(L(x)+\epsilon)\left(\frac{\lambda+\chi_{(C E)_{1}(s t)}}{2}\right)-(l(x)-\epsilon)\left(\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2}\right) \\
=\frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} L(x)-\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} l(x)+\lambda \epsilon
\end{gathered}
$$

which gives (3.2.1), since ϵ was arbitrary.

Theorem 3.3. Let A be $(C E)_{1}(s t)$-conservative. Then, for some constant $\lambda \geq\left|\chi_{(C E)_{1}(s t)}\right|$ and for all $x \in l_{\infty}$,

$$
\begin{equation*}
H(s t)-\limsup \sum_{n}\left(a_{n k}-\alpha_{k}\right) \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} \beta(x)+\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} \alpha(-x) \tag{3.3.1}
\end{equation*}
$$

if and only if (3.2.2) holds and

$$
\begin{equation*}
(C E)_{1}(s t)-\lim _{n} \sum_{k \in E}\left(a_{n k}-\alpha_{k}\right)=0 \tag{3.3.2}
\end{equation*}
$$

for every $E \subseteq \mathbb{N}$ with $\delta(E)=0$.

Proof. Necessity. Let (3.3.1) hold. Since $\beta(x) \leq L(x)$ and $-\alpha(x) \leq-l(x)$, (3.2.2) follows from Theorem 3.2. Now let us show the necessity of (3.3.2). For any $E \subseteq \mathbb{N}$ with $\delta(E)=0$, let us define a matrix $B=\left(b_{n k}\right)$ by the following

$$
b_{n k}=\left\{\begin{array}{l}
a_{n k}-\alpha_{k} \text { for } k \in E \\
0 \text { otherwise }
\end{array}\right.
$$

Then, it is clear that B satisfies the conditions of Lemma 2.3 and hence there exists a $y \in l_{\infty}$ such that $\|y\| \leq 1$ and

$$
(C E)_{1}(s t)-\lim \sup _{n} \sum_{k} b_{n k} y_{k}=(C E)_{1}(s t)-\limsup _{n} \sum_{k}\left|b_{n k}\right|
$$

Let us define the sequence $y=\left(y_{k}\right)$ by

$$
y_{k}=\left\{\begin{array}{l}
1 \text { for } k \in E \\
0 \text { for } k \notin E
\end{array}\right.
$$

Using the fact that $(C E)_{1}(s t)-\lim y=\beta(y)=\alpha(y)=0$ and (2.3.1), we get
$(C E)_{1}(s t)-\lim _{n} \sup _{k \in E} \sum_{k \in}\left|a_{n k}-\alpha_{k}\right| x_{k} \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} \beta(y)+\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} \alpha(-y)=0$,
and hence we get (3.3.2).
Sufficiency. Let (3.2.2) and (3.3.2) hold and $x \in l_{\infty}$. As in Theorem 3.1, we can write

$$
\sum_{k}\left(a_{n k}-\alpha_{k}\right) x_{k}=\sum_{k \in E}\left(a_{n k}-\alpha_{k}\right) x_{k}+\sum_{k \notin E}\left(a_{n k}-\alpha_{k}\right)^{+} x_{k}-\sum_{k \notin E}\left(a_{n k}-\alpha_{k}\right)^{-} x_{k}
$$

Using Lemma 2.4 and Lemma 2.2 for $(C E)_{1}(s t)$-conservativeness of A, we have
$(C E)_{1}(s t)-\lim \sup _{n} \sum_{k}\left(a_{n k}-\alpha_{k}\right) \leq \frac{\lambda+\chi_{(C E)_{1}(s t)}}{2} \beta(x)+\frac{\lambda-\chi_{(C E)_{1}(s t)}}{2} \alpha(-x)+\lambda \epsilon$.
But ϵ was arbitrary, so (3.3.1) holds.

REFERENCES

[1] C. Çakan and B. Altay, A class of conservative four dimentional matrices, J. Ineq. Appl., 2006, Article ID 14721, pages 1-8.
[2] C. Çakan, B. Altay and H. Çoşkun, Double lacunary density and lacunary statistical convergence of double sequences, Studia Sci. Math. Hung., doi: 10.1556/SScMath.2009.1110.
[3] Çoşkun and C.Çakan, A class of statistical and σ-conservative matrices, Czech. Math. J., 55(103),(2005) 791-801.
[4] G. Das, Sublinear functional and a class of conservative matrices, Bull. Inst. Math. Acad. Sinica, 15(1987) 89-106.
[5] H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951) 241-244.
[6] J. A. Fridy, On statistical convergence, Analysis, 5(1985) 301-313.
[7] E. Kolk., Matrix maps into the space of statistically convergent bounded sequences, Proc. Estonian Acad. Sci. Phys. Math., 45(1996) 187-192.
[8] T. Acar and S.A. Mohiuddine, Statistical $(C, 1)(E, 1)$ summability and Korovkin's theorem, Filomat, 30(2) (2016), 387-393.
[9] S. Simons, Banach limits infinite matrices and sublinear functionals, J. Math. Anal. Appl., 26(1969) 640655.
M. Mursaleen

Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India
Email address: mursaleenm@gmail.com

[^0]: 2010 Mathematics Subject Classification. 41A10, 41A25, 41A36, 40A05, 40 A30.
 Key words and phrases. Natural density; statistical convergence; statistical summability (C,1)(H,1).
 Received: November 16, 2019. Accepted: March 16, 2020.

