ANNALS OF COMMUNICATIONS IN MATHEMATICS Volume 2, Number 1 (2019), 1-10 ISSN: 2582-0818 © http://www.technoskypub.com

SOME OPERATIONS OF FUZZY SETS IN UP-ALGEBRAS WITH RESPECT TO A TRIANGULAR NORM

SAWITTREE THONGARSA, PAKPIMON BURANDATE AND AIYARED IAMPAN*

ABSTRACT. This paper aim is to apply the notions of the intersection and the union of any fuzzy set to UP-algebras. We investigate properties of the intersection and the union of T-fuzzy UP-subalgebras, T-fuzzy near UP-filters, T-fuzzy UP-filters, T-fuzzy UPideals, T-fuzzy strongly UP-ideals, anti-T-fuzzy UP-subalgebras, and anti-T-fuzzy near UP-filters of UP-algebras.

1. INTRODUCTION AND PRELIMINARIES

The branch of the logical algebra, a UP-algebra was introduced by Iampan [4] in 2017, and it is known that the class of KU-algebras [10] is a proper subclass of the class of UP-algebras. It have been examined by several researchers, for example, Somjanta et al. [16] introduced the notion of fuzzy sets in UP-algebras, the notion of intuitionistic fuzzy sets in UP-algebras was introduced by Kesorn et al. [7], Kaijae et al. [6] introduced the notions of anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras of UP-algebras, the notion of Q-fuzzy sets in UP-algebras was introduced by Tanamoon et al. [19], Sripaeng et al. [18] introduced the notion anti-Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras, the notion of \mathcal{N} -fuzzy sets in UP-algebras was introduced by Songsaeng and Iampan [17], Senapati et al. [14, 15] applied cubic set and interval-valued intuitionistic fuzzy structure in UP-algebras, Romano [11] introduced the notion of proper UP-filters in UP-algebras, etc.

In this paper, we apply the notions of the intersection and the union of any fuzzy set to UP-algebras. We investigate properties of the intersection and the union of T-fuzzy UP-subalgebras, T-fuzzy near UP-filters, T-fuzzy UP-filters, T-fuzzy UP-ideals, T-fuzzy strongly UP-ideals, anti-T-fuzzy UP-subalgebras, and anti-T-fuzzy near UP-filters of UP-algebras.

Before we begin our study, we will introduce the definition of a UP-algebra.

²⁰¹⁰ Mathematics Subject Classification. 03G25.

Key words and phrases. UP-algebra; T-fuzzy UP-subalgebra; T-fuzzy near UP-filter; T-fuzzy UP-filter; T-fuzzy UP-ideal; T-fuzzy strongly UP-ideal.

^{*}Corresponding author.

Definition 1.1. [4] An algebra $X = (X, \cdot, 0)$ of type (2, 0) is called a *UP-algebra* where X is a nonempty set, \cdot is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if it satisfies the following axioms:

(UP-1): $(\forall x, y, z \in X)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0)$, (UP-2): $(\forall x \in X)(0 \cdot x = x)$, (UP-3): $(\forall x \in X)(x \cdot 0 = 0)$, and (UP-4): $(\forall x, y \in X)(x \cdot y = 0, y \cdot x = 0 \Rightarrow x = y)$.

From [4], we know that the notion of UP-algebras is a generalization of KU-algebras (see [10]).

Example 1.2. [13] Let X be a universal set and let $\Omega \in \mathcal{P}(X)$ where $\mathcal{P}(X)$ means the power set of X. Let $\mathcal{P}_{\Omega}(X) = \{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$. Define a binary operation \cdot on $\mathcal{P}_{\Omega}(X)$ by putting $A \cdot B = B \cap (A^C \cup \Omega)$ for all $A, B \in \mathcal{P}_{\Omega}(X)$ where A^C means the complement of a subset A. Then $(\mathcal{P}_{\Omega}(X), \cdot, \Omega)$ is a UP-algebra and we shall call it the *generalized power UP-algebra of type 1 with respect to* Ω . Let $\mathcal{P}^{\Omega}(X) = \{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation * on $\mathcal{P}^{\Omega}(X)$ by putting $A * B = B \cup (A^C \cap \Omega)$ for all $A, B \in \mathcal{P}^{\Omega}(X)$. Then $(\mathcal{P}^{\Omega}(X), *, \Omega)$ is a UP-algebra and we shall call it the *generalized power UP-algebra of type 2 with respect to* Ω . In particular, $(\mathcal{P}(X), \cdot, \emptyset)$ is a UP-algebra and we shall call it the *power UP-algebra of type 1*, and $(\mathcal{P}(X), *, X)$ is a UP-algebra and we shall call it the *power UP-algebra of type 2*.

Example 1.3. [3] Let \mathbb{N} be the set of all natural numbers with two binary operations \circ and \bullet defined by

$$(\forall x, y \in \mathbb{N}) \left(x \circ y = \left\{ \begin{array}{ll} y & \text{if } x < y, \\ 0 & \text{otherwise} \end{array} \right) \right.$$

and

$$(\forall x, y \in \mathbb{N}) \left(x \bullet y = \begin{cases} y & \text{if } x > y \text{ or } x = 0, \\ 0 & \text{otherwise} \end{cases} \right).$$

Then $(\mathbb{N}, \circ, 0)$ and $(\mathbb{N}, \bullet, 0)$ are UP-algebras.

Example 1.4. [17] Let $A = \{0, 1, 2, 3, 4, 5, 6\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0 0 0 0 0 0 0 0 0 0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	0	0	2	3	2	3	6
2	0	1	0	3	1	5	3
3	0	1	2	0	4	1	2
4	0	0	0	3	0	3	3
5	0	0	2	0	2	0	2
6	0	1	0	0	1	1	0

Then $(A, \cdot, 0)$ is a UP-algebra.

For more examples of UP-algebras, see [1, 5, 12, 13].

In a UP-algebra $X = (X, \cdot, 0)$, the following assertions are valid (see [4, 5]).

$$(\forall x \in X)(x \cdot x = 0), \tag{1.1}$$

$$(\forall x, y, z \in X)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0), \tag{1.2}$$

$$(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0), \tag{1.3}$$

$$(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0), \tag{1.4}$$

$$(\forall x, y \in X)(x \cdot (y \cdot x) = 0), \tag{1.5}$$

$$(\forall x, y \in X)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x), \tag{1.6}$$

$$(\forall x, y \in X)(x \cdot (y \cdot y) = 0), \tag{1.7}$$

$$(\forall a, x, y, z \in X)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0), \tag{1.8}$$

$$(\forall a, x, y, z \in X)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0), \tag{1.9}$$

$$(\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot (y \cdot z) = 0), \tag{1.10}$$

$$(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0), \tag{1.11}$$

$$(\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0), \text{ and}$$
 (1.12)

$$(\forall a, x, y, z \in X)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0).$$
(1.13)

2. FUZZY SETS WITH RESPECT TO A T-NORM IN UP-ALGEBRAS

Definition 2.1. [20] A *fuzzy set* A in a nonempty set X (or a *fuzzy subset* of X) is described by its membership function α_A . To every point $x \in X$, this function associates a real number $\alpha_A(x)$ in the unit interval [0, 1]. The number $\alpha_A(x)$ is interpreted for the point as a degree of belonging x to the fuzzy set A, that is, $A := \{(x, \alpha_A(x)) \mid x \in X\}$. We say that a fuzzy set A in X is *constant* if its membership function α_A is constant.

Definition 2.2. [8] A *triangular norm* (briefly, t-norm) is a binary operation T on the unit interval [0,1], i.e., a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ that satisfies the following axioms: **(T1):** Boundary condition: $(\forall x \in [0,1])(T(x,1) = x)$,

(T2): Commutativity: $(\forall x, y \in [0, 1])(T(x, y) = T(y, x)),$

(T3): Associativity: $(\forall x, y, z \in [0, 1])(T(x, T(y, z)) = T(T(x, y), z))$, and

(T4): Monotonicity: $(\forall x, y, z \in [0, 1])(y \le z \Rightarrow T(x, y) \le T(x, z)).$

Let T be a t-norm. Then the following properties hold (see [2]).

$$(\forall x, y \in [0, 1])(T(x, y) \le x \text{ and } T(x, y) \le y),$$
 (2.1)

(2.2)

$$(\forall x \in [0, 1])(T(x, 0) = 0),$$

$$(\forall a, b, x, y \in [0, 1])(x \le a, y \le b \Rightarrow T(x, y) \le T(a, b)), \text{ and}$$
 (2.3)

$$(\forall a, b, x, y \in [0, 1])(x \le a, y \le a \Rightarrow T(x, y) \le a).$$

$$(2.4)$$

In what follows, let X denote a UP-algebra $(X, \cdot, 0)$ and T a t-norm unless otherwise specified.

Definition 2.3. [2] A fuzzy set A in X is called

(1) a *T*-fuzzy UP-subalgebra of X if $(\forall x, y \in X)(\alpha_A(x \cdot y) \ge T(\alpha_A(x), \alpha_A(y)))$.

- (2) a T-fuzzy near UP-filter of X if
 - (i) $(\forall x \in X)(\alpha_A(0) \ge \alpha_A(x))$, and
 - (ii) $(\forall x, y \in X)(\alpha_A(x \cdot y) \ge T(\alpha_A(y), \alpha_A(y))).$
- (3) a T-fuzzy UP-filter of X if
 - (i) $(\forall x \in X)(\alpha_A(0) \ge \alpha_A(x))$, and

- (ii) $(\forall x, y \in X)(\alpha_A(y) \ge T(\alpha_A(x \cdot y), \alpha_A(x))).$
- (4) a T-fuzzy UP-ideal of X if
 - (i) $(\forall x \in X)(\alpha_A(0) \ge \alpha_A(x))$, and
 - (ii) $(\forall x, y, z \in X)(\alpha_A(x \cdot z) \ge T(\alpha_A(x \cdot (y \cdot z)), \alpha_A(y))).$
- (5) a *T*-fuzzy strongly UP-ideal of X if
 - (i) $(\forall x \in X)(\alpha_A(0) \ge \alpha_A(x))$, and
 - (ii) $(\forall x, y, z \in X)(\alpha_A(x) \ge T(\alpha_A((z \cdot y) \cdot (z \cdot x)), \alpha_A(y))).$

Burandate et al. [2] proved the generalization that the notion of T-fuzzy UP-ideals is a generalization of T-fuzzy strongly UP-ideals, the notion of T-fuzzy UP-filters is a generalization of T-fuzzy UP-ideals, the notion of T-fuzzy near UP-filters is a generalization of T-fuzzy UP-filters, and the notion of T-fuzzy UP-subalgebras is a generalization of Tfuzzy UP-filters. Moreover, the notion of T-fuzzy near UP-filters does not coincide with the notion of T-fuzzy UP-subalgebras.

Example 2.4. [2] Let $X = \{0, 1, 2, 3, 4\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

	0	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{array} $	2	3	4
0	0	1	2	3	4
1	0	0	2	3	2
2	0	1	0	3	1
3	0	1	2	0	4
4	0	0	0	3	0

Let T_{Luk} be the Łukasiewicz t-norm defined by

$$(\forall x, y \in [0, 1])(\mathbf{T}_{\text{Luk}}(x, y) = \max\{x + y - 1, 0\}).$$
 (2.5)

Define a fuzzy set A in X by

$$\alpha_A = \left(\begin{array}{rrrr} 0 & 1 & 2 & 3 & 4 \\ 0.7 & 0.4 & 0.2 & 0.5 & 0.3 \end{array}\right).$$

Then A is a T_{Luk} -fuzzy UP-ideal of X. Since

$$\alpha_A(2) = 0.2 < 0.4 = \mathsf{T}_{\mathsf{Luk}}(\alpha_A((2 \cdot 0) \cdot (2 \cdot 2)), \alpha_A(0)),$$

we have A is not a T_{Luk} -fuzzy strongly UP-ideal of X.

Example 2.5. [2] Let $X = \{0, 1, 2, 3, 4\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3	4
0	0	1	2	3	4
1	0	0	0	0	0
2	0	2	0	0	0
3	0	2	2	0	0
4	0	2	$ \begin{array}{c} 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \end{array} $	4	0

Define a fuzzy set A in X by

$$\alpha_A = \left(\begin{array}{rrrr} 0 & 1 & 2 & 3 & 4 \\ 0.8 & 0.7 & 0.9 & 0.9 & 0.9 \end{array}\right).$$

Then A is a T_{Luk} -fuzzy UP-subalgebra of X (see T_{Luk} in Example 2.4). Since

$$\alpha_A(1) = 0.7 < 0.8 = T_{\text{Luk}}(\alpha_A(4 \cdot 1), \alpha_A(4)),$$

we have A is not a T_{Luk}-fuzzy UP-filter of X. Since $\alpha_A(0) < \alpha_A(2)$, we have A does not satisfy the condition: $(\forall x \in X)(\alpha_A(0) \ge \alpha_A(x))$.

4

Example 2.6. [2] Let $X = \{0, 1, 2, 3, 4\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3	4
0	0	1	2	3	4
1	0	0	0	0	0
2	0	2	0	0	0
3	0	2	2	0	0
4	0	1 0 2 2 2	2	4	0

Let T_{min} be the Gödel t-norm defined by

$$(\forall x, y \in [0, 1])(\mathbf{T}_{\min}(x, y) = \min\{x, y\}).$$
 (2.6)

Define a fuzzy set A in X by

$$\alpha_A = \left(\begin{array}{cccc} 0 & 1 & 2 & 3 & 4 \\ 0.9 & 0.1 & 0.3 & 0.2 & 0 \end{array} \right).$$

Then A is a T_{min} -fuzzy UP-subalgebra of X (see T_{min} in Example 2.5). Since

$$\alpha_A(4 \cdot 3) = 0 < 0.2 = \mathsf{T}_{\min}(\alpha_A(3), \alpha_A(3)),$$

we have A is not a T_{min} -fuzzy near UP-filter of X.

Definition 2.7. [2] A fuzzy set A in X is called

- (1) an anti-T-fuzzy UP-subalgebra of X if $(\forall x, y \in X)(\alpha_A(x \cdot y) \leq T(\alpha_A(x), \alpha_A(y)))$.
- (2) an *anti-T-fuzzy near UP-filter* of X if
 - (i) $(\forall x \in X)(\alpha_A(0) \le \alpha_A(x))$, and
 - (ii) $(\forall x, y \in X)(\alpha_A(x \cdot y) \le T(\alpha_A(y), \alpha_A(y))).$
- (3) an *anti-T-fuzzy UP-filter* of X if
 - (i) $(\forall x \in X)(\alpha_A(0) \le \alpha_A(x))$, and (ii) $(\forall x, y \in X)(\alpha_A(y) \leq T(\alpha_A(x \cdot y), \alpha_A(x))).$
- (4) an *anti-T-fuzzy UP-ideal* of X if
 - (i) $(\forall x \in X)(\alpha_A(0) \le \alpha_A(x))$, and (ii) $(\forall x, y, z \in X)(\alpha_A(x \cdot z) \le T(\alpha_A(x \cdot (y \cdot z)), \alpha_A(y))).$
- (5) an *anti-T-fuzzy strongly UP-ideal* of X if
 - (i) $(\forall x \in X)(\alpha_A(0) \le \alpha_A(x))$, and
 - (ii) $(\forall x, y, z \in X)(\alpha_A(x) \leq T(\alpha_A((z \cdot y) \cdot (z \cdot x)), \alpha_A(y))).$

Burandate et al. [2] proved the generalization that the notion of anti-T-fuzzy near UPfilters is a generalization of anti-T-fuzzy UP-subalgebras. Moreover, the notions of anti-T-fuzzy strongly UP-ideals, anti-T-fuzzy UP-ideals, anti-T-fuzzy UP-filters, and anti-Tfuzzy UP-subalgebras coincide.

Theorem 2.1. [2] If A is an anti-T-fuzzy UP-subalgebra of X, then A is constant.

3. MAIN RESULTS

In this section, we investigate properties of the intersection and the union of T-fuzzy UP-subalgebras, T-fuzzy near UP-filters, T-fuzzy UP-filters, T-fuzzy UP-ideals, T-fuzzy strongly UP-ideals, anti-T-fuzzy UP-subalgebras, and anti-T-fuzzy near UP-filters of UPalgebras.

Definition 3.1. [9] Let \mathscr{A} be a nonempty family of fuzzy sets in a nonempty set X. Define the *intersection* $\cap \mathscr{A}$ in X by its membership function $\alpha_{\cap \mathscr{A}}$ which defined as follows:

$$(\forall x \in X)(\alpha_{\cap \mathscr{A}}(x) = \inf\{\alpha_A(x)\}_{A \in \mathscr{A}}).$$
(3.1)

Define the *union* $\cup \mathscr{A}$ in X by its membership function $\alpha_{\cup \mathscr{A}}$ which defined as follows:

$$(\forall x \in X)(\alpha_{\cup \mathscr{A}}(x) = \sup\{\alpha_A(x)\}_{A \in \mathscr{A}}).$$
(3.2)

Theorem 3.1. Let \mathscr{A} be a nonempty family of T-fuzzy UP-subalgebras of X. Then $\cap \mathscr{A}$ is also a T-fuzzy UP-subalgebra of X.

Proof. Let $x, y \in X$. Then $\alpha_A(x \cdot y) \geq T(\alpha_A(x), \alpha_A(y))$ for all $A \in \mathscr{A}$. Since $\inf \{\alpha_A(x)\}_{A \in \mathscr{A}} \leq \alpha_A(x)$ and $\inf \{\alpha_A(y)\}_{A \in \mathscr{A}} \leq \alpha_A(y)$ for all $A \in \mathscr{A}$, it follows from (2.3) that

$$(\forall A \in \mathscr{A})(T(\inf\{\alpha_A(x)\}_{A \in \mathscr{A}}, \inf\{\alpha_A(y)\}_{A \in \mathscr{A}}) \le T(\alpha_A(x), \alpha_A(y)) \le \alpha_A(x \cdot y)).$$

Thus

$$T(\alpha_{\cap\mathscr{A}}(x),\alpha_{\cap\mathscr{A}}(y)) = T(\inf\{\alpha_A(x)\}_{A\in\mathscr{A}},\inf\{\alpha_A(y)\}_{A\in\mathscr{A}})$$
$$\leq \inf\{\alpha_A(x\cdot y)\}_{A\in\mathscr{A}}$$
$$= \alpha_{\cap\mathscr{A}}(x\cdot y).$$

Hence, $\cap \mathscr{A}$ is a *T*-fuzzy UP-subalgebra of *X*.

The following example show that the union of T-fuzzy UP-subalgebras of X is not a T-fuzzy UP-subalgebra of X.

Example 3.2. Let $X = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

Define two fuzzy sets A_1 and A_2 in X as follows:

$$\alpha_{A_1} = \left(\begin{array}{ccc} 0 & 1 & 2 & 3 \\ 0.9 & 0.7 & 0.1 & 0.1 \end{array} \right).$$

and

$$\alpha_{A_2} = \left(\begin{array}{rrr} 0 & 1 & 2 & 3 \\ 0.8 & 0.4 & 0.5 & 0.6 \end{array}\right).$$

Then A_1 and A_2 are T_{min} -fuzzy UP-subalgebras of X (see T_{min} in Example 2.6). We thus obtain the union of A_1 and A_2 as follows:

$$\alpha_{A_1\cup A_2} = \left(\begin{array}{ccc} 0 & 1 & 2 & 3\\ 0.9 & 0.7 & 0.5 & 0.6 \end{array}\right).$$

Since

$$\alpha_{A_1\cup A_2}(1\cdot 3) = 0.5 < 0.6 = \mathsf{T}_{\min}(\alpha_{A_1\cup A_2}(1), \alpha_{A_1\cup A_2}(3)).$$

Therefore, $\alpha_{A_1 \cup A_2}(x)$ is not a T_{min}-fuzzy UP-subalgebra of X.

Theorem 3.2. Let \mathscr{A} be a nonempty family of T-fuzzy near UP-filters of X. Then $\cap \mathscr{A}$ is also a T-fuzzy near UP-filter of X.

Proof. Let $x \in X$. Since $\alpha_A(0) \ge \alpha_A(x)$ for all $A \in \mathscr{A}$, we have $\alpha_{\cap \mathscr{A}}(0) = \inf \{ \alpha_A(0) \}_{A \in \mathscr{A}} \ge \inf \{ \alpha_A(x) \}_{A \in \mathscr{A}} = \alpha_{\cap \mathscr{A}}(x).$ Let $x, y \in X$. Then $\alpha_A(x \cdot y) \ge T(\alpha_A(y), \alpha_A(y))$ for all $A \in \mathscr{A}$. Since $\inf \{\alpha_A(y)\}_{A \in \mathscr{A}} \le \alpha_A(y)$ for all $A \in \mathscr{A}$, it follows from (2.3) that

 $(\forall A \in \mathscr{A})(T(\inf\{\alpha_A(y)\}_{A \in \mathscr{A}}, \inf\{\alpha_A(y)\}_{A \in \mathscr{A}}) \leq T(\alpha_A(y), \alpha_A(y)) \leq \alpha_A(x \cdot y)).$ Thus

$$T(\alpha_{\cap\mathscr{A}}(y), \alpha_{\cap\mathscr{A}}(y)) = T(\inf\{\alpha_A(y)\}_{A\in\mathscr{A}}, \inf\{\alpha_A(y)\}_{A\in\mathscr{A}})$$
$$\leq \inf\{\alpha_A(x \cdot y)\}_{A\in\mathscr{A}}$$
$$= \alpha_{\cap\mathscr{A}}(x \cdot y).$$

Hence, $\cap \mathscr{A}$ is a *T*-fuzzy near UP-filter of *X*.

Theorem 3.3. Let \mathscr{A} be a nonempty family of T-fuzzy UP-filters of X. Then $\cap \mathscr{A}$ is also a T-fuzzy UP-filter of X.

Proof. The proof of the first statement is similar to the proof of Theorem 3.2. Let $x, y \in X$. Then $\alpha_A(y) \ge T(\alpha_A(x \cdot y), \alpha_A(x))$ for all $A \in \mathscr{A}$. Since $\inf \{\alpha_A(x \cdot y)\}_{A \in \mathscr{A}} \le \alpha_A(x \cdot y)$ and $\inf \{\alpha_A(x)\}_{A \in \mathscr{A}} \le \alpha_A(x)$ for all $A \in \mathscr{A}$, it follows from (2.3) that

$$(\forall A \in \mathscr{A})(T(\inf\{\alpha_A(x \cdot y)\}_{A \in \mathscr{A}}, \inf\{\alpha_A(x)\}_{A \in \mathscr{A}}) \leq T(\alpha_A(x \cdot y), \alpha_A(x)) \leq \alpha_A(y))$$

Thus

Thus

$$T(\alpha_{\cap\mathscr{A}}(x \cdot y), \alpha_{\cap\mathscr{A}}(x)) = T(\inf\{\alpha_A(x \cdot y)\}_{A \in \mathscr{A}}, \inf\{\alpha_A(x)\}_{A \in \mathscr{A}})$$
$$\leq \inf\{\alpha_A(y)\}_{A \in \mathscr{A}}$$
$$= \alpha_{\cap\mathscr{A}}(y).$$

Hence, $\cap \mathscr{A}$ is a *T*-fuzzy UP-filter of *X*.

The following example show that the union of T-fuzzy UP-filters of X is not a T-fuzzy UP-filter.

Example 3.3. Let $X = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3
0	0	1	2	3
1	0	0	2	2
2	0	1	0	1
3	0	0	2 2 0 0	0

Define two fuzzy sets A_1 and A_2 in X as follows:

$$\alpha_{A_1} = \left(\begin{array}{ccc} 0 & 1 & 2 & 3 \\ 0.7 & 0.3 & 0.4 & 0.3 \end{array} \right).$$

and

$$\alpha_{A_2} = \left(\begin{array}{ccc} 0 & 1 & 2 & 3 \\ 0.8 & 0.5 & 0.2 & 0.2 \end{array} \right).$$

Then A_1 and A_2 are T_{min} -fuzzy UP-filter of X (see T_{min} in Example 2.6). We thus obtain the union of A_1 and A_2 as follows:

$$\alpha_{A_1\cup A_2} = \left(\begin{array}{rrrr} 0 & 1 & 2 & 3\\ 0.8 & 0.5 & 0.4 & 0.3 \end{array}\right).$$

Since

$$\alpha_{A_1 \cup A_2}(3) = 0.3 < 0.4 = \mathsf{T}_{\min}(\alpha_{A_1 \cup A_2}(1 \cdot 3), \alpha_{A_1 \cup A_2}(1)).$$

Therefore, $\alpha_{A_1 \cup A_2}(x)$ is not a T_{min}-fuzzy UP-filter of X.

Theorem 3.4. Let \mathscr{A} be a nonempty family of *T*-fuzzy UP-ideals of *X*. Then $\cap \mathscr{A}$ is also a *T*-fuzzy UP-ideal of *X*.

Proof. The proof of the first statement is similar to the proof of Theorem 3.2. Let $x, y, z \in X$. Then $\alpha_A(x \cdot z) \geq T(\alpha_A(x \cdot (y \cdot z)), \alpha_A(y))$ for all $A \in \mathscr{A}$. Since $\inf \{\alpha_A(x \cdot (y \cdot z))\}_{A \in \mathscr{A}} \leq \alpha_A(x \cdot (y \cdot z))$ and $\inf \{\alpha_A(y)\}_{A \in \mathscr{A}} \leq \alpha_A(y)$ for all $A \in \mathscr{A}$, it follows from (2.3) that

$$(\forall A \in \mathscr{A})(T(\inf\{\alpha_A(x \cdot (y \cdot z))\}_{A \in \mathscr{A}}, \inf\{\alpha_A(y)\}_{A \in \mathscr{A}}) \le T(\alpha_A(x \cdot (y \cdot z)), \alpha_A(y))$$

$$\leq \alpha_A(x \cdot z)).$$

Thus

$$T(\alpha_{\cap\mathscr{A}}(x \cdot (y \cdot z)), \alpha_{\cap\mathscr{A}}(y)) = T(\inf\{\alpha_A(x \cdot (y \cdot z))\}_{A \in \mathscr{A}}, \inf\{\alpha_A(y)\}_{A \in \mathscr{A}})$$
$$\leq \inf\{\alpha_A(x \cdot z)\}_{A \in \mathscr{A}}$$
$$= \alpha_{\cap\mathscr{A}}(x \cdot z).$$

Hence, $\cap \mathscr{A}$ is a *T*-fuzzy UP-ideal of *X*.

The following example show that the union of T-fuzzy UP-ideals of X is not a T-fuzzy UP-ideal.

Example 3.4. Let $X = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

Define two fuzzy sets A_1 and A_2 in X as follows:

$$\alpha_{A_1} = \left(\begin{array}{rrr} 0 & 1 & 2 & 3 \\ 0.7 & 0.3 & 0.4 & 0.3 \end{array}\right).$$

and

$$\alpha_{A_2} = \left(\begin{array}{rrr} 0 & 1 & 2 & 3 \\ 0.8 & 0.5 & 0.2 & 0.2 \end{array}\right).$$

Then A_1 and A_2 are T_{min} -fuzzy UP-ideal of X (see T_{min} in Example 2.6). We thus obtain the union of A_1 and A_2 as follows:

$$\alpha_{A_1\cup A_2} = \left(\begin{array}{ccc} 0 & 1 & 2 & 3\\ 0.8 & 0.5 & 0.4 & 0.3 \end{array}\right).$$

Therefore, $\alpha_{A_1 \cup A_2}(x)$ is not a T_{min}-fuzzy UP-ideal of X because

$$\alpha_{A_1 \cup A_2}(0 \cdot 3) = 0.3 < 0.4 = \mathsf{T}_{\min}(\alpha_{A_1 \cup A_2}(0 \cdot (2 \cdot 3)), \alpha_{A_1 \cup A_2}(2)).$$

Theorem 3.5. Let \mathscr{A} be a nonempty family of T-fuzzy strongly UP-ideals of X. Then $\cap \mathscr{A}$ is also a T-fuzzy strongly UP-ideal of X.

Proof. The proof of the first statement is similar to the proof of Theorem 3.2. Let $x, y, z \in X$. Then $\alpha_A(x) \ge T(\alpha_A((z \cdot y) \cdot (z \cdot x)), \alpha_A(y))$ for all $A \in \mathscr{A}$. Since $\inf\{\alpha_A((z \cdot y) \cdot (z \cdot x))\}_{A \in \mathscr{A}} \le \alpha_A((z \cdot y) \cdot (z \cdot x))$ and $\inf\{\alpha_A(y)\}_{A \in \mathscr{A}} \le \alpha_A(y)$ for all $A \in \mathscr{A}$, it follows from (2.3) that

$$(\forall A \in \mathscr{A})(T(\inf\{\alpha_A((z \cdot y) \cdot (z \cdot x))\}_{A \in \mathscr{A}}, \inf\{\alpha_A(y)\}_{A \in \mathscr{A}}) \le T(\alpha_A((z \cdot y) \cdot (z \cdot x)), \alpha_A(y)) \le \alpha_A(x)).$$

Thus

$$T(\alpha_{\cap\mathscr{A}}((z \cdot y) \cdot (z \cdot x)), \alpha_{\cap\mathscr{A}}(y)) = T(\inf\{\alpha_A((z \cdot y) \cdot (z \cdot x))\}_{A \in \mathscr{A}}, \inf\{\alpha_A(y)\}_{A \in \mathscr{A}})$$
$$\leq \inf\{\alpha_A(x)\}_{A \in \mathscr{A}}$$
$$= \alpha_{\cap\mathscr{A}}(x).$$

Hence, $\cap \mathscr{A}$ is a *T*-fuzzy strongly UP-ideal of *X*.

Theorem 3.6. Let \mathscr{A} be a nonempty family of anti-*T*-fuzzy UP-subalgebras (is also anti-*T*-fuzzy near UP-filters) of X. Then $\cup \mathscr{A}$ is also an anti-T-fuzzy UP-subalgebra of X.

Proof. By Theorem 2.1, we have $\alpha_A(x) = \alpha_A(0)$ for all $x \in X$. Then $\alpha_{\cup \mathscr{A}}(x) = \alpha_A(0)$ $\sup\{\alpha_A(x)\}_{A \in \mathscr{A}} = \alpha_A(0)$. Let $x, y \in X$. Then

$$\begin{aligned} \alpha_{\cup\mathscr{A}}(x \cdot y) &= \alpha_A(0) \\ &= \alpha_A(0 \cdot 0) \\ &\leq T(\alpha_A(0), \alpha_A(0)) \\ &= T(\alpha_{\cup\mathscr{A}}(x), \alpha_{\cup\mathscr{A}}(y)). \end{aligned}$$
(Definition 2.7 (2) (ii))
an anti-*T*-fuzzy UP-subalgebra of *X*.

Hence, $\cup \mathscr{A}$ is an anti-*T*-fuzzy UP-subalgebra of *X*.

Theorem 3.7. Let \mathscr{A} be a nonempty family of anti-*T*-fuzzy UP-subalgebras (is also anti-*T*-fuzzy near UP-filters) of X. Then $\cap \mathscr{A}$ is also an anti-T-fuzzy UP-subalgebra of X.

Proof. By Theorem 2.1, we have $\alpha_A(x) = \alpha_A(0)$ for all $x \in X$. Then $\alpha_{\cap \mathscr{A}}(x) =$ $\inf \{\alpha_A(x)\}_{A \in \mathscr{A}} = \alpha_A(0).$ Let $x, y \in X$. Then

$$\begin{split} \alpha_{\cap\mathscr{A}}(x \cdot y) &= \alpha_A(0) \\ &= \alpha_A(0 \cdot 0) \qquad ((\text{UP-2})) \\ &\leq T(\alpha_A(0), \alpha_A(0)) \qquad (\text{Definition 2.7 (2) (ii)}) \\ &= T(\alpha_{\cap\mathscr{A}}(x), \alpha_{\cap\mathscr{A}}(y)). \end{split}$$

Hence, $\cap \mathscr{A}$ is an anti-*T*-fuzzy UP-subalgebra of *X*.

Theorem 3.8. Let \mathscr{A} be a nonempty family of anti-T-fuzzy near UP-filters of X. Then $\cup \mathscr{A}$ is also an anti-*T*-fuzzy near UP-filter of *X*.

Proof. Let $x \in X$. Since $\alpha_A(0) \leq \alpha_A(x)$ for all $A \in \mathscr{A}$, we have

$$\alpha_{\cup\mathscr{A}}(0) = \sup\{\alpha_A(0)\}_{A \in \mathscr{A}} \le \sup\{\alpha_A(x)\}_{A \in \mathscr{A}} = \alpha_{\cup\mathscr{A}}(x).$$

Let $x, y \in X$. Then $\alpha_A(x \cdot y) \leq T(\alpha_A(y), \alpha_A(y))$ for all $A \in \mathscr{A}$. Since $\sup\{\alpha_A(y)\}_{A \in \mathscr{A}} \geq$ $\alpha_A(y)$ for all $A \in \mathscr{A}$, it follows from (2.3) that

$$(\forall A \in \mathscr{A})(T(\sup\{\alpha_A(y)\}_{A \in \mathscr{A}}, \sup\{\alpha_A(y)\}_{A \in \mathscr{A}}) \ge T(\alpha_A(y), \alpha_A(y)) \ge \alpha_A(x \cdot y)).$$
Thus

Thus

$$T(\alpha_{\cup\mathscr{A}}(y), \alpha_{\cup\mathscr{A}}(y)) = T(\sup\{\alpha_A(y)\}_{A\in\mathscr{A}}, \sup\{\alpha_A(y)\}_{A\in\mathscr{A}})$$
$$\geq \sup\{\alpha_A(x \cdot y)\}_{A\in\mathscr{A}}$$
$$= \alpha_{\cup\mathscr{A}}(x \cdot y).$$

Hence, $\bigcup \mathscr{A}$ is an anti-*T*-fuzzy near UP-filter of *X*.

4. ACKNOWLEDGEMENTS

The authors would also like to thank the anonymous referee for giving many helpful suggestion on the revision of present paper.

REFERENCES

- M. A. Ansari, A. Haidar, and A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl. 23(4) (2018), 61.
- [2] P. Burandate, S. Thongarsa, and A. Iampan, Fuzzy sets in UP-algebras with respect to a triangular norm, Manuscript submitted for publication, April 2019.
- [3] N. Dokkhamdang, A. Kesorn, and A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 16(2) (2018), 171–190.
- [4] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5(1) (2017), 35–54.
- [5] A. Iampan, Introducing fully UP-semigroups, Discuss. Math., Gen. Algebra Appl. 38(2) (2018), 297–306.
 [6] W. Kaijae, P. Poungsumpao, S. Arayarangsi, and A. Iampan, UP-algebras characterized by their anti-fuzzy

UP-ideals and anti-fuzzy UP-subalgebras, Ital. J. Pure Appl. Math. 36 (2016), 667–692.

- [7] B. Kesorn, K. Maimun, W. Ratbandan, and A. Iampan, Intuitionistic fuzzy sets in UP-algebras, Ital. J. Pure Appl. Math. 34 (2015), 339–364.
- [8] Erich Peter Klement, Radko Mesiar, and Endre Pap, Triangular norms, Kluwer Academic Publishers, Netherlands, 2000.
- [9] K. H. Lee, First course on fuzzy theory and applications, Springer-Verlag Berlin Heidelberg, 2018.
- [10] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna 5(1) (2009), 54–57.
- [11] D. A. Romano, Proper UP-filters of UP-algebra, Univ. J. Math. Appl. 1(2) (2018), 98-100.
- [12] A. Satirad, P. Mosrijai, and A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci. 14(2) (2019), 403–409.
- [13] A. Satirad, P. Mosrijai, and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci. 14(1) (2019), 17–25.
- [14] T. Senapati, Y. B. Jun, and K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl. 10(4) (2018), 1850049.
- [15] T. Senapati, G. Muhiuddin, and K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math. 38 (2017), 497–517.
- [16] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, and A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 12(6) (2016), 739–756.
- [17] M. Songsaeng and A. Iampan, N-fuzzy UP-algebras and its level subsets, J. Algebra Relat. Top. 6(1) (2018), 1–24.
- [18] S. Sripaeng, K. Tanamoon, and A. Iampan, On anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras, J. Inf. Optim. Sci. 39(5) (2018), 1095–1127.
- [19] K. Tanamoon, S. Sripaeng, and A. Iampan, Q-fuzzy sets in UP-algebras, Songklanakarin J. Sci. Technol. 40(1) (2018), 9–29.
- [20] L. A. Zadeh, Fuzzy sets, Inf. Cont. 8 (1965), 338-353.

SAWITTREE THONGARSA

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, UNIVERSITY OF PHAYAO, PHAYAO 56000, THAILAND

Email address: th.sawittree@gmail.com

PAKPIMON BURANDATE

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, UNIVERSITY OF PHAYAO, PHAYAO 56000, THAI-LAND

Email address: pakpimon.burandate@gmail.com

AIYARED IAMPAN

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, UNIVERSITY OF PHAYAO, PHAYAO 56000, THAI-LAND

Email address: aiyared.ia@up.ac.th